Electronic supplementary information

An easy entry to optically active α-amino phosphonic acid derivatives using phase transfer catalysis (PTC)

Francesco Fini, ${ }^{a}$ Gabriele Micheletti, ${ }^{a}$ Luca Bernardi, ${ }^{*}$ Daniel Pettersen, ${ }^{a}$ Mariafrancesca Fochi ${ }^{a}$ and Alfredo Ricci* ${ }^{*}$

${ }^{a}$ Department of Organic Chemistry "A. Mangini", University of Bologna, V. Risorgimento 4, 40136 Bologna, Italy. Fax: +39 051 2093654; Tel: +39 0512093635; E-mail: nacca@ms.fci.unibo.it; ricci@ms.fci.unibo.it

Experimental details:

General methods: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ NMR were recorded on a Varian AS 400 spectrometer running at $400,100,162$ and 376 MHz , respectively, in CDCl_{3} as the solvent, unless otherwise stated. Chemical shifts are reported in the δ scale relative to residual solvent peaks for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR $\left({ }^{1} \mathrm{H}\right.$ NMR: 7.26 ppm for CDCl_{3} and 4.79 ppm for $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOH}$, ${ }^{13} \mathrm{C}$ NMR: 77.0 ppm for CDCl_{3}) or using an external reference for ${ }^{31} \mathrm{P},{ }^{19} \mathrm{~F}$ NMR and ${ }^{13} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}\left({ }^{31} \mathrm{P}\right.$ NMR: 0.0 ppm for $\mathrm{K}_{3} \mathrm{PO}_{4} 85 \%$, ${ }^{19} \mathrm{~F}$ NMR: -163.0 ppm for $\mathrm{C}_{6} \mathrm{~F}_{6},{ }^{13} \mathrm{C}$ NMR in $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOH}: 0.0 \mathrm{ppm}$ for sodium 3-(trimethylsilyl)propionate). ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a broad band decoupled mode. Coupling constants (J) are given in Hertz. Mass spectra were recorded on a micromass LCT spectrometer using electrospray (ES) ionisation techniques. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. The enantiomeric excess (ee) of the products was determined by chiral stationary phase HPLC, using a UV detector operating at 215 nm . Melting points were measured on a Büchi smp-20 apparatus and are uncorrected. Chromatographic purifications were performed using 70-230 mesh silica.

Materials: All commercially available solvents and reagents were used as received. α-Amido sulfones 1a-l were obtained following literature procedures. ${ }^{1}$ Racemic samples were obtained at room temperature using tetrabutylammonium bromide as the catalyst.

Preparation of N-(2-fluorobenzyl)-hydroquininium bromide (4f): o-Fluorobenzyl bromide ($289 \mu \mathrm{~L}, 2.4 \mathrm{mmol}$) was
 added to a suspension of hydroquinine ($652 \mathrm{mg}, 2.0 \mathrm{mmol}$) in toluene (6 mL). The resulting mixture was heated to $80^{\circ} \mathrm{C}$ with stirring. After 4 h the reaction mixture was allowed to cool to room temperature and evaporated in vacuo. The residue was dissolved in the minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 1 mL), and poured onto $\mathrm{Et}_{2} \mathrm{O}$ (ca. 20 mL) with stirring. The resulting precipitate was collected by suction filtration, washed several times with $\mathrm{Et}_{2} \mathrm{O}$ giving $\mathbf{4 f}$ as a light pink solid (670 $\mathrm{mg}, 65 \%$ yield). $\mathrm{mp}>160^{\circ} \mathrm{C}$ (dec.); $[\alpha]_{\mathrm{D}}{ }^{20}-109\left(c 0.20\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.78(3 \mathrm{H}, \mathrm{t}, J 7.1), 1.22-1.33(2 \mathrm{H}, \mathrm{m}), 1.41-1.50$ $(1 \mathrm{H}, \mathrm{m}), 1.67-1.85(2 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.30-2.45(1 \mathrm{H}, \mathrm{m}), 2.73-2.80(1 \mathrm{H}, \mathrm{m}), 3.08-3.18(1 \mathrm{H}$, br dt, $J 6.4$ and 11.5), $3.33(1 \mathrm{H}, \mathrm{brt}, J 11.5), 3.66(1 \mathrm{H}, \mathrm{dd}, J 7.2$ and 11.0$), 3.96(3 \mathrm{H}, \mathrm{s}), 4.51(1 \mathrm{H}, \mathrm{d}, J 12.1), 5.15(1$ H, td, J 3.3 and 11.7), $6.48(1 \mathrm{H}, \mathrm{d}, J 11.7), 6.53(1 \mathrm{H}, \mathrm{d}, J 7.7), 6.76(1 \mathrm{H}, \mathrm{d}, J 6.9), 7.10(1 \mathrm{H}, \mathrm{d}, J 2.7), 7.16-7.21(1 \mathrm{H}$, m), $7.33(1 \mathrm{H}, \mathrm{dt}, J 1.1$ and 7.7$), 7.39(1 \mathrm{H}, \mathrm{dd}, J 2.6$ and 9.3$), 7.49-7.57(1 \mathrm{H}, \mathrm{m}), 7.81(1 \mathrm{H}, \mathrm{d}, J 4.9), 8.06(1 \mathrm{H}, \mathrm{d}, J$ 9.0), $8.27(1 \mathrm{H}, \mathrm{dt}, J 1.8$ and 7.8$), 8.79(1 \mathrm{H}, \mathrm{d}, J 4.8)$; $\delta_{\mathrm{C}} 11.2,21.0,23.8,25.2,26.4,36.1,50.9,55.8,57.3,63.2,63.4$, $71.3,100.6,114.5$ (d, $J 13$), 115.9 (d, $J 22$), 120.6, 121.4, 125.8 (d, J 26), 126.0, 132.4, 133.4 (d, J 9), 136.2, 142.9, 144.2, 147.8, 158.2, 162.0 (d, J 248); $\delta_{\mathrm{F}}-114.5 ; \mathrm{m} / \mathrm{z}$ (ESI) $435\left[\mathrm{M}^{+}\right]$.
\mathbf{N}-(2-fluorobenzyl)-hydroquininidinium bromide (4g): Following the procedure used for $\mathbf{4 f}$, the title coumpound was
 obtained as a light pink solid ($793 \mathrm{mg}, 77 \%$ yield). $\mathrm{mp}>210^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}+125\left(c 0.33\right.$ in CHCl_{3}); $\delta_{\mathrm{H}} 0.89(3 \mathrm{H}, \mathrm{t}, J 7.2), 1.03(1 \mathrm{H}$, ddd, $J 5.1,9.6$ and 13.9$), 1.54-1.86(4 \mathrm{H}, \mathrm{m}), 1.91(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; $2.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.49(1 \mathrm{H}, \mathrm{brt}, J 12.4), 2.91(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J 10.0), 3.44(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 3.5), 3.71(1 \mathrm{H}$, brt, $J 10.3$), $3.79(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 9.2), 3.93(3 \mathrm{H}, \mathrm{s}), 4.39-4.47(1 \mathrm{H}, \mathrm{m}), 4.81(1 \mathrm{H}, \mathrm{d}, J 12.2), 6.24(1$ H, d, J 11.9), $6.61(1 \mathrm{H}, \mathrm{d}, J 6.0), 6.72(1 \mathrm{H}, \mathrm{d}, J 6.3), 7.13(1 \mathrm{H}, \mathrm{brt}, J 8.9), 7.19(1 \mathrm{H}, \mathrm{d}, J 2.6)$,

[^0]$7.28(1 \mathrm{H}, \mathrm{dt}, J 1.2$ and 7.6$), 7.32(1 \mathrm{H}, \mathrm{dd}, J 2.6$ and 9.2$), 7.44-7.51(1 \mathrm{H}, \mathrm{m}), 7.82(1 \mathrm{H}, \mathrm{d}, J 4.5), 7.99(1 \mathrm{H}, \mathrm{d}, J 9.3)$, $8.12(1 \mathrm{H}, \mathrm{dt}, J 1.7$ and 7.6$), 8.70(1 \mathrm{H}, \mathrm{d}, J 4.5)$; $\delta_{\mathrm{C}} 11.4,21.0,24.2,24.3,24.6,36.1,55.8,55.9,56.4,56.9,64.6,69.6$, $100.8,114.7$ (d, $J 13$), 116.0 (d, J 22), 120.5, 121.4, 125.5, 125.6, 132.1, 133.2 (d, J 8), 136.3, 142.8, 144.2, 147.6, 158.1, 161.9 (d, J 249); $\delta_{\mathrm{F}}-113.4 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 435\left[\mathrm{M}^{+}\right]$.

