BiPh₃ – A convenient synthon for heavy alkaline earth metal amides

Miriam M. Gillett-Kunnath,^{*a,b*} Jonathan G. MacLellan,^{*b*} Craig M. Forsyth,^{*b*} Phil C. Andrews,^{*b**} Glen B. Deacon,^{*b**} and Karin Ruhlandt-Senge^{*a**}

Supporting Information:

XRD Powder Profiles:

Powder X-ray Crystallography:

Powder patterns for the compounds were collected on a Bruker AXS D8 Advance automated diffractometer using Cu K α radiation ($\lambda = 1.54$ Å). The finely ground sample was prepared in a capillary tube in the drybox and sealed with high vacuum silicone grease. The step size was 0.02° in 20, and the sample was collected under vacuum.

Compound	Powder Pattern Profiles that were compared			
$Ca{N(SiMe_3)_2}_2(THF)_2, 1$	Salt Metathesis	Redox Transmetallation/ Ligand		
		Exchange		
$Sr{N(SiMe_3)_2}_2(THF)_2, 2$	Salt Metathesis	Redox Transmetallation/ Ligand		
		Exchange		
$Ba\{N(SiMe_3)_2\}_2(THF)_2, 3$	Direct Metallation via	Redox Transmetallation/ Ligand		
	$NH_{3(1)}$ activation	Exchange		

(1) Profile in red via Redox Transmetallation/ Ligand Exchange

(2) Profile in black either Salt Metathesis or Direct Metallation

Graphical representation of compound 5.

¹H NMR (500 MHz, D₈-thf, 25 °C):

- 1: $Ca\{N(SiMe_3)_2\}_2, \delta 0.011 (s, 18H, SiMe_3);$
- **2**: Sr{N(SiMe₃)₂}₂, δ 0.012 (s, 18H, SiMe₃);
- **3**: Ba{N(SiMe₃)₂}₂, δ 0.017 (s, 18H, SiMe₃).

¹H NMR (500 MHz, D₈-thf, 25 °C):

- 7: Ca{N(SiMe₃)(Dipp)}₂, δ 0.190 (s, 18H, SiMe₃), 1.234 (s, 24H, CH₃), 3.906 (m, 4H, CH), 6.705 (t, 2H, *p*-Ar-H), 6.989 (d, 4H, *m*-Ar-H), 7.337 (s, 12H, C₆H₆);
- 8: Sr {N(SiMe₃)(Dipp)}₂, δ 0.195 (s, 18H, SiMe₃), 1.224 (s, 24H, CH₃), 3.893 (m, 4H, CH), 6.671 (t, 2H, *p*-Ar-H), 7.005 (d, 4H, *m*-Ar-H), 7.337 (s, 12H, C₆H₆);
- **9**: Ba{N(SiMe₃)(Dipp)}₂, δ 0.220 (s, 18H, SiMe₃), 1.212 (s, 24H, CH₃), 3.821 (m, 4H, CH), 6.664 (t, 2H, *p*-Ar-H), 7.032 (d, 4H, *m*-Ar-H), 7.337 (s, 12H, C₆H₆).

[Sr{N(SiMe₃)(Mes)}₂.thf₂] 5

Bond Lengths (Å)

Sr(1)-N(2)	2.4276(16)	N(1)-Si(1)	1.6846(16)
Sr(1)-N(1)	2.4350(16)	N(2)-C(13)	1.396(2)
Sr(1)-O(1)	2.5025(14)	N(2)-Si(2)	1.6805(17)
Sr(1)-O(2)	2.5082(15)	Si(1)-C(10)	1.871(2)
Sr(1)-C(1)	2.8842(18)	Si(1)-C(11)	1.873(2)
Sr(1)-C(13)	3.1053(18)	Si(1)-C(12)	1.874(2)
Sr(1)-C(2)	3.2838(19)	Si(2)-C(22)	1.871(2)
Sr(1)-Si(2)	3.6530(7)	Si(2)-C(24)	1.878(2)
N(1)-C(1)	1.395(2)	Si(2)-C(23)	1.881(2)

