Supplementary Information

for

Synthesis and Reactivity of Bis(imido) Uranium(VI) Cyclopentadienyl Complexes

Liam P. Spencer^a, Robyn. L. Gdula^a, Trevor W. Hayton^b, Brian L. Scott^a, and James M. Boncella^a *

 ^a Materials, Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
 ^b Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara California 93106 email: <u>boncella@lanl.gov</u>

Experimental

General. All reactions and subsequent manipulations were performed under anaerobic and anhydrous conditions either under high vacuum or an atmosphere of helium or argon. Hexanes were dried by passage over activate alumina and CH_2Cl_2 was purchased anhydrous and stored over activated molecular sieves for 24 h before use. CD_2Cl_2 and C_5D_5N were dried over activated 4Å molecular sieves for 24 h before use. $U(N^tBu)_2I_2(THF)_2$, $Na(C_5H_5)$, and $Na(C_5Me_5)$ were synthesized by the published procedures. All other reagents were purchased from commercial suppliers and used as received.

NMR spectra were recorded on a Bruker AVA300. ¹H and ¹³C{¹H} NMR spectra are referenced to external SiMe₄ using the residual protio solvent peaks as internal standards (¹H NMR experiments) or the characteristic resonances of the solvent nuclei (¹³C NMR experiments). The ³¹P{¹H} NMR spectra were referenced to external 85% H₃PO₄. Elemental analyses were performed at the UC Berkeley Microanalytical Facility, on a Perkin-Elmer Series II 2400 CHNS analyzer.

Synthesis of $(C_5H_5)_2U(N^tBu)_2$ (2) and $(C_5Me_5)_2U(N^tBu)_2$ (3)

The following procedure is representative of the synthesis of complexes 2 and 3. To a toluene solution (5 mL) of U(N^tBu)₂I₂(THF)₂ (500 mg, 0.64 mmol) was added a 2.0 M THF solution of NaC₅H₅ (640 μ L, 1.28 mmol). The dark colored reaction was stirred overnight and then filtered thru Celite to remove a precipitate which had formed. The solvent was removed until dryness and the residue dissolved into hexane (1 mL) and cooled to -30°C. A dark crystalline solid had formed after several days which were recovered by carefully decanting the solvent (207 mg, 63 % yield).

2: ¹**H NMR** (300 MHz, CD₂Cl₂, 25° C): δ 1.14 (s, 18 H, -NC(CH₃)₃), 6.15 (s, 10H, - C₅H₅).

¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 25° C): δ 25.1 (s, -NC(CH₃)₃), 64.7 (s, -NC(CH₃)₃), 127.2 (s, *C*₅H₅).

Anal. Calcd for C₁₈H₂₈N₂U: C, 42.35; H, 5.53; N, 5.49. **Found**: C, 42.58; H, 5.13; N, 5.76.

3: (Yield = 19%) ¹H NMR (300 MHz, CD₂Cl₂, 25° C): δ 1.40 (s, 18 H, -NC(CH₃)₃), 3.95 (s, 30H -C₅Me₅). ¹³C{¹H} NMR (MHz, CD₂Cl₂, 25° C): δ 9.7 (-C₅Me₅), 23.6 (s, -NC(CH₃)₃), 68.2 (s, -NC(CH₃)₃), 134.9 (-C₅Me₅).

Anal. Calcd for C₂₈H₄₈N₂U: C, 51.56; H, 7.43; N, 4.30. **Found**: C, 51.68; H, 7.22; N, 4.31.

Synthesis of $(C_5H_5)_2U(N^tBu)_2(dmpe)$ (4)

A toluene (2 mL) solution of **2** (50 mg, 0.098 mmol) was treated with a 1 mL toluene solution of dmpe (22 mg, 0.15 mmol) and the solution left to stand at -30° C overnight. Dark long needles formed slowly upon standing which were collected by decanting the solvent (56 mg, yield = 87 %).

4: ¹**H NMR** (300 MHz, CD₂Cl₂, 25° C): δ 1.11 (s, 18 H, -NC(CH₃)₃), 1.28 (br s, 12H, - PCH₃), 1.83 (br s, 4H, -PCH₂), 5.95 (s, 10H, -C₅H₅).

¹³C{¹H} NMR (MHz, CD₂Cl₂, 25° C): δ 17.8 (t, J_{13C-31P} = 7 Hz, -PCH₃), 27.4 (s, -

NC(CH₃)₃), 30.2 (t, $J_{13}C_{-31}P = 14$ Hz, -PCH₂), 75.2 (s, -NC(CH₃)₃), 128.3 (s, $C_{5}H_{5}$).

³¹P{¹H} NMR (MHz, CD₂Cl₂, 25° C): δ 84.3 (s).

Anal. Calcd for: C, 43.63; H, 6.71; N, 4.24. Found: C, 43.68; H, 6.93; N, 3.92.