General procedure for the catalytic reaction of dimethylphosphite 2e with α-amido sulfones 1 : Dimethylphosphite $\mathbf{2 b}(14 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$ for N -Boc α-amido sulfones $\mathbf{1 a}, \mathbf{c}, \mathbf{e}, \mathbf{g}, \mathbf{i}, \mathbf{j}, \mathrm{l}, 28 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$ for N - $\mathrm{Cbz} \alpha$-amido sulfones $\mathbf{1 b}, \mathbf{d}, \mathbf{f}, \mathbf{h}, \mathbf{k})$ was added to a test tube containing a mixture of α-amido sulfone $\mathbf{1}(0.10 \mathrm{mmol})$ and catalyst $\mathbf{4 f}(2.6 \mathrm{mg}$, $0.005 \mathrm{mmol})$ in toluene (1 mL). After the resulting mixture had been cooled to $-78^{\circ} \mathrm{C}$, finely ground $\mathrm{KOH}(17 \mathrm{mg}, 0.30$ mmol), weighed in a oven-dried vial, was added in one portion. The reaction mixture was then vigorously stirred at the same temperature without any precaution to exclude moisture or air. After 60 h , sat. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{ca} .2 \mathrm{~mL}$) was added, and the mixture was allowed to warm to room temperature. The toluene layer was separated, and the aqueous phase extracted twice with toluene (ca 1 mL). The combined organic extracts were then charged directly on a silica gel column, and the product was obtained using a n-hexane/EtOAc/acetone 5:3:2 mixture as eluent.
(R)-tert-Butyl 1-(dimethoxyphosphoryl)-3-phenylpropylcarbamate (3b). Following the general procedure and
 performing the reaction on a 1 mmol scale, the title compound was obtained as a colourless thick oil in 94% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH} 80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}$, $t_{\text {maj }} 10.7 \mathrm{~min}$; $t_{\min } 8.4 \mathrm{~min} ; 88 \%$ ee). [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}-19$ (c 0.64 in CHCl_{3}); δ_{H} [some protons show multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] $1.47(9 \mathrm{H}, \mathrm{s}), 1.78-1.96(1 \mathrm{H}, \mathrm{m}), 2.08-2.21(1 \mathrm{H}, \mathrm{m}), 2.62-2.73(1 \mathrm{H}, \mathrm{m})$, 2.76-2.86 ($1 \mathrm{H}, \mathrm{m}$), $3.74(3 \mathrm{H}, \mathrm{d}, J 10.7)$, $3.77(3 \mathrm{H}, \mathrm{d}, J 10.7), 3.91(0.1 \mathrm{H}, \mathrm{br}$ s), 4.04-4.16 ($0.9 \mathrm{H}, \mathrm{m}$), 4.48 (0.1 H , br s), $4.75(1 \mathrm{H}, \mathrm{d}, J 9.9), 7.16-7.22(3 \mathrm{H}, \mathrm{m}), 7.25-7.31(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 28.2,31.7,32.0(\mathrm{~d}, J 14), 46.1(\mathrm{~d}, J 158), 52.9(\mathrm{~d}, J$ 6), 53.1 (d, J 7), 80.1, 126.1, 128.4, 140.8, 155.3; $\delta_{\mathrm{P}} 28.3 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 366\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.

