Electronic Supplementary Information

Fused Tetracycles with a Benzene or Cyclohexadiene Core: [2+2+2] Cycloadditions on Macrocyclic Systems

Sandra Brun,^a Lídia Garcia,^a Iván González,^a Anna Torrent,^a Anna Dachs,^a Anna Pla-Quintana,^a Teodor Parella,^b Anna Roglans.^{*, a}

^a Department of Chemistry, Universitat de Girona, Campus de Montilivi, s/n. E-17071-Girona, Spain. Fax: 0034 972 418150; Tel:0034 972 4182 75; Email: anna.roglans@udg.edu. ^b Servei de RMN, Universitat Autònoma de Barcelona, Cerdanyola, E-08193-Barcelona, Spain. Tel-Fax: 0034 93 5812291; E-mail: teodor.parella@uab.es.

Contents

•	General methods	2
•	Preparation of macrocycles 1a, 1b, 1c, 1d, and 1h: synthetic procedures and	
	characterization data	3-10
•	Preparation of macrocycles 1f and 1g: synthetic procedures and characterization data	10-12
•	[2+2+2] Cycloisomerization reactions of macrocycles 1a-d, 1f-1h: experimental	
	procedure and characterization data of cycloisomerized compounds 2a-d, 2f-h	12-15
•	General procedure for the enantioselective [2+2+2] cycloisomerization of	
	macrocycles 1e and 1b	16
•	References	17

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. All reactions requiring anhydrous conditions were conducted in oven-dried glassware under a dry nitrogen atmosphere. The solvents acetonitrile, dichloromethane and tetrahydrofuran were degassed and dried under nitrogen by passing through solvent purification columns (MBraun, SPS-800). Toluene was distilled under nitrogen over sodium as the drying agent. Solvents were removed under reduced pressure with a rotary evaporator. When necessary, reaction mixtures were chromatographed on silica gel (230-400 mesh) using a gradient solvent system as the eluent.

¹H and ¹³C NMR spectra were recorded on a 600, 500 or 200 MHz NMR spectrometer. Chemical shifts (δ) for ¹H and ¹³C NMR were referenced to internal solvent resonances and reported relative to SiMe₄. Characterization of the cycloisomerized compounds were performed using typical gradient-enhanced 2D experiments, such as COSY, NOESY, HSQC, and HMBC, recorded under routine conditions.

2,4,6-Triisopropylphenylsulfonamide, 4-methylphenylsulfonamide, 1,4-dichlorobutyne, and 3hexyne-1,6-diol, **3d**, are commercially available and used without further purification.

1,4-dibromobutyne,¹*N-tert*-butyloxycarbonylarylsulfonamides, **4**,² 2-pentyne-1,5-diol, **3a**,³ 2-pentene-1,5-diol, (**3b** + **3c**),⁴ (*Z*)-2-phenyl-1,4-dibromo-2-butene⁵, (*E*)-2-phenyl-1,4-dibromo-2-butene⁶, and 1methyl-2-butyne-1,5-diol, **3h**,⁷ were prepared following the described procedures. 1,6,11-tris[(4methylphenyl)sulfonyl]-1,6,11-triazaundeca-3,8-diyne, **8**,⁸ (*E*)-1,6,11-tris[(4-methylphenyl)sulfonyl]-1,6,11-triazacyclopentadeca-3-ene-8,13-diyne, **1e**,⁹ *trans*-2,5,8-tris[(4-methylphenyl)sulfonyl]3a,3bdihydro-1*H*-2,5,8-triazatrindane, **2e**⁹ were previously prepared by us. Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

S.1. Synthesis of macrocycles 1a, 1b, 1c, 1d, 1h

Scheme S1. General synthetic scheme for macrocycles 1a, 1b, 1c, 1d, and 1h.

N,N'-Bis(4-bromo-2-butinyl)-(2,4,6-triisopropylphenyl)sulfonamide 7a. A mixture of 2,4,6-triisopropylphenylsulfonamide (0.43g, 1.51 mmols) and potassium carbonate (0.65g, 4.70 mmols) in acetonitrile (30 cm³) was stirred at room temperature. 1,4-dibromobutyne (1.26g, 5.94 mmols) was added dropwise to this suspension and the resulting mixture was heated to reflux for 16h (TLC monitoring). The mixture was cooled to room temperature, the salts filtered off, and the solvent removed by vacuum evaporation. The oily residue was purified by column chromatography on silica gel using mixtures of hexane/ethyl acetate (10/1) as the eluent to afford 7a (0.36g, 55% yield) as a colourless solid (Found: C, 50.49 and 50.50; H, 5.93 and 6.01; N, 2.61 and 2.59; S, 5.56 and 5.57. C₂₃H₃₁Br₂NO₂S requires C, 50.65; H, 5.73; N, 2.57; S, 5.88%); mp 87-89 °C; v_{max} (ATR)/cm⁻¹ 2960, 2932, 1316 and 1150; $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 1.23-1.28 (m, 18H), 2.91 (sept, *J* = 7.0 Hz, 1H), 3.88 (t, *J* = 2.0 Hz, 4H), 4.03 (sept, *J* = 6.8 Hz, 2H), 4.14 (t, *J* = 2.0 Hz, 4H) and 7.17 (s, 2H); $\delta_{\rm C}$ (50 MHz; CDCl₃; Me₄Si) 14.6, 24.2, 25.4, 30.1, 34.9, 36.2, 80.9, 81.1, 124.8, 130.6, 152.6 and 154.4; *m/z* (ESI-MS) 546-548 [M+H]⁺.

N,*N*'-Bis(4-bromo-2-butinyl)-(4-methylphenyl)sulfonamide (7bBr). 7bBr was prepared according to the method described above for 7a. (26% yield) Colourless oil (Found: C, 41.52 and 42.10; H, 3.49 and 3.57; N, 3.13 and 3.14; S, 6.91 and 6.92. $C_{15}H_{15}Br_2NO_2S$ requires C, 41.59; H, 3.49; N, 3.23; S, 7.40%); v_{max} (ATR)/cm⁻¹ 2921, 1351 and 1163; $\delta_H(200 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 2.44 (s, 3H), 3.74 (t, *J* = 2.0 Hz, 4H), 4.19 (t, *J* = 2.0 Hz, 4H), 7.33 (AA' part of the AA'BB' system, *J* = 8.4 Hz, 2H) and 7.72 (BB' part of the AA'BB' system, *J* = 8.4 Hz, 2H); $\delta_C(50 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 14.3, 22.3, 37.6, 79.9, 81.5, 128.5, 130.3, 135.7 and 144.7; ESI-MS (*m*/*z*) 475-477 [M+CH₃CN+H]⁺.