Synthesis of U(N^tBu)₂(I)₂(dmpe) (5)

To a CH₂Cl₂ (5 mL) solution of U(N^tBu)₂I₂(THF)₂ (250 mg, 0.32 mmol) was added a CH₂Cl₂ solution (1 mL) solution of dmpe (72 mg, 0.48 mmol). The orange-red solution was stirred for 2 hours and filtered through Celite. The solvent in the filtrate was removed to near dryness and hexanes (5 mL) added to precipitate a bright orange powder. This solid was recrystallized twice from CH₂Cl₂/hexanes to yield an orange powder (229 mg, 91 % yield).

5: ¹**H NMR** (300 MHz, CD₂Cl₂, 25° C): δ 0.58 (s, 18 H, -NC(CH₃)₃), 2.09 (br s, 12H, - PCH₃), 2.54 (br m, 4H, -PCH₂).

¹³C{¹H} NMR (MHz, CD₂Cl₂, 25° C): δ 18.6 (t, J_{13C-31P} = 7 Hz, -PCH₃), 28.9 (s, -

NC(*C*H₃)₃), 29.7 (t, $J_{^{13}C^{-31}P} = 14$ Hz, -P*C*H₂), 77.3 (s, -N*C*(CH₃)₃).

³¹P{¹H} NMR (MHz, CD₂Cl₂, 25° C): δ 64.6 (s).

Anal. Calcd for: C, 21.44; H, 4.37; N, 3.57. Found: C, 21.35; H, 4.02; N, 3.92.

Synthesis of (C₅H₅)U(N^tBu)₂(I)(dmpe) (6) and (C₅H₅)₂U(N^tBu)₂(dmpe) (4)

The following procedure is representative of the synthesis of complexes **4** and **6**. To a toluene solution (5 mL) of $U(N^tBu)_2I_2(dmpe)$ (100 mg, 0.13 mmol) was added a THF (1 mL) solution of NaC₅H₅ (11 mg, 0.13 mmol). The dark colored reaction was stirred overnight and then filtered thru Celite to remove a precipitate which had formed. An equal volume of hexanes was added to the dark solution which was then stored at - $30^{\circ}C$ overnight. Dark long needles formed slowly upon standing which were collected by decanting the solvent (49 mg, 53 % yield).

6: ¹**H NMR** (300 MHz, CD₂Cl₂, 25° C): δ 0.72 (s, 18 H, -NC(CH₃)₃), 1.64 (d, ²J₁H-³¹P = 5 Hz, 6H, -PCH₃), 2.26 (d, ²J₁H-³¹P = 5 Hz, 6H, -PCH₃), 2.59 (m, 4H, -PCH₂), 6.68 (s, 10H, -C₅H₅).

¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 25° C): δ 17.2 (t, J₁₃_{C-³¹P} = 7 Hz, -PCH₃), 17.8 (t, J₁₃_{C-³¹P} = 7 Hz, -PCH₃), 29.2 (s, -NC(CH₃)₃), 31.0 (t, J₁₃_{C-³¹P} = 14 Hz, -PCH₂), 34.3 (t, J₁₃_{C-³¹P} = 14 Hz, -PCH₂), 76.1 (s, -NC(CH₃)₃), 129.8 (s, C₅H₅).

³¹P{¹H} NMR (121 MHz, CD₂Cl₂, 25° C): δ 71.3 (d, ²J_{31P-31P} = 24 Hz, 1P), 88.3 (d, ²J_{31P-31P} = 24 Hz, 1P).

Anal. Calcd for: C, 31.59; H, 5.44; N, 3.88. **Found**: C, 31.32; H, 5.41; N, 3.67. **4**: The NMR spectra were identical to those described above (Yield = 82 %).

Disproportionation Reaction of 6 in THF at 60°C

A d₈-THF solution (1 mL) of **6** (25 mg, 0.035 mmol) was heated at 60° C overnight in a 20mL vial and monitored by ¹H and ³¹P NMR spectroscopy. No reaction was observed.

Conproportionation Reaction of 4 and 5 in THF at 60°C

A d_8 -THF solution (1 mL) of 4 (25 mg, 0.032 mmol) and 5 (21 mg, 0.032 mmol) was heated at 60°C overnight in a 20mL vial and monitored by ¹H and ³¹P NMR spectroscopy. No reaction was observed.

X-ray Crystallography. The crystal structures of compounds 2, 4, and 6 were determined as follows: The crystal was mounted in a nylon cryoloop from Paratone-N oil under argon gas flow. The data were collected on a Bruker SMART APEX II chargecoupled-device (CCD) diffractometer, with KRYO-FLEX liquid nitrogen vapor cooling device. The instrument was equipped with graphite monochromatized MoK Xray source ($\lambda = 0.71073$ Å), with MonoCap X-ray source optics. A hemisphere of data was collected using ω scans, with 5-second frame exposures and 0.3° frame widths. Data collection and initial indexing and cell refinement were handled using APEX II software.³ Frame integration, including Lorentz-polarization corrections, and final cell parameter calculations were carried out using SAINT+ software.⁴ The data were S5 corrected for absorption using the SADABS program.⁵ Decay of reflection intensity was monitored via analysis of redundant frames. The structure was solved using Direct methods and difference Fourier techniques. All hydrogen atom positions were idealized, and rode on the atom they were attached to. The final refinement included anisotropic temperature factors on all non-hydrogen atoms. Structure solution, refinement, graphics, and creation of publication materials were performed using SHELXTL.⁶ ORTEP diagrams of 2, 4, and 6 are shown in Figures S1, S2 and S3 respectively, while X-ray crystallographic data for complexes 2, 4, and 6can be found in Table S1.