To verify the possibility of performing a Boc -deprotection CbzCl derivatisation sequence without affecting the enantiomeric excess of the products, necessary for the determination of the ee of products $\mathbf{3 e}, \mathbf{g}, \mathbf{i}, \mathbf{k}, \mathbf{l}$ which could not be easily detected by the HPLC UV-detector, a sample of $\mathbf{3 b}$ with 76% ee was treated as follows: TFA ($39 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $3 \mathbf{b}(18 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The resulting solution was then stirred at room temperature for 5 h , then sat. $\mathrm{NaHCO}_{3}(\mathrm{ca} .2 \mathrm{~mL})$ and sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{ca} .1 \mathrm{~mL})$ were added at $0{ }^{\circ} \mathrm{C}$, followed by EtOAc $(2 \mathrm{~mL})$ and $\mathrm{CbzCl}(11 \mu \mathrm{~L}, 0.07 \mathrm{mmol})$. The resulting biphasic mixture was then vigorously stirred at room temperature overnight. The $\mathrm{N}-\mathrm{Cbz}$ protected 3 d was then extracted with EtOAc, the organic phase dried on MgSO_{4}, filtered and evaporated under reduced pressure. The crude product was then purified by a short column chromatography on silica gel. HPLC analysis of thus obtained 3d using a Daicel Chiralpak AD-H column (n hexane $/ \mathrm{PrOH}$ 80:20, flow rate $0.75 \mathrm{~mL} / \mathrm{min}$, $t_{\text {maj }} 12.4 \mathrm{~min} ; t_{\text {min }} 14.7 \mathrm{~min}$), revealed 75% ee, thus showing that racemisation did not occur to a considerable extent.
(S)-tert-Butyl 1-(dimethoxyphosphoryl)-3-phenylpropylcarbamate (ent-3b). Following the general procedure using
 catalyst $\mathbf{4 g}$ derived from hydroquinidine ($0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and using 3 equiv. of dimethyl phosphite $\mathbf{2 b}$, the title compound was obtained as a colourless thick oil in 88% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH}$ 80:20, flow rate 0.75 $\mathrm{mL} / \mathrm{min}, t_{\text {maj }} 8.4 \mathrm{~min} ; t_{\min } 10.7 \mathrm{~min} ; 34 \%$ ee $)$. $[\alpha]_{\mathrm{D}}{ }^{20}+6\left(c 0.58\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. Spectral data were identical to compound $\mathbf{3 b}$.
(R)-Benzyl 1-(dimethoxyphosphoryl)-3-phenylpropylcarbamate (3d). Following the general procedure the title
 compound was obtained as a white solid in 95% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH} 80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, t_{\text {maj }} 12.4 \mathrm{~min}$; $t_{\text {min }}$ $14.7 \mathrm{~min} ; 84 \%$ ee). $\mathrm{mp} 80-82{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-17$ (c 0.62 in CHCl_{3}); δ_{H} [some protons show multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] 1.83$1.97(1 \mathrm{H}, \mathrm{m}), 2.11-2.23(1 \mathrm{H}, \mathrm{m}), 2.61-2.72(1 \mathrm{H}, \mathrm{m}), 2.76-2.85(1 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.1), 3.73(3 \mathrm{H}, \mathrm{d}, J 11.6)$, $3.99(0.1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.09-4.22(0.9 \mathrm{H}, \mathrm{m}), 4.95(0.1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.12(1 \mathrm{H}, \mathrm{d}, J 11.7), 5.17(0.9 \mathrm{H}, \mathrm{br}$ s), $5.17(1 \mathrm{H}, \mathrm{d}, J 11.7)$, 7.10-7.21 (3 H, m), 7.22-7.30 ($2 \mathrm{H}, \mathrm{m}$), 7.30-7.40 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 31.6$ (d, J 4), $32.0(\mathrm{~d}, J 14), 47.0(\mathrm{~d}, J 156), 52.0(\mathrm{~d}, J 6)$, 53.1 (d, J 7), 67.2, 126.1, 128.0, 128.2, 128.4, 128.5, 136.2, 140.7, 155.9 (d, J 5); $\delta_{\mathrm{p}} 27.7 \mathrm{~m} / \mathrm{z}(\mathrm{ESI}) 400\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.
