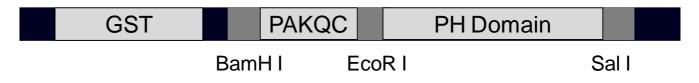
Electronic supplementary information for

Specific N-terminal Protein Labelling: Use of FMDV 3C^{P10} Protease and Native Chemical Ligation

Gillian K. Busch^a, Edward W. Tate^a, Piers R.J. Gaffney^a, Erika Rosivatz^b, Rudiger Woscholski^b, and Robin J. Leatherbarrow^{*a}


s^a Department of Chemistry, Imperial College London' South Kensington Campus, London SW7 2AZ, Fax: (+44) (0)20 7594 1139, E-mail: r.leatherbarrow@imperial.ac.uk

Engineering the pGEX_3C_PH plasmid and plasmid map

10

pGEX_3C_PH Construct

pGEX 4T-1 was double digested *Bam*H I and *Eco*R I. The PAKQC insert flanked with a 5' *Bam*H I and 3' *Eco*R I overhangs (FWD – 5'-GAT TC <u>CCG GCG AAA CAG TGT</u> G, *Bam*H I overhang-<u>PAKQC</u>; REV – 5'-G <u>GGC CGC TTT GTC ACA</u> ctt aa, <u>PAKQC</u>-*Eco*R I overhang) was ligated into the linerized vector, generating the vector pGEX_3C. The PH Domain gene was amplified by PCR with the primers PH5'EcoR I (5'-AAA CCG GAA TTC CGT <u>ATG AGC GAC GTG GC</u>, EcoR I-<u>5' PH</u> <u>Domain</u>) and PH3'Sal I (5'-<u>AAC GCG TCG ACC TCA</u> GCC CGA ACG GAA G, <u>3' PH Domain</u>-Sal I). The purified PCR product was digested with *Eco*R I and *Sal*I, and ligated to pGEX_3C linearized with the same restriction enzymes, generating the vector pGEX_3C_PH. Constucts were verified by DNA Sequencing.

²⁰ Figure S1: Section of the pGEX_3C_PH plasmid, detailing the GST tag and PAKQC and PH Domain inserts within the multiple cloning site