N,*N*'-Bis(4-chloro-2-butinyl)-(4-methylphenyl)sulfonamide (7bCl). 7bCl was prepared according to the method described above for 7a. (32% yield) Yellowish oil; v_{max} (ATR)/cm⁻¹ 1349 and 1159; $\delta_{\rm H}(200 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 2.43 (s, 3H), 3.97 (s, 4H), 4.18 (s, 4H), 7.32 (AA' part of the AA'BB' system, *J* = 8.0 Hz, 2H) and 7.72 (BB' part of the AA'BB' system, *J* = 8.0 Hz, 2H); $\delta_{\rm C}$ (50 MHz, CDCl₃, Me₄Si) 22.2, 30.6, 37.5, 79.7, 81.2, 128.5, 130.3, 135.7 and 144.8; *m*/*z* (ESI-MS) 346 [M+H]⁺; HRMS calcd. for [C₁₅H₁₅Cl₂NO₂S + Na]⁺: 366.0093. Found: 366.0067.

S.1.1. Synthesis of macrocycle 1a

N,N'-Bis(tert-butyloxycarbonyl)-N,N'-bis(2,4,6-triisopropylphenyl)sulfonyl-2-pentyne-1,5-

diamine (5a). A mixture of *N-tert*-butyloxycarbonyl-2,4,6-triisopropylphenylsulfonamide **4a** (1.00g, 2.61 mmols), 2-pentyne-1,5-diol **3a** (0.13g, 1.31 mmol), and triphenylphosphane (0.89g, 3.39 mmols) in anhydrous and degassed tetrahydrofuran (20 cm³) was stirred and cooled to 0°C in an ice-water bath. Diethyl azodicarboxylate (DEAD) (0.53 cm³, 3.39 mmols) was added dropwise to this solution and the resulting mixture was stirred at room temperature for 22h (TLC monitoring). The solvent was removed and the oily residue was purified by column chromatography on silica gel using mixtures of hexane/ethyl acetate (20/1) as the eluent to afford **5a** (0.89g, 81% yield) as a colourless solid (Found: C, 64.94; H, 8.86; N, 3.46. C₄₅H₇₀N₂O₈S₂ requires C, 65.03; H, 8.49; N, 3.37%); mp 119-121 °C; v_{max} (ATR)/cm⁻¹ 2965, 2163, 1726, 1336 and 1148; $\delta_{\rm H}$ (200 MHz, CDCl₃, Me₄Si) 1.16-1.32 (m, 36H + 18H), 2.60-2.75 (m, 2H), 2.91 (sept, *J* = 6.9 Hz, 2H), 3.75-4.10 (m, 6H), 4.57 (br s, 2H), 7.13 (s, 2H) and 7.14

(s, 2H); δ_C(50 MHz, CDCl₃, Me₄Si) 20.5, 24.3, 25.1, 25.3, 28.4, 28.5, 30.0, 34.9, 35.3, 44.8, 77.4, 80.5, 84.5, 84.7, 124.1, 124.2, 134.2, 134.8, 150.8, 151.2, 151.4, 151.5, 153.9 and 154.0; *m/z* (ESI-MS) 853 [M+Na]⁺ and 869 [M+K]⁺.

N,*N*[•]-Bis(2,4,6-triisopropylphenyl)sulfonyl-2-pentyne-1,5-diamine (6a). A mixture of 5a (0.80g, 0.96 mmols), dichloromethane (6 cm³) and trifluoroacetic acid (4 cm³, 34.69 mmol) was stirred at room temperature for 1h (TLC monitoring). The solvent was removed and the oily residue was redissolved in ethyl acetate (10 cm³), and washed with sodium bicarbonate (3x10 cm³) and brine (10 cm³). The organic layer was dried with anhydrous sodium sulfate and the solvent removed by vacuum distillation to afford 6a (0.55g, 89% yield) as a colourless solid; mp 153-155 °C; v_{max} (ATR)/cm⁻¹ 3267, 2960, 1323 and 1143; $\delta_{H}(200 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 1.25 (d, *J* = 6.6 Hz, 24H), 1.27 (d, *J* = 6.6 Hz, 12H), 2.15-2.25 (m, 2H), 2.75-2.90 (m, 2H), 2.91 (sept, *J* = 6.6 Hz, 2H), 3.77 (d, *J* = 6.0 Hz, 2H), 4.11 (sept, *J* = 6.6 Hz, 4H), 4.53 (t, *J* = 6.0 Hz, 1H), 4.65 (t, *J* = 6.4 Hz, 1H), 7.15 (s, 2H) and 7.16 (s, 2H); $\delta_{C}(50 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 20.7, 24.2, 25.5, 30.2, 30.3, 33.6, 34.8, 41.9, 77.6, 82.2, 124.5, 133.0, 150.9, 151.1, 153.5 and 153.6; *m*/z (ESI-MS) 631 [M+H]⁺; HRMS calcd. for [C₃₅H₅₄N₂O₄S₂ + H]⁺: 631.3598. Found: 631.3583.

1,6,11-Tris[(2,4,6-triisopropylphenyl)sulfonyl]-1,6,11-triazacyclohexadeca-3,8,13-triyne (1a). A mixture of **6a** (0.45g, 0.71 mmol) and potassium carbonate (0.49g, 3.55 mmols) in acetonitrile (50 cm³) was stirred at room temperature. A solution of **7a** (0.45g, 0.82 mmols) in acetonitrile (5 cm³) was added dropwise, and the resulting mixture was stirred at reflux for 25h (TLC monitoring). The mixture was cooled to room temperature, the salts filtered off, and the solvent removed by vacuum evaporation. The residue was purified by column chromatography on silica gel using mixtures of hexane/ethyl acetate (15/1) as the eluent to afford **1a** (0.59g, 82% yield) as a colourless solid (Found: C, 68.02 and 67.92; H, 8.19 and 8.36; N, 4.13 and 4.15; S, 9.04 and 9.15. $C_{58}H_{83}N_{3}O_6S_3$ ·CH₃OH requires C, 67.71; H, 8.38; N, 4.02; S, 9.19%); mp 195-197 °C; ν_{max} (ATR)/cm⁻¹ 2960, 1320 and 1152; $\delta_{H}(200 \text{ MHz}, \text{CDCl}_3, \text{Me4Si})$ 1.24 (apparent t, *J* = 6 Hz, 54H), 2.52 (br abs, 2H), 2.90 (sept, *J* = 6.8 Hz, 3H), 3.57 (t, *J* = 6.8 Hz, 2H), 3.92-4.13 (m, 6H), 4.04 (br s, 10H) and 7.15 (s, 6H); $\delta_{C}(50 \text{ MHz}, \text{CDCl}_3, \text{Me4Si})$ 19.3, 24.2, 25.4, 30.0,

34.9, 36.2, 36.6, 37.1, 37.6, 44.9, 76.4, 79.0, 79.5, 80.6, 80.7, 84.1, 124.8, 130.3, 130.5, 130.8, 152.4, 152.5, 154.3, 154.4 and 154.5; *m/z* (ESI-MS) 1014 [M+H]⁺.