(R)-tert-Butyl cyclohexyl(dimethoxyphosphoryl)methylcarbamate (3e). Following the general procedure the title compound was obtained as a white solid in 94% yield. The ee of the product was determined by HPLC, after conversion into its Cbz derivative $\mathbf{3 f}$ through Boc deprotection followed by CbzCl derivatisation (vide supra), using a Daicel Chiralpak AD-H column (hexane $/ i \mathrm{PrOH} 80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}$, $t_{\text {maj }}$ $10.8 \mathrm{~min} ; t_{\min } 13.7 \mathrm{~min} ; 82 \%$ ee $) . \mathrm{mp} 59-60{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-11\left(c 0.47 \mathrm{in} \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}$ [some protons show multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] 0.99-1.33 (6
$\mathrm{H}, \mathrm{m}), 1.45(9 \mathrm{H}, \mathrm{s}), 1.60-1.91(5 \mathrm{H}, \mathrm{m}), 3.76(6 \mathrm{H}, \mathrm{d}, J 10.4), 3.99(1 \mathrm{H}, \mathrm{ddd}, J 4.5,10.7$ and 18.4$), 4.52(0.1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ 12.1), 4.78 ($0.9 \mathrm{H}, \mathrm{d}, J 11.4$); $\delta_{\mathrm{C}} 25.8$ (d, J 12), 26.0, 27.9, 28.0, 28.2, 30.4 (d, J 12), 38.5 (d, J 5), 51.2 (d, J 152), 52.3 (d, $J 7$), $52.8(\mathrm{~d}, J 7), 80.0,155.5(\mathrm{~d}, J 5) ; \delta_{\mathrm{P}} 28.1 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 344\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.
(R)-Benzyl cyclohexyl(dimethoxyphosphoryl)methylcarbamate (3f). Following the general procedure the title
 compound was obtained as a white solid in 93% yield. The ee of the product was determined by HPLC
 using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH} 80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, t_{\text {maj }} 10.8 \mathrm{~min}$; $t_{\text {min }}$ $13.7 \mathrm{~min} ; 89 \%$ ee $) . \mathrm{mp} 86-88^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-6\left(c 0.54\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.97-1.31(5 \mathrm{H}, \mathrm{m}), 1.58-1.92(6 \mathrm{H}, \mathrm{m})$, $3.69(3 \mathrm{H}, \mathrm{d}, J 9.3), 3.74(3 \mathrm{H}, \mathrm{d}, J 10.4), 3.87-3.97(0.1 \mathrm{H}, \mathrm{m}), 4.03(0.9 \mathrm{H}$, ddd, $J 4.3,10.7$ and 18.9), $4.80(0.1 \mathrm{H}$, br d, $J 11.3), 5.06(0.9 \mathrm{H}$, br d, $J 10.6), 5.09(1 \mathrm{H}, \mathrm{d}, J 12.3), 5.15(1 \mathrm{H}, \mathrm{d}, J 12.3), 7.30-7.37(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 25.9$ (d, J 12), 26.0, 27.9, 28.0, 30.4 (d, J 11), 38.5 (d, J 4), 52.0 (d, J 150), 52.8 (d, J 6), 52.9 (d, J 6), 67.2, 128.0, 128.2, 128.5, 136.2, 156.2; $\delta_{\mathrm{P}} 27.5 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 378\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.