References

1. Hayton, T. W.; Boncella, J. M.; Scott, B. L.; Batista, E. R.; Hay, P. J. J. Am. Chem. Soc. 2006, 128, 10549.

2. Macchioni, A; Pregosin, P. S.; Ruegger, H.; van Koten, G.; van der Schlaaf, A.;

Abbenhuis, R. A. T. M. Magn. Reson. Chem. 1994, 32, 235.

3. APEX II 1.08, Bruker AXS, Inc.: Madison, WI, 2004.S15

4. SAINT+ 7.06, Bruker AXS, Inc.: Madison, WI, 2003.

5. Sheldrick, G. M. SADABS 2.03, University of Göttingen, Germany, 2001.

6. SHELXTL 5.10, Bruker AXS, Inc.: Madison, Wi, 1997.

Figure S1. ORTEP view of one of the independent molecules in the unit cell of $(C_5H_5)_2U(N^tBu)_2$ (2), depicted with 50% thermal ellipsoids.

Figure S2. ORTEP view of $(C_5H_5)_2U(N^tBu)_2(dmpe)$ (4), depicted with 50% thermal ellipsoids..

Figure S3. ORTEP view of $(C_5H_5)U(N^tBu)_2(I)(dmpe)$ (6), depicted with 50% thermal ellipsoids.

Crystal Data	2	4	6
Empirical formula	$C_{18}H_{28}N_2U$	$C_{24}H_{44}N_2P_2U$	$C_{19}H_{39}IN_2P_2U$
Crystal habit, color	Needle, black	Block, dark red	Block, black
Crystal size (mm)	0.28 x 0.04 x 0.03	0.20 x 0.16 x 0.08	0.22 x 0.10 x 0.08
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2_1/c$	P 2 ₁ /n	$P 2_1/n$
Volume (Å ³)	3764.0(10)	2539.3(6)	2502.3(7)
a (Å)	9.0621(14)	10.2746(15)	10.2143(16)
b(Å)	14.759(2)	20.362(3)	16.498(3)
c(Å)	28.152(4)	12.1417(18)	14.854(2)
$\alpha(^{o})$	90	90	90
β(°)	91.384(3)	91.546(2)	91.445(2)
$\gamma(^{\rm o})$	90	90	90
Ζ	8	4	4
Formula weight	510.45	660.58	722.39
(g/mol) Density (calculated)(Mg/m ³)	1.802	1.728	1.918
Absorption coefficient (cm^{-1})	8.621	6.531	7.854
F ₀₀₀	1936	1296	1368
Radiation	MoKα, 0.71073 Å	MoKα, 0.71073 Å	ΜοΚα, 0.71073 Å
Data Refinement			
Final R indices ^a	$R_1 = 0.0997, WR_2$ =0.1068	$R_1 = 0.0458, WR_2$ =0.0775	$R_1 = 0.0554, WR_2$ =0.0802
Largest diff. peak and hole (eÅ ⁻³)	1.659 and -1.568	1.587 and -1.565	1.407 and -1.095
^a Number of observed reflections: 2 , 7898 ($I_0 > 2\sigma I_0$), $R_1 = \Sigma (F_0 - F_c) / \Sigma F_0 $, $wR_2 = [$			
$\Sigma w(F_0 ^2 - F_c ^2)^2 / \Sigma wF_0^4 ^{1/2}, w = [\sigma^2 F_0^2 + (0.0534 \cdot p)^2]^{-1}, p = [F_0^2 + 2 \cdot F_c^2]/3.$ 4, 6013 (I ₀)			
$ > 2\sigma I_{o}), R_{1} = \Sigma (F_{o} - F_{c}) / \Sigma F_{o} , wR_{2} = [\Sigma w(F_{o} ^{2} - F_{c} ^{2})^{2} / \Sigma wF_{o}^{4}]^{1/2}, w = [\sigma^{2} F_{o}^{2} + $			
$(0.0324 \cdot p)^{2} r^{-1}, p = [F_{o}^{2} + 2 \cdot F_{c}^{2}]/3. 6, 5443 (I_{o} > 2\sigma I_{o}), R_{1} = \Sigma (F_{o} - F_{c}) / \Sigma F_{o} , wR_{2} = [P_{o}^{2} + 2 \cdot F_{c}^{2}]/3.$			
$\Sigma w(F_0 ^2 - F_c ^2)^2 / \Sigma wF_0^4]^{1/2}, w = [\sigma^2 F_0^2 + (0.0354 \cdot p)^2]^{-1}, p = [F_0^2 + 2 \cdot F_c^2]/3.$			

 Table S1. X-ray Crystallographic Data for Complexes 2, 4, and 6