S.1.2. Synthesis of macrocycles 1b and 1c

(*E*)-*N*,*N*'-Bis(*tert*-butyloxycarbonyl)-*N*,*N*'-bis[(4-methylphenyl)sulfonyl]-2-pentene-1,5-diamine (5b) and (*Z*)-*N*,*N*'-Bis(*tert*-butyloxycarbonyl)-*N*,*N*'-bis[(4-methylphenyl)sulfonyl]-2-pentene-1,5diamine (5c). The 5b and 5c 4.5:1 mixture was prepared according to the method described above for 5a. (86% yield) Pale yellow oil (Found: C, 57.10; H, 7.04; N, 4.59; S, 10.16. $C_{29}H_{40}N_2O_8S_2$ requires C, 57.22; H, 6.62; N, 4.60; S, 10.53%); v_{max} (ATR)/cm⁻¹ 2979, 1724, 1351 and 1152; δ_{H} (200 MHz, CDCl₃, Me₄Si) 1.35 (s, 18H + 18H), 2.44 (s, 6H + 6H), 2.47-2.59 (m, 2H + 2H), 3.83-3.94 (m, 2H + 2H), 4.40 (d, *J* = 5 Hz, 2H, 5b), 4.54 (d, *J* = 4.6 Hz, 2H, 5c), 5.61-5.85 (m, 2H + 2H), 7.31 (AA' part of the AA'BB' system, *J* = 8.2 Hz, 4H + 4H) and 7.79 (BB' part of the AA'BB' system, *J* = 8.2 Hz, 4H + 4H); δ_{C} (50 MHz, CDCl₃, Me₄Si) (mixture of 5b and 5c) 21.7, 28.0, 33.2, 46.4, 48.2, 84.3, 84.3, 127.9, 128.1, 129.3, 129.4, 130.7, 137.4, 137.5, 144.1, 144.2, 150.8 and 151.9; *m/z* (ESI-MS) 631 [M+Na]⁺.

(*E*)-*N*,*N*'-bis[(4-methylphenyl)sulfonyl]-2-pentene-1,5-diamine (6b) and (*Z*)-*N*,*N*'-bis[(4-methylphenyl)sulfonyl]-2-pentene-1,5-diamine (6c). The 6b and 6c mixture was prepared according to the method described above for 6a. (88% yield) Pale yellow oil; v_{max} (ATR)/cm⁻¹ 3277, 2925, 1320 and 1152; $\delta_{H}(200 \text{ MHz}, \text{CDCl}_3, \text{ Me}_4\text{Si})$ 2.03-2.20 (m, 2H + 2H), 2.42 (s, 6H + 6H), 2.95 (apparent q, *J* = 6.4 Hz, 2H + 2H), 3.47 (t, *J* = 6 Hz, 2H, 6b), 3.55 (t, *J* = 6.2 Hz, 2H, 6c), 4.82 (br abs, 2H + 2H), 5.26-5.51 (m, 2H + 2H), 7.30 (AA' part of the AA'BB' system, *J* = 8.2 Hz, 4H + 4H); $\delta_{C}(50 \text{ MHz}, \text{CDCl}_3, \text{ Me}_4\text{Si})$ (mixture of 6b and 6c) 21.6, 29.7, 32.1, 40.0, 42.2, 42.4, 45.0, 127.1, 127.2, 128.4, 129.8, 136.9, 137.0 and 143.5; *m/z* (ESI-MS) 431 [M+Na]⁺ and 447 [M+K]⁺; HRMS calcd. for [C₁₉H₂₄N₂O₄S₂ + Na]⁺: 431.1070. Found: 431.1070.

(*E*)-1,6,11-tris[(4-methylphenyl)sulfonyl]-1,6,11-triazacyclohexadeca-13-ene-3,8-diyne (1b) and (*Z*)-1,6,11-tris[(4-methylphenyl)sulfonyl]-1,6,11-triazacyclohexadeca-13-ene-3,8-diyne (1c). The mixture of **6b** and **6c** (0.12g, 0.29 mmols) and potassium carbonate (0.20g, 1.48 mmols) in acetonitrile (30 cm^3) was stirred at room temperature. A solution of **7bBr** (0.15g, 0.34 mmols) in acetonitrile (4 cm^3) was added dropwise to this solution and the resulting mixture was stirred at reflux for 25h (TLC monitoring). The mixture was cooled to room temperature, the salts filtered off, and the solvent removed by vacuum evaporation. The residue was purified by column chromatography on silica gel using mixtures of hexane/ethyl acetate/dichloromethane of increasing polarity (9/1/0 to 7/1/3) as the eluent to afford separately **1b** (0.13g, 63% yield) as a colourless solid and **1c** (0.03g, 13% yield) as a colourless solid.

(*E*)-1,6,11-tris[(4-methylphenyl)sulfonyl]-1,6,11-triazacyclohexadeca-13-ene-3,8-diyne (1b): mp 118-121 °C (dec); v_{max} (ATR)/cm⁻¹ 2921, 1345, 1157 and 1090; $\delta_{H}(200 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 2.25 (apparent q, J = 6.6 Hz, 2H), 2.44 (s, 9H), 3.11 (t, J = 7 Hz, 2H), 3.67 (d, J = 6.6 Hz, 2H), 3.70-3.90 (m, 8H), 5.28-5.46 (m, 1H), 5.52-5.70 (m, 1H), 7.27-7.35 (m, 6H) and 7.56-7.66 (m, 6H); $\delta_{C}(50 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 21.6, 30.6, 36.7, 36.8, 37.3, 37.9, 47.3, 50.7, 77.5, 78.5, 79.7, 80.4, 126.4, 127.5, 127.7, 127.9, 129.7, 129.9, 132.6, 134.8, 135.2, 135.9, 143.9, 144.1 and 144.4; HRMS calcd. for $[C_{34}H_{37}N_3O_6S_3 + \text{Na}]^+$: 702.1737. Found: 702.1707.