(S)-Benzyl cyclohexyl(dimethoxyphosphoryl)methylcarbamate (ent-3f). Following the general procedure using
 catalyst $\mathbf{4 g}$ derived from hydroquinidine ($0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), the title compound was obtained as a white solid in 99% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak ADH column (hexane $/ \mathrm{iPrOH} 80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, t_{\text {maj }} 13.7 \mathrm{~min} ; t_{\min } 10.8 \mathrm{~min} ; 78 \%$ ee). $[\alpha]_{\mathrm{D}}{ }^{20}+5$ (c 0.68 in CHCl_{3}). Spectral data were identical to compound $\mathbf{3 f}$.
(R)-tert-Butyl 1-(dimethoxyphosphoryl)-3-methylbutylcarbamate (3g). Following the general procedure the title compound was obtained as a colourless oil in 93% yield. The ee of the product was determined by HPLC, after conversion into its Cbz derivative $\mathbf{3 h}$ through Boc deprotection followed by CbzCl derivatisation (vide supra), using a Daicel Chiralpak AD-H column (hexane/iPrOH 80:20, flow rate 0.75 $\mathrm{mL} / \mathrm{min}, t_{\text {maj }} 8.2 \mathrm{~min}$; $t_{\text {min }} 10.3 \mathrm{~min} ; 83 \%$ ee). $[\alpha]_{\mathrm{D}}{ }^{20}-35$ (c 0.60 in CHCl_{3}); δ_{H} [some protons show multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] $0.91(3 \mathrm{H}, \mathrm{d}$, $J 6.8), 0.93(3 \mathrm{H}, \mathrm{d}, J 6.8), 1.43(9 \mathrm{H}, \mathrm{s}), 1.49-1.59(2 \mathrm{H}, \mathrm{m}), 1.67-1.78(1 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{d}, J 10.7), 3.76(3 \mathrm{H}, \mathrm{d}, J$ $10.5), 3.95-4.05(0.1 \mathrm{H}, \mathrm{m}), 4.13(0.9 \mathrm{H}$, ddd, $J 5.5,10.4$ and 20.7$), 4.31(0.1 \mathrm{H}, \mathrm{d}, J 9.9), 4.57(0.9 \mathrm{H}, \mathrm{d}, J 10.4)$; δ_{C} 21.1, 23.2, 24.4 (d, J 13), 28.2, 38.4, 44.7 (d, J 156), 52.9 (d, J 6), 53.1 (d, J 6), 80.0, 155.2; $\delta_{\mathrm{P}} 29.2 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 318\left[\mathrm{M}^{+}\right.$ +Na].
(R)-Benzyl 1-(dimethoxyphosphoryl)-3-methylbutylcarbamate (3h). Following the general procedure the title
 compound was obtained as a colourless oil in 66% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH} 80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, t_{\text {maj }} 8.2 \mathrm{~min}$; $t_{\text {min }}$ $10.3 \mathrm{~min} ; 86 \%$ ee). $[\alpha]_{\mathrm{D}}{ }^{20}-33\left(c 0.63\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}$ [some protons show multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] $0.93(3 \mathrm{H}, \mathrm{d}, J 6.4), 0.94$ ($3 \mathrm{H}, \mathrm{d}, J 6.6$), 1.52-1.60 ($2 \mathrm{H}, \mathrm{m}$), 1.67-1.77 ($1 \mathrm{H}, \mathrm{m}$), $3.71(3 \mathrm{H}, \mathrm{d}, J 10.4), 3.75(3 \mathrm{H}, \mathrm{d}, J 10.4), 4.01-4.09(0.1 \mathrm{H}, \mathrm{m})$, 4.19 (0.9 H , ddd, $J 5.9,10.4$ and 25.7), $4.60(0.1 \mathrm{H}, \mathrm{d}, J 11.1), 4.88(0.9 \mathrm{H}, \mathrm{d}, J 10.2), 5.08$ ($1 \mathrm{H}, \mathrm{d}, J 12.4$), 5.15 (1 H , d, $J 12.2$), 7.28-7.38 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 21.0,23.3,24.3$ (d, J 13), 38.4, 45.5 (d, J 156), 52.9 (d, J 7), 53.0 (d, J 7), 67.1, 127.9, $128.2,128.5,136.2,155.9 ; \delta_{\mathrm{P}} 28.6 ; \mathrm{m} / \mathrm{z}$ (ESI) $352\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.