Bond Angles (°)

N(2)-Sr(1)-N(1)	122.85(5)	N(1)-Sr(1)-C(2)	47.75(5)
N(2)-Sr(1)-O(1)	105.03(5)	O(1)-Sr(1)-C(2)	71.30(5)
N(1)-Sr(1)-O(1)	116.73(5)	O(2)-Sr(1)-C(2)	125.89(5)
N(2)-Sr(1)-O(2)	106.91(5)	C(1)- $Sr(1)$ - $C(2)$	25.54(5)
N(1)-Sr(1)-O(2)	106.68(5)	C(13)- $Sr(1)$ - $C(2)$	109.58(5)
O(1)-Sr(1)-O(2)	94.59(5)	C(1)-N(1)-Si(1)	127.36(13)
N(2)-Sr(1)-C(1)	142.34(5)	C(1)-N(1)-Sr(1)	93.74(11)
N(1)-Sr(1)-C(1)	28.86(5)	Si(1)-N(1)-Sr(1)	138.86(9)
O(1)-Sr(1)-C(1)	88.19(5)	C(13)-N(2)-Si(2)	129.93(13)
O(2)-Sr(1)-C(1)	106.95(5)	C(13)-N(2)-Sr(1)	105.41(11)
N(2)-Sr(1)-C(13)	25.68(5)	Si(2)-N(2)-Sr(1)	124.55(8)
N(1)-Sr(1)-C(13)	128.59(5)	N(1)-Si(1)-C(10)	111.99(10)
O(1)-Sr(1)-C(13)	81.62(5)	N(1)-Si(1)-C(11)	111.80(10)
O(2)-Sr(1)-C(13)	119.86(5)	C(10)-Si(1)-C(11)	107.54(12)
C(1)-Sr(1)-C(13)	132.63(5)	N(1)-Si(1)-C(12)	111.51(10)
N(2)-Sr(1)-C(2)	127.15(5)	C(10)-Si(1)-C(12)	107.85(12)

C(11)-Si(1)-C(12)	105.83(12)	C(22)-Si(2)-C(23)	105.31(12)
N(2)-Si(2)-C(22)	115.34(10)	C(24)-Si(2)-C(23)	106.90(12)
N(2)-Si(2)-C(24)	105.77(11)	C(4)-C(5)-C(6)	122.57(18)
C(22)-Si(2)-C(24)	107.44(13)	C(5)-C(6)-C(1)	120.31(17)
N(2)-Si(2)-C(23)	115.55(10)	N(2)-C(13)-Sr(1)	48.91(9)

Ba{N(MesSiMe₃)}₂.thf₃ 6

Bond Lengths (Å)

Ba(1)-N(2)	2.5716(17)	C(2)-C(7)	1.504(3)
Ba(1)-N(1)	2.6381(17)	C(3)-C(4)	1.384(4)
Ba(1)-O(1)	2.7539(16)	C(4)-C(5)	1.389(4)
Ba(1)-O(3)	2.7575(16)	C(4)-C(8)	1.512(3)
Ba(1)-O(2)	2.7728(15)	C(5)-C(6)	1.391(3)
Ba(1)-C(1)	3.205(2)	C(6)-C(9)	1.503(3)
N(1)-C(1)	1.387(3)	C(13)-C(14)	1.422(3)
N(1)-Si(1)	1.6754(19)	C(13)-C(18)	1.426(3)
N(2)-C(13)	1.398(3)	C(14)-C(15)	1.394(3)
N(2)-Si(2)	1.6869(18)	C(14)-C(19)	1.505(3)
Si(1)-C(10)	1.874(3)	C(15)-C(16)	1.388(3)
Si(1)-C(11)	1.877(3)	C(16)-C(17)	1.388(3)
Si(1)-C(12)	1.886(3)	C(16)-C(20)	1.512(3)
Si(2)-C(22)	1.866(3)	C(17)-C(18)	1.392(3)
Si(2)-C(23)	1.871(3)	C(18)-C(21)	1.511(3)
Si(2)-C(24)	1.873(3)	C(25)-C(26)	1.469(4)
O(1)-C(28)	1.443(3)	C(26)-C(27)	1.516(4)
O(1)-C(25)	1.444(3)	C(27)-C(28)	1.513(3)
O(2)-C(32)	1.443(3)	C(29)-C(30)	1.512(4)
O(2)-C(29)	1.446(3)	C(30)-C(31)	1.520(4)
O(3)-C(36)	1.438(3)	C(31)-C(32)	1.479(4)
O(3)-C(33)	1.442(3)	C(33)-C(34)	1.511(3)
C(1)-C(2)	1.421(3)	C(34)-C(35)	1.518(4)
C(1)-C(6)	1.425(3)	C(35)-C(36)	1.495(4)
C(2)-C(3)	1.399(3)		