(Z)-1,6,11-tris[(4-methylphenyl)sulfonyl]-1,6,11-triazacyclohexadeca-13-ene-3,8-diyne (1c): mp 176-179 °C (dec); v_{max} (ATR)/cm⁻¹ 2921, 1351, 1164 and 1091; δ_{H} (200 MHz, CDCl₃, Me₄Si) 2.30-2.40 (m, 2H), 2.41 (s, 3H), 2.46 (s, 6H), 2.90-3.05 (m, 2H), 3.47 (s, 2H), 3.59 (s, 2H), 3.75 (d, *J* = 7.0 Hz, 2H), 3.82 (s, 2H), 3.98 (s, 2H), 5.25-5.39 (m, 1H), 5.50-5.64 (m, 1H), 7.22-7.36 (m, 6H) and 7.55-7.70 (m, 6H); δ_{C} (50 MHz, CDCl₃, Me₄Si) 21.7, 27.4, 35.5, 36.1, 36.3, 37.8, 42.7, 47.3, 77.5, 77.9, 79.0, 80.1, 126.4, 127.4, 127.9, 129.8, 129.9, 130.9, 134.5, 135.6, 135.7, 144.1, 144.4 and 144.6; HRMS calcd. for [C₃₄H₃₇N₃O₆S₃ + Na]⁺: 702.1737. Found: 702.1707.

S.1.3. Synthesis of macrocycle 1d

(E)-N,N'-Bis(tert-butyloxycarbonyl)-N,N'-bis[(4-methylphenyl)sulfonyl]-3-hexene-1,6-diamine

(5d). 5d was prepared according to the method described above for 5a. (92% yield) Colourless solid (Found: C, 57.57; H, 7.28; N, 4.67. $C_{30}H_{42}N_2O_8S_2$ required C, 57.86; H, 6.80; N, 4.50%);.mp 137-138 °C; v_{max} (ATR)/cm⁻¹ 2974, 1726, 1340 and 1151; $\delta_{H}(200 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 1.35 (s, 18H), 2.44 (s, 6H), 2.35-2.54 (m, 4H), 3.84 (t, J = 7.5 Hz, 4H), 5.52 (br abs, 2H), 7.30 (AA' part of the AA'BB' system, J = 8.0 Hz, 4H) and 7.79 (BB' part of the AA'BB' system, J = 8.0 Hz, 4H); $\delta_{C}(50 \text{ MHz}, \text{CDCl}_3$, Me₄Si) 22.3, 28.6, 34.1, 47.3, 84.7, 128.5, 129.6, 129.9, 138.2, 144.7 and 151.6; m/z (ESI-MS) 645 [M+Na]⁺ and 661 [M+K]⁺.

N,*N*'-Bis(4-methylphenyl)sulfony-3-hexene-1,6-diamine (6d). 6d was prepared according to the method described above for 6a. (99% yield) Colourless; solid mp 139-141 °C; v_{max} (ATR)/cm⁻¹ 3258, 2846, 1314, 1156 cm⁻¹; $\delta_{H}(200 \text{ MHz}, \text{CDCl}_3, \text{ Me}_4\text{Si})$ 2.08-2.20 (m, 4H), 2.42 (s, 6H), 2.96 (apparent q, J = 6.4 Hz, 4H), 4.80 (t, J = 6.1 Hz, 2H), 5.25-5.33 (m, 2H), 7.29 (AA' part of the AA'BB' system, J = 8.0 Hz, 4H) and 7.74 (BB' part of the AA'BB' system, J = 8.0 Hz, 4H); $\delta_{C}(50 \text{ MHz}, \text{CDCl}_3, \text{ Me}_4\text{Si})$ 22.2, 33.2, 43.1, 127.7, 130.1, 130.4, 137.7 and 144.0; m/z (ESI-MS) 423 [M+H]⁺, 445 [M+Na]⁺ and 461 [M+K]⁺; HRMS calcd. for [C₂₀H₂₆N₂O₄S₂ + H]⁺: 423.1407. Found: 423.1397.

(*E*)-1,6,11-Tris[(4-methylphenyl)sulfonyl]-1,6,11-triazacycloheptadeca-14-ene-3,8-diyne (1d). 1d was prepared according to the method described above for 1b/1c. (83% yield) Colourless solid (Found: C, 60.33 and 60.23; H, 5.78 and 5.89; N, 6.04 and 6.04; S, 13.68 and 13.59. C₃₅H₃₉N₃O₆S₃ requires C, 60.58; H, 5.67; N, 6.06; S, 13.86%); mp 214-216 °C (dec.); v_{max} (ATR)/cm⁻¹ 2957, 1353, 1328, 1161 and 1091; δ_{H} (200 MHz, CDCl₃, Me₄Si) 2.14-2.26 (m, 4H), 2.45 (s, 9H), 3.10 (t, *J* = 6.6 Hz, 4H), 3.82 (s, 4H), 3.84 (s, 4H), 5.44 (br abs, 2H), 7.31 (AA' part of the AA'BB' system, *J* = 7.9 Hz, 6H) and 7.62 (BB' part of the AA'BB' system, *J* = 7.9 Hz, 4H); δ_{C} (50 MHz, CDCl₃, Me₄Si) 22.21, 22.25, 31.8, 37.0, 38.5, 48.5, 78.3, 80.5, 128.1, 128.6, 129.8, 130.3, 130.4, 135.4, 136.0, 144.5 and 144.9; *m/z* (ESI-MS) 694 [M+H]⁺, 716 [M+Na]⁺ and 732 [M+K]⁺; HRMS calcd. for [C₃₅H₃₉N₃O₆S₃ + Na]⁺: 716.1893. Found: 716.1891.