The absolute configuration of compound 3 h was determined to be R by comparison of its optical rotation with a literature value:
Measured optical rotation (86% ee): $[\alpha]_{\mathrm{D}}{ }^{20}-33$ (c 0.63 in CHCl_{3})
Lit. $^{2}[\alpha]_{D}{ }^{20}-36.4\left(c 1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for the (R)-isomer.
(R)-tert-Butyl 1-(dimethoxyphosphoryl)heptylcarbamate (3i). Following the general procedure the title compound
 was obtained as a colourless oil in 84% yield. The ee of the product was determined by HPLC, after conversion into its Cbz derivative through Boc deprotection followed by CbzCl derivatisation (vide supra), using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH}$ 80:20, flow rate 0.75 $\mathrm{mL} / \mathrm{min}, t_{\text {maj }} 7.4 \mathrm{~min} ; t_{\text {min }} 9.4 \mathrm{~min} ; 87 \%$ ee). $[\alpha]_{\mathrm{D}}{ }^{20}-25$ (c $0.53 \mathrm{in} \mathrm{CHCl}_{3}$); δ_{H} [some protons show multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] $0.86(3 \mathrm{H}, \mathrm{t}$, $J 6.4), 1.21-1.58(8 \mathrm{H}, \mathrm{m}), 1.43(9 \mathrm{H}, \mathrm{s}), 1.74-1.85(2 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{d}, J 10.6), 3.77(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.6), 3.85-3.95$ (0.1 $\mathrm{H}, \mathrm{m}), 4.05\left(0.9 \mathrm{H}\right.$, dtd, $J 3.6,10.9$ and 19.4), $4.32(0.1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.62(0.9 \mathrm{H}, \mathrm{d}, J 9.8) ; \delta_{\mathrm{C}} 14.0,22.5,25.6$ (d, J 14), 28.2, $28.7,29.8,31.5,46.6(\mathrm{~d}, J 155), 52.8(\mathrm{~d}, J 6), 53.0(\mathrm{~d}, J 7), 80.0,155.3 ; \delta_{\mathrm{P}} 28.8 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 346\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.
(R)-Benzyl 1-(dimethoxyphosphoryl)hexylcarbamate (3j). Following the general procedure the title compound was cbz_ obtained as a colourless oil in 97% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (hexane/iPrOH $80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, t_{\text {maj }} 7.9 \mathrm{~min} ; t_{\text {min }} 9.8$ $\min ; 95 \%$ ee $) .[\alpha]_{\mathrm{D}}{ }^{20}-25$ (c 0.62 in CHCl_{3}); δ_{H} [some protons show multiple resonances for the

[^1]presence of different rotamers due to restricted rotation around the C-N bonds] $0.86(3 \mathrm{H}, \mathrm{t}, J 6.7), 1.19-1.52(6 \mathrm{H}, \mathrm{m})$, 1.76-1.93 ($2 \mathrm{H}, \mathrm{m}$), $3.71(3 \mathrm{H}, \mathrm{d}, J 10.4)$, $3.74(3 \mathrm{H}, \mathrm{d}, J 10.8), 3.91-4.02(0.1 \mathrm{H}, \mathrm{m}), 4.08(0.9 \mathrm{H}, \mathrm{dtd}, J 3.8,10.6$ and 20.8), $4.73(0.1 \mathrm{H}, \mathrm{d}, J 9.2), 4.98(0.9 \mathrm{H}, \mathrm{d}, J 10.4), 5.09(1 \mathrm{H}, \mathrm{d}, J 12.2), 5.13(1 \mathrm{H}, \mathrm{d}, J 12.2), 7.27-7.37(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$ 13.9, 22.3, 25.3 (d, J 13), 29.7, 31.2, 47.2 (d, J 156), 52.9 (d, J 7), 53.1 (d, J 7), 67.1, 128.0, 128.2, 128.5, 136.3, 156.0; $\delta_{\mathrm{P}} 28.2 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 366\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.