Bond Angles (°)

N(2)-Ba(1)-N(1)	123.19(6)	C(29)-O(2)-Ba(1)	130.57(13)
N(2)-Ba(1)-O(1)	101.93(5)	C(36)-O(3)-C(33)	109.02(18)
N(1)-Ba(1)-O(1)	102.28(5)	C(36)-O(3)-Ba(1)	129.04(14)
N(2)-Ba(1)-O(3)	91.54(5)	C(33)-O(3)-Ba(1)	121.93(13)
N(1)-Ba(1)-O(3)	92.36(5)	N(1)-C(1)-C(2)	120.5(2)
O(1)-Ba(1)-O(3)	149.73(5)	N(1)-C(1)-C(6)	122.7(2)
N(2)-Ba(1)-O(2)	116.58(5)	C(2)-C(1)-C(6)	116.6(2)
N(1)-Ba(1)-O(2)	119.51(5)	N(1)-C(1)-Ba(1)	53.93(10)
O(1)-Ba(1)-O(2)	72.59(5)	C(2)-C(1)-Ba(1)	97.77(13)
O(3)-Ba(1)-O(2)	77.14(5)	C(6)-C(1)-Ba(1)	113.97(14)
N(2)-Ba(1)-C(1)	141.91(5)	C(3)-C(2)-C(1)	120.5(2)
N(1)-Ba(1)-C(1)	25.14(5)	C(3)-C(2)-C(7)	119.6(2)
O(1)-Ba(1)-C(1)	106.05(5)	C(1)-C(2)-C(7)	119.8(2)
O(3)-Ba(1)-C(1)	76.94(5)	C(4)-C(3)-C(2)	122.6(2)
O(2)-Ba(1)-C(1)	96.34(5)	C(3)-C(4)-C(5)	117.0(2)
C(1)-N(1)-Si(1)	131.46(15)	C(3)-C(4)-C(8)	121.9(2)
C(1)-N(1)-Ba(1)	100.93(12)	C(5)-C(4)-C(8)	121.1(2)
Si(1)-N(1)-Ba(1)	127.56(9)	C(4)-C(5)-C(6)	122.7(2)
C(13)-N(2)-Si(2)	124.74(14)	C(5)-C(6)-C(1)	120.5(2)
C(13)-N(2)-Ba(1)	100.38(12)	C(5)-C(6)-C(9)	119.9(2)
Si(2)-N(2)-Ba(1)	134.88(9)	C(1)-C(6)-C(9)	119.5(2)
N(1)-Si(1)-C(10)	107.20(11)	N(2)-C(13)-C(14)	121.91(19)
N(1)-Si(1)-C(11)	112.79(11)	N(2)-C(13)-C(18)	121.14(19)
C(10)-Si(1)-C(11)	109.56(13)	C(14)-C(13)-C(18)	116.80(19)
N(1)-Si(1)-C(12)	116.65(11)	C(15)-C(14)-C(13)	120.3(2)
C(10)-Si(1)-C(12)	104.85(12)	C(15)-C(14)-C(19)	119.1(2)
C(11)-Si(1)-C(12)	105.40(12)	C(13)-C(14)-C(19)	120.6(2)
N(2)-Si(2)-C(22)	107.85(11)	C(16)-C(15)-C(14)	122.7(2)
N(2)-Si(2)-C(23)	115.19(11)	C(15)-C(16)-C(17)	117.2(2)
C(22)-Si(2)-C(23)	107.40(15)	C(15)-C(16)-C(20)	121.3(2)
N(2)-Si(2)-C(24)	113.92(11)	C(17)-C(16)-C(20)	121.5(2)
C(22)-Si(2)-C(24)	107.47(14)	C(16)-C(17)-C(18)	122.5(2)
C(23)-Si(2)-C(24)	104.61(15)	C(17)-C(18)-C(13)	120.5(2)
C(28)-O(1)-C(25)	109.70(19)	C(17)-C(18)-C(21)	119.3(2)
C(28)-O(1)-Ba(1)	121.90(13)	C(13)-C(18)-C(21)	120.19(19)
C(25)-O(1)-Ba(1)	127.62(16)	O(1)-C(25)-C(26)	107.6(3)
C(32)-O(2)-C(29)	109.30(18)	C(25)-C(26)-C(27)	105.6(2)
C(32)-O(2)-Ba(1)	120.05(14)	C(28)-C(27)-C(26)	103.3(2)