S.1.4. Synthesis of macrocycle 1h

N,N'-Bis(tert-butyloxycarbonyl)-N,N'-bis[(4-methylphenyl)sulfonyl]-1-methyl-2-butyn-1,4-

diamine (5h). 5h was prepared according to the method described above for **5a**. (89% yield) Colourless solid (Found: C, 56.52 and 56.88; H, 6.85 and 6.87; N, 4.42 and 4.44. $C_{29}H_{38}N_2O_8S_2$ requires C, 57.41; H, 6.31; N, 4.62.); mp 148-151 °C; v_{max} (ATR)/cm⁻¹ 2983, 1723, 1346 and 1150; $\delta_H(200 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 1.31 (s, 9H), 1.32 (s, 9H), 1.76 (d, J = 7 Hz, 3H), 2.39 (s, 3H), 2.40 (s, 3H), 4.70 (d, J = 1.6 Hz, 2H), 5.54 (qt, J = 7.0 Hz and J = 1.6 Hz, 1H), 7.28 (AA' part of the AA'BB' system, J = 8.4 Hz, 4H), 7.86 (BB' part of the AA'BB' system, J = 8.4 Hz, 2H) and 7.92 (BB' part of the AA'BB' system, J = 8.4 Hz, 4H, 2H); $\delta_C(50 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 21.7, 22.0, 27.9, 28.0, 35.9, 45.4, 78.6, 82.7, 84.8, 84.9, 127.9, 128.3, 129.4, 129.5, 136.9, 137.5, 144.2, 144.4, 150.2 and 150.3; HRMS calcd. for [$C_{29}H_{38}N_2O_8S_2 + Na$]⁺: 629.1962. Found: 629.1970.

N,*N*'-bis[(4-methylphenyl)sulfonyl]-1-methyl-2-butyn-1,4-diamine (6h). 6h was prepared according to the method described above for 6a. (86% yield) Colourless solid (Found: C, 56.01 and 56.03; H, 5.82 and 5.85; N, 6.64 and 6.65; S, 15.31 and 15.30. C₁₉H₂₂N₂O₄S₂ requires C, 56.14; H, 5.45; N, 6.89; S, 15.78%); mp 175-177 °C; v_{max} (ATR)/cm⁻¹ 3260, 2924, 1329, 1152 and 1090; δ_{H} (200 MHz, DMSO-d₆, Me₄Si) 1.04 (d, *J* = 7.0 Hz, 3H), 2.39 (s, 3H), 2.40(s, 3H), 3.40 (d, *J* = 3.8 Hz, 2H), 3.75-3.95 (m, 1H), 7.38 (AA' part of the AA'BB' system, *J* = 8 Hz, 2H), 7.40 (AA' part of the AA'BB' system, *J* = 8 Hz, 4H) and 7.87-7.96 (m, 2H); δ_{C} (50 MHz, DMSO-d₆, Me₄Si) 20.9, 21.9, 31.8, 40.2, 78.0, 83.1, 126.6, 129.2, 129.4, 137.6, 138.2, 142.5 and 142.6; HRMS calcd. for [C₁₉H₂₂N₂O₄S₂ + Na]⁺: 429.0913. Found: 429.0929.

2-Methyl-1,6,11-tris[(4-methylphenyl)sulfonyl]-1,6,11-triazacyclopentadeca-3,8,13-triyne (1h). A mixture of 6h (1.00g, 2.46 mmols) and potassium carbonate (1.70g, 12.32 mmols) in acetonitrile (100 cm³) was stirred at room temperature. 7bCl (0.98g, 2.86 mmols) in acetonitrile (10 cm³) was added dropwise to this solution and the resulting mixture was stirred at reflux for 18h (TLC monitoring). The mixture was cooled to room temperature, the salts filtered off, and the solvent removed by vacuum

evaporation. The residue was purified by column chromatography on silica gel using mixtures of hexane/dichloromethane/ethyl acetate (7/2/2) as the eluent to afford **1h** (0.93g, 56% yield) as a colourless solid; mp 156-159 °C (dec); v_{max} (ATR)/cm⁻¹ 2921, 1337, 1156 and 1089; $\delta_{H}(200 \text{ MHz}, CDCl_3, Me_4Si)$ 1.24 (d, J = 7 Hz, 3H), 2.41 (s, 3H), 2.43 (s, 3H), 2.45 (s, 3H), 3.60-4.32 (m, 10H), 4.56 (apparent q, J = 7 Hz, 1H), 7.20-7.35 (m, 6H) and 7.55-7.70 (m, 6H); $\delta_{C}(50 \text{ MHz}, CDCl_3, Me_4Si)$ 21.4, 21.7, 33.2, 36.8, 37.0, 37.9, 38.0, 44.6, 77.6, 78.1, 78.2, 79.5, 80.3, 83.7, 127.6, 127.8, 128.0, 129.5, 129.7, 134.6, 135.5, 137.2, 143.8, 144.2 and 144.4; m/z (ESI-MS) 678 [M+H]⁺ and 700 [M+Na]⁺ and 716 [M+K]⁺; HRMS calcd. for [C₃₄H₃₅N₃O₆S₃ + Na]⁺: 700.1580. Found: 700.1557.

S.2. Synthesis of macrocycles 1f and 1g

Scheme S2. Synthetic scheme for macrocycles 1f and 1g

(Z)-3-Phenyl-1,6,11-tris[(4-methylphenyl)sulfonyl]-1,6,11-triazacyclopentadeca-3-ene-,8,13-diyne

(1f). A mixture of 1,6,11-tris[(4-methylphenyl)sulfonyl]-1,6,11-triazaundeca-3,8-diyne, 8 (0.2g, 0.32 mmols) and potassium carbonate (0.23g, 1.63 mmols) in acetonitrile (20 cm^3) was stirred and heated to reflux. (*Z*)-2-phenyl-1,4-dibromo-2-butene (0.10g, 0.35 mmols) in acetonitrile (20 cm^3) was added dropwise to this solution and the resulting mixture was stirred at reflux for 2h (TLC monitoring). The mixture was cooled to room temperature, the salts filtered off, and the solvent removed by vacuum evaporation. The residue was purified by column chromatography on silica gel using mixtures of