(S)-Benzyl 1-(dimethoxyphosphoryl)hexylcarbamate (ent-3j). Following the general procedure using catalyst $\mathbf{4 g}$
 derived from hydroquinidine ($10 \mathrm{~mol} \%$) the title compound was obtained as a colourless oil in 94% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH} 80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, t_{\text {maj }} 9.8 \mathrm{~min}$; $t_{\text {min }} 7.9 \mathrm{~min} ; 84 \%$ ee). $[\alpha]_{\mathrm{D}}{ }^{20}+22(c 0.60$ in CHCl_{3}). Spectral data were identical to compound $\mathbf{3 j}$.
(R)-tert-Butyl 1-(dimethoxyphosphoryl)propylcarbamate (3k). Following the general procedure the title compound
 was obtained as a colourless oil in 78% yield. The ee of the product was determined by HPLC, after conversion into its Cbz derivative through Boc deprotection followed by CbzCl derivatisation (vide supra), using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH} 80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, t_{\text {maj }} 8.2 \mathrm{~min}$; $t_{\text {min }}$ $10.4 \mathrm{~min} ; 80 \%$ ee). $[\alpha]_{\mathrm{D}}{ }^{20}-27$ (c 0.40 in CHCl_{3}); δ_{H} [some protons show multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] $1.01(3 \mathrm{H}, \mathrm{t}, J 7.6), 1.44(9 \mathrm{H}, \mathrm{s}), 1.50-$ $1.64(1 \mathrm{H}, \mathrm{m}), 1.82-1.96(1 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{d}, J 10.7), 3.77(3 \mathrm{H}, \mathrm{d}, J 10.5), 4.01(1 \mathrm{H}, \mathrm{dtd}, J 4.0,10.3$ and 20.5), 4.33 ($0.1 \mathrm{H}, \mathrm{br} \mathrm{s}$), 4.65 ($0.9 \mathrm{H}, \mathrm{d}, ~ J 10.5$); $\delta_{\mathrm{C}} 10.4$ (d, J 13), 23.3, 28.2, 47.9 (d, J 156), 52.9 (d, J 7), 53.1 (d, J 7), 80.0, 155.5; $\delta_{\mathrm{P}} 28.6 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 290\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.
(R)-tert-Butyl 1-(dimethoxyphosphoryl)ethylcarbamate (31). Following the general procedure the title compound was obtained as a colourless oil in 84% yield. The ee of the product was determined by HPLC, after
$\mathrm{Boc}_{\underset{\mathrm{NH}}{ }}$
$\xrightarrow[\substack{0 \\ 0}]{\substack{\text { O- }}}$ conversion into its Cbz derivative $\mathbf{3 m}$ through Boc deprotection followed by CbzCl derivatisation (vide supra), using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH} 90: 10$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, t_{\text {maj }} 13.8$ $\mathrm{min} ; t_{\min } 17.1 \mathrm{~min} ; 79 \%$ ee $) .[\alpha]_{\mathrm{D}}{ }^{20}-17\left(c 0.30\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}$ [some protons show multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] $1.36(3 \mathrm{H}, \mathrm{dd}, J 7.4$ and 16.9), 1.44 $(9 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{d}, J 10.6), 3.78(3 \mathrm{H}, \mathrm{d}, J 10.6), 4.04-4.21(1 \mathrm{H}, \mathrm{m}), 4.46(0.1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.75(0.9 \mathrm{H}, \mathrm{