O(1)-C(28)-C(27)	105.7(2)	O(3)-C(33)-C(34)	105.6(2)
O(2)-C(29)-C(30)	105.6(2)	C(33)-C(34)-C(35)	101.5(2)
C(29)-C(30)-C(31)	103.1(2)	C(36)-C(35)-C(34)	104.0(2)
C(32)-C(31)-C(30)	102.1(2)	O(3)-C(36)-C(35)	107.0(2)
O(2)-C(32)-C(31)	105.8(2)		

Relative costs of making Ae(HMDS)₂

Method 1

xs Ae +	$^{2}/_{3}$ BiPh ₃ +	2 HN(SiMe ₃) ₂
20 mmol	$^{20}/_{3}$ mmol	20 mmol

Method 2

$AeI_2 +$	$2 \text{ KN}(\text{SiMe}_3)_2$
10 mmol	20mmol

These calculations are based on US prices, using the cheapest reagent prices we were quoted on 26^{th} May 2008. In method 1 a twofold excess of metal is calculated as this is the maximum (relative) quantity used. All calculations are based on reactions on a 10mmol scale, excluding solvents.

Ca (HMDS)₂

Method 1

Calcium Turnings 99.5% Acros - USA AC20138-5000	500g		\$150.50	
Triphenylbismuth 98.0%				
Shangai FWD Chemicals				
K6245		1Kg		\$285.00
1,1,1,3,3,3-Hexamethyldis Alfa Aesar A15139	silazane [] 2.5L	HMDS(H)] 98+ %	\$191.00	
2 fold excess Ca (20mmol BiPh ₃ ($^{20}/_3$ mmol)) 2.9352g	0.8018g \$0.84	\$0.24	
$HIN(SIMe_3)_2$ (20 mmol)	4.1/02m	11	\$0.32	
Total Cost				\$1.40

Method 2

Calcium Iodide Anhydrous Beads, -10 mesh, 99.95% Aldrich 516244 100g \$145.00

Calcium Iodide Ultra dry, 99.99%, -10 mesh beads ampouled under Argon

Aldrich 43674	100)g	\$274.00
Potassium Hexamethyldis	silazide [K(H	MDS)] 95 %	
324671	100g		\$242.00
Anhydrous CaI ₂			
CaI ₂ (10mmol)	2.9389g	\$4.26	
<u>KN(SiMe₃)₂ (20 mmol)</u>	3.9896g	\$9.65	
Total Cost			\$13.92
Ultra dry CaI ₂			
CaI_2 (10mmol)	2.9389g	\$8.05	
$KN(SiMe_3)_2$ (20 mmol)	3.9896g	\$9.65	
Total Cost	÷		\$17.71
% Cost Method 1/ Metho	d 2		
Anhydrous Cal2			10.06%
Ultra dry, under Argon			7.91%