hexane/ethyl acetate of increasing polarity (from 8:2 to 6:4) as the eluent to afford **1f** (0.17g, 68% yield) as a colourless solid (Found: C, 62.79 and 62.92; H, 5.44 and 5.48; N, 5.71 and 5.70; S, 12.75 and 12.78. C₃₉H₃₉N₃O₆S₃ requires C, 63.13; H, 5.30; N, 5.66; S, 12.97%); mp 201-203 °C; v_{max} (ATR)/cm⁻¹ 2924, 2855, 1329 and 1154; δ_{H} (500 MHz, CDCl₃, Me₄Si) 2.26 (dd, *J* = 11 and 9.5 Hz, 1H), 2.39 (s, 3H), 2.42 (s, 3H), 2.46 (s, 3H), 2.94 (br abs, 1H), 3.03 (d, *J* = 10 Hz, 1H), 3.13 (br abs, 1H), 3.62 (dd, *J* = 9 and 8 Hz, 1H), 3.68 (d, *J* = 15 Hz, 1H), 3.80 (br abs, 1H), 3.84-3.99 (m, 4H), 4.05 (d, *J* = 15 Hz, 1H), 4.42 (d, *J* = 10 Hz, 1H), 6.88 (d, *J* = 7 Hz, 2H), 7.12-7.18 (m, 3H), 7.19 (AA' part of the AA'BB' system, *J* = 8 Hz, 2H), 7.24 (AA' part of the AA'BB' system, *J* = 8 Hz, 2H), 7.24 (AA' part of the AA'BB' system, *J* = 8 Hz, 2H), 7.55 (BB' part of the AA'BB' system, *J* = 8 Hz, 2H), 7.47 (BB' part of the AA'BB' system, *J* = 8 Hz, 2H), 7.55 (BB' part of the AA'BB' system, *J* = 8.5 Hz, 2H); δ_{C} (50 MHz, CDCl₃, Me₄Si) 22.2, 37.0, 38.6, 38.7, 39.8, 49.0, 54.1, 79.0, 79.2, 80.0, 81.4, 127.9, 128.4, 128.5, 128.8, 129.2, 129.5, 130.1, 130.3, 135.7, 136.3, 136.7, 136.8, 144.3 and 144.7; *m/z* (ESI-MS) 742 [M+H]⁺ and 759 [M+NH₄]⁺.

(E)-3-Phenyl-1,6,11-tris[(4-methylphenyl)sulfonyl]-1,6,11-triazacyclopentadeca-3-ene-,8,13-diyne

(**1g**). A mixture of **8** (0.2g, 0.32 mmols) and potassium carbonate (0.23g, 1.63 mmols) in acetonitrile (20 cm³) was stirred and heated to reflux. (*E*)-2-phenyl-1,4-dibromo-2-butene (0.10g, 0.35 mmols) in acetonitrile (20 cm³) was added dropwise to this solution and the resulting mixture was stirred at reflux for 2h (TLC monitoring). The mixture was cooled to room temperature, the salts filtered off, and the solvent removed by vacuum evaporation. The residue was purified by column chromatography on silica gel using mixtures of hexane/ethyl acetate of increasing polarity (from 8:2 to 7:3) as the eluent to afford **1g** (0.20g, 84% yield) as a colourless solid (Found: C, 62.47 and 62.12; H, 5.67 and 5.75; N, 5.47 and 5.44; S, 12.22 and 12.14. C₃₉H₃₉N₃O₆S₃.EtOAc requires C, 62.22; H, 5.71; N, 5.06; S, 11.59%); mp 189-191 °C; v_{max} (ATR)/cm⁻¹ 2920, 2851, 1341 and 1155; δ_{H} (600 MHz, CDCl₃, Me₄Si) 2.42 (s, 3H), 2.43 (s, 3H), 2.45 (s, 3H), 2.48 (dd, *J* = 12 and 8 Hz, 1H), 2.71 (br abs, 1H), 2.69 (d, *J* = 9.6 Hz, 1H), 3.60-3.63 (m, 1H + 1H + 1H), 3.71 (d, *J* = 13.2 Hz, 1H), 3.75-3.79 (m, 1H + 1H), 3.84 (d, *J* = 15 Hz, 1H), 3.90 (d, *J* = 9 Hz, 1H), 4.02 (d, *J* = 15 Hz, 1H), 4.07 (d, *J* = 15 Hz, 1H), 6.95-6.98 (m, 2H), 7.15-

7.18 (m, 3H), 7.18 (AA' part of the AA'BB' system, J = 8.4 Hz, 2H), 7.20 (AA' part of the AA'BB' system, J = 8 Hz, 2H), 7.34 (AA' part of the AA'BB' system, J = 8 Hz, 2H), 7.46 (BB' part of the AA'BB' system, J = 8 Hz, 2H), 7.46 (BB' part of the AA'BB' system, J = 8.5 Hz, 2H) and 7.68 (BB' part of the AA'BB' system, J = 8.5 Hz, 2H) and 7.68 (BB' part of the AA'BB' system, J = 8.5 Hz, 2H); $\delta_{C}(50$ MHz, CDCl₃, Me₄Si) 22.2, 22.3, 35.9, 37.2, 38.3, 38.5, 44.1, 44.2, 79.6, 79.9, 80.1, 80.2, 127.5, 128.3, 128.8, 128.9, 129.8, 130.1, 130.3, 130.4, 136.0, 136.1, 136.7, 138.9, 139.4, 144.7 and 144.8; m/z (ESI-MS) 742 [M+H]⁺.

S.3. [2+2+2] Cycloisomerization reactions of macrocycles 1a-1h

Scheme S3. [2+2+2] Cycloisomerization reactions of macrocycles 1

2,6,9-Tris[(2,4,6-triisopropylphenyl)sulfonyl]-1,2,3,4,5,6,7,8,9,10-decahydrodipyrrolo-[3,4-

f,h]isoquinoline (2a). A degassed mixture of triynic macrocycle 1a (0.05g, 0.05 mmol) and chlorotris(triphenylphosphane)rhodium(I) (Wilkinson's catalyst) (0.0023g, 0.0025 mmol) in anhydrous and degassed toluene (10 cm³) was stirred and heated to 90°C for 28h under a nitrogen atmosphere (TLC monitoring). The solvent was removed and the residue was purified by column chromatography on silica gel using mixtures of hexane:dichloromethane of increasing polarity (1:10 to 1:12) as the eluent to afford 2a (0.04g, 81% yield) as a colourless solid. mp 235-237 °C (dec); v_{max} (ATR)/cm⁻¹ 2958, 1315 and 1151; δ_{H} (200 MHz, CDCl₃, Me₄Si) 1.13-1.32 (m, 54H), 2.69 (br abs, 2H), 2.80-3.10 (m, 3H), 3.49 (t, *J* = 5.2 Hz, 2H), 4.03-4.31 (m, 6H), 4.12 (br s, 2H), 4.39 (br s, 2H), 4.49 (br s, 6H), 7.16 (s, 2H) and 7.19 (s, 4H); δ_{C} (50 MHz, CDCl₃, Me₄Si) 24.2, 25.5, 26.7, 30.1, 34.9, 41.9, 44.3, 51.6, 52.0, 124.6, 124.7, 127.4, 128.7, 129.5, 129.7, 130.3, 131.5, 131.6, 134.1, 136.1, 152.0, 152.4, 154.1, 154.2

and 154.3; m/z (ESI-MS) 1014 $[M+H]^+$, 1036 $[M+Na]^+$ and 1052 $[M+K]^+$; HRMS calcd. for $[C_{58}H_{83}N_3O_6S_3 + H]^+$: 1014.5517. Found: 1014.5515.