Sr(HMDS)₂

Method 1

Strontium Granules 99% u	inder Argoi	n with thin layer	Oil	
35789`	1	00g		\$200.00
Triphenylbismuth 98.0% Shangai FWD Chemicals K6245	1	Kg		\$285.00
1,1,1,3,3,3-Hexamethyldis Alfa Aesar	ilazane [H]	MDS(H)] 98+ %	⁄ 0	
A15139	2.5L		\$191.00	
2 fold excess Sr (20mmol)	1.7524g	\$3.50		
$BiPh_3$ (²⁰ / ₃ mmol)	2.9352g	\$0.84		
$HN(SiMe_3)_2$ (20 mmol)	4.1702ml		\$0.32	
Total Cost				<u>\$4.66</u>
Method 2				
Strontium Iodide Anhydro Aldrich	us Powder,	99.99%		
466336	10g		\$195.50	
Potassium Hexamethyldis Aldrich	ilazide [K(I	HMDS)] 95 %		
324671	100g		\$242.00	

SrI_2 (10mmol)	3.414	3g	\$66.75
KN(SiMe ₃) ₂ (20 mmol)	3.9896g	\$9.65	
Total Cost			\$76.40
% Cost Method 1/ Metho	6.10%		

Ba(HMDS)₂

Method 1

Barium Rods 99+% Aldrich 237094	100g		\$108.50				
Triphenylbismuth 98.0% Shangai FWD Chemicals K6245	1Kg			\$285.00			
1,1,1,3,3,3-Hexamethyldisilazane [HMDS(H)] 98+ %							
A15139	2.5L		\$191.00				
2 fold excess Ba (20mmol BiPh ₃ (²⁰ / ₃ mmol) <u>HN(SiMe₃)₂ (20 mmol)</u> <u>Total Cost</u>) 2.7466g 2.9352g 4.1702ml	\$0.84	\$2.98 \$0.32	<u>\$4.14</u>			
Method 2							
Barium Iodide Anhydrous Beads, -10 mesh, 99.995% Aldrich 413615 25g \$371.00							
Barium Iodide Ultra dry, 9 Aldrich	99.999%, -10 mesh	beads a	mpouled	under Argon			
	25g	1.05.0/		\$501.00			
Aldrich 324671	100g] 93 %	\$242.00				
Anhydrous BaI ₂							
BaI ₂ (10mmol) <u>KN(SiMe₃)₂ (20 mmol)</u> Total Cost	3.9114g 3.9896g	\$58.05 <u>\$9.65</u>	\$	<u>67.70</u>			
Ultra dry BaI ₂							
SrI ₂ (10mmol) <u>KN(SiMe₃)₂ (20 mmol)</u>	3.9114g 3.9896g	<u>\$9.65</u>	\$87.77				
<u>1 otal Cost</u> % Cost Method 1/ Method	12		\$	<u>97.43</u>			
Anhydrous BaI ₂ Ultra dry, under Argon			6.12% 4.25%				

Metal	Method	Comment	Cost (\$)	Relative cost	%
Calcium	1		1.40		-
Calcium	2a	Anhydrous	13.92	Method 1/ Method2a	10.06
Calcium	2b	Ultra Dry	17.71	Method 1/ Method 2b	7.91
Strontium	1		4.66		-
Strontium	2		76.40	Method 1/ Method 2	6.10
Barium	1		2.98		
Barium	2a	Anhydrous	67.70	Method 1/ Method2a	6.12
Barium	2b	Ultra Dry	97.43	Method 1/ Method 2b	4.25