trans-2,6,9-Tris[(4-methylphenyl)sulfonyl]1,2,3,4,4a,4b,5,6,7,8,9,10-dodecahydrodipyrrolo-[3,4-

f,h]isoquinoline (2b). 2b was prepared according to the method described above for 2a. (90% yield) Colourless solid; mp 141-143 °C; v_{max} (ATR)/cm⁻¹ 2929, 1341, 1161 and 1092; $\delta_{H}(500 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 1.50 (apparent dq, J = 12 and 4 Hz, 1H), 1.85-1.95 (m, 1H + 1H), 2.26 (apparent t, J = 10 Hz, 1H), 2.46 (s, 9H), 2.50-2.62 (m, 1H + 1H), 2.80 (d, J = 14.3 Hz, 1H), 3.65 (d, J = 16.8 Hz, 1H), 3.68 (d, J = 14.0 MHz, 1H), 3.77-3.90 (m, 1H + 1H + 1H), 3.92 (d, J = 14 Hz, 1H), 3.95-4.03 (m, 1H + 1H), 4.11-4.19 (m, 1H), 7.32-7.38 (m, 6H), 7.65 (BB' part of the AA'BB' system, J = 8.2 Hz, 2H) and 7.72 (BB' part of the AA'BB' system, J = 8.2 Hz, 2H); $\delta_{C}(50 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 21.9, 33.0, 38.7, 45.9, 46.1, 47.7, 49.5, 49.7, 49.9, 53.9, 122.5, 125.2, 127.4, 128.0, 128.1, 128.2, 129.6, 130.2, 130.3, 132.9, 133.1, 133.2, 144.4, 144.5 and 144.6; HRMS calcd. for $[C_{34}H_{37}N_3O_6S_3 + \text{Na}]^+$: 702.1737. Found: 702.1727.

cis-2,6,9-Tris[(4-methylphenyl)sulfonyl]1,2,3,4,4a,4b,5,6,7,8,9,10-dodecahydrodipyrrolo-[3,4-

f,h]isoquinoline (2c). 2c was prepared according to the method described above for 2a. (87% yield) Colourless solid; mp 212-215 °C; v_{max} (ATR)/cm⁻¹ 2921, 1343, 1159 and 1090; $\delta_{H}(500 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 1.19 (br abs, 1H), 1.24 (br abs, 1H), 2.27 (apparent t, 1H), 2.37 (apparent dt, J = 11.7 and 3.4 Hz, 1H), 2.41 (s, 3H), 2.45 (s, 3H), 2.47 (s, 3H), 2.67 (dd, J = 11.4 and 9.0 Hz, 1H), 2.82 (d, J = 11.6 Hz, 1H), 3.07 (br abs, 1H), 3.50 (d, J = 16 Hz, 1H), 3.65 (apparent t, J = 7.9 Hz, 1H), 3.71 (br abs, 1H), 3.84 (br abs, 2H), 3.91 (d, J = 14 Hz, 1H), 3.98 (d, J = 16 Hz, 1H), 4.06 (d, J = 11.6 Hz, 1H), 4.13 (d, J = 14 Hz, 1H), 7.29-7.39 (m, 6H), 7.61 (BB' part of the AA'BB' system, J = 8.3 Hz, 2H), 7.69 (BB' part of the AA'BB' system, J = 8.2 Hz, 2H); $\delta_{C}(125 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 21.4, 21.5, 21.6, 27.8, 37.1, 40.2, 46.4, 48.7, 48.9, 49.6, 49.8, 123.6, 123.7, 125.2, 127.6, 127.7, 127.8, 129.1, 129.8, 129.9, 132.4, 132.7, 132.8, 143.8, 143.9 and 144.1; HRMS calcd. for $[C_{34}H_37N_3O_6S_3 + Na]^+$: 702.1737. Found: 702.1714.

trans-2,5,10-Tris[(4-methylphenyl)sulfonyl]-2,3,4,5,6,7,7a,7b,8,9,10,11-dodecahydro-1H-

pyrrolo[3,4-f][3,8]**phenanthroline** (2**d**). 2**d** was prepared according to the method described above for 2**a**. (98% yield) Colourless solid; mp 256-257 °C (dec); v_{max} (ATR)/cm⁻¹ 2917, 2850, 1348, 1162 and 1093; $\delta_{H}(600 \text{ MHz}, \text{CDCl}_3, \text{ Me}_4\text{Si})$ 1.40-1.43 (m, 2H), 1.84-1.89 (m, 2H + 2H), 2.30 (apparent t, J = 11.2 Hz, 2H), 2.45 (s, 6H), 2.46 (s, 3H), 2.78 (d, J = 13.7 Hz, 2H), 3.84 (br abs, 2H), 3.86 (d, J = 13.6 Hz, 2H), 4.01 (d, J = 13.6 Hz, 2H), 4.11 (d, J = 13.7 Hz, 2H), 7.34 (AA' part of the AA'BB' system, J = 8.0 Hz, 4H), 7.38 (AA' part of the AA'BB' system, J = 8.0 Hz, 2H), 7.64 (BB' part of the AA'BB' system, J = 8.0 Hz, 4H) and 7.76 (BB' part of the AA'BB' system, J = 8.0 Hz, 2H); $\delta_{C}(50 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 22.2, 32.5, 40.9, 46.8, 47.9, 50.4, 123.2, 128.2, 128.5, 128.6, 130.5, 130.6, 133.3, 144.6 and 144.7; m/z (ESI-MS) 694 [M+H]⁺, 716 [M+Na]⁺ and 732 [M+K]⁺; HRMS calcd. for [C₃₅H₃₉N₃O₆S₃ + K]⁺; 732.1633. Found: 732.1619.

trans-2,5,8-Tris[(4-methylphenyl)sulfonyl]-3a-phenyl-3b-1*H*-2,5,8-triazatrindane (2f). 2f was prepared according to the method described above for 2a. (95% yield) Colourless solid (Found: C, 62.58 and 62.59; H, 5.45 and 5.48; N, 5.58 and 5.64; S, 12.63 and 12.69. C₃₉H₃₉N₃O₆S₃.1/2EtOAc requires C, 62.65; H, 5.51; N, 5.35; S, 12.24%); mp 159-161 °C; v_{max} (ATR)/cm⁻¹ 2923, 1342 and 1161; $\delta_{\rm H}$ (200 MHz, CDCl₃, Me₄Si) 2.15-2.30 (m, 1H), 2.37 (s, 3H), 2.39 (s, 3H), 2.43 (s, 3H), 2.90-3.19 (m, 3H), 3.50-4.10 (m, 8H), 4.39 (d, *J* = 9.6 Hz, 1H), 6.80-6.90 (m, 2H), 7.00-7.35 (m, 9H), 7.40-7.56 (m, 4H) and 7.66-7.72 (m, 2H); $\delta_{\rm C}$ (50 MHz, CDCl₃, Me₄Si) 22.0, 22.1, 22.2, 48.3, 49.1, 49.2, 50.0, 50.4, 53.1, 61.0, 125.7, 127.6, 128.1, 128.2, 128.3, 128.4, 129.1, 129.4, 129.8, 130.3, 130.4, 130.6, 132.7, 133.4, 133.7, 135.0, 144.4, 144.5 and 144.9; *m*/*z* (ESI-MS) 742 [M+H]⁺.

cis-2,5,8-Tris[(4-methylphenyl)sulfonyl]-3a-phenyl-3b-1*H*-2,5,8-triazatrindane (2g). 2g was prepared according to the method described above for 2a. (71% yield) Colourless solid (Found: C, 62.71 and 62.64; H, 5.40 and 5.52; N, 5.59 and 5.62; S, 12.65 and 12.65. $C_{39}H_{39}N_3O_6S_3$.1/2EtOAc

requires C, 62.65; H, 5.51; N, 5.35; S, 12.24%); mp 136-138 °C; v_{max} (ATR)/cm⁻¹ 2922, 1340 and 1157; $\delta_{H}(200 \text{ MHz}, \text{CDCl}_{3}, \text{Me}_{4}\text{Si})$ 2.40-2.50 (m, 10H), 2.64 (d, J = 10 Hz, 2H), 3.54-4.15 (m, 10H), 6.92-6.71 (m, 2H), 7.12-7.22 (m, 7H), 7.29-7.36 (m, 2H), 7.40-7.48 (m, 2H) and 7.60-7.70 (m, 4H); $\delta_{C}(50 \text{ MHz}, \text{CDCl}_{3}, \text{Me}_{4}\text{Si})$ 22.1, 22.2, 47.9, 48.5, 48.9, 49.0, 50.8, 50.9, 51.0, 53.1, 125.5, 125.7, 126.0, 126.7, 127.7, 127.8, 128.0, 128.2, 129.1, 129.8, 130.4, 130.6, 130.7, 133.4, 134.2, 134.8, 144.3, 144.8, 144.9 and 147.2; m/z (ESI-MS) 742 [M+H]⁺ and 764 [M+Na]⁺.

1-Phenyl-2,5,8-tris[(4-methylphenyl)sulfonyl)]-1*H***-2,5,8-triazatrindane** (**2h**). **2h** was prepared according to the method described above for **2a**. Colourless solid (quantitative yield); mp 136-139 °C; v_{max} (ATR)/cm⁻¹ 2920, 1344, 1163 and 1095; $\delta_{H}(200 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 1.50 (d, J = 6.3 Hz, 3H), 2.38 (s, 3H), 2.41 (s, 6H), 4.33-4.54 (m, 10H), 4.86 (apparent q, J = 6.3 Hz, 1H), 7.28-7.35 (m, 6H) and 7.60-7.76 (m, 6H); $\delta_{C}(50 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si})$ 21.7, 22.2, 51.8, 52.0, 52.1, 60.9, 127.5, 127.7, 130.0, 130.1, 130.6, 130.9, 131.4, 133.7, 134.8, 136.5, 144.1 and 144.2; HRMS calcd. for [C₃₄H₃₅N₃O₆S₃ + Na]⁺: 700.1580. Found: 700.1586.

S.4. General procedure for the enantioselective [2+2+2] cycloisomerization of macrocycles 1e and 1b

With the introduction of H₂ gas to the catalytic system

A degassed mixture of [Rh(COD)Cl]₂ (0.006 mmol) and chiral phosphane (0.006 mmol) in anhydrous and degassed toluene (2 cm³) was stirred at room temperature. The flask was purged with hydrogen gas and the solution was stirred for 1 h. The hydrogen was then removed and nitrogen gas was introduced. A solution of macrocycle (0.06 mmol) in anhydrous toluene (6 cm³) was added to the previous mixture and the resulting solution was heated to 65°C and stirred for 24h under a nitrogen atmosphere (TLC monitoring). The solvent was removed and the residue was purified by column chromatography on silica gel to afford the corresponding cycloisomerized compound **2**.

Without the introduction of H₂ gas to the catalytic system

A degassed mixture of $[Rh(COD)Cl]_2$ (0.006 mmol) and chiral phosphane (0.006 mmol) in anhydrous and degassed toluene (2 cm³) was stirred at room temperature. A solution of macrocycle (0.06 mmol) in anhydrous toluene (6 cm³) was added to this solution and the mixture was heated to 65°C and stirred for 24h under a nitrogen atmosphere (TLC monitoring). The solvent was removed and the residue was purified by column chromatography on silica gel to afford the corresponding cycloisomerized compound **2**.

References

- [1] A. W. Johnson, J. Chem. Soc., 1946, 1009-1014.
- [2] B. R. Neustadt, Tetrahedron Lett., 1994, 35, 295-305.
- [3] J. Efskind, C. Römming and K. Undheim, J. Chem. Soc., Perkin Trans, 2001, 2697-2703.
- [4] C. Y. De Leon and B. Ganem, *Tetrahedron*, 1997, **53**, 7731-7752.
- [5] A. N. De Silva, C. L. Francis and D. Ward, Aust. J. Chem., 1993, 46, 1657-1671.
- [6] C. H. Oh, H. H. Jung, K. S. Kim and N. Kim, Angew. Chem. Int. Ed., 2003, 42, 805-808.
- [7] S. J. Pridmore, P. A. Slatford and M. J. Williams, Tetrahedron Lett., 2007, 48, 5111-5114.

[8] A. Pla-Quintana, A. Roglans, A. Torrent, M. Moreno-Mañas and J. Benet-Buchholz, *Organometallics*, 2004, **23**, 2762-2767.

[9] A. Torrent, I. González, A. Pla-Quintana, A. Roglans, M. Moreno-Mañas, T. Parella and J. Benet-Buchholz, *J. Org. Chem.*, 2005, **70**, 2033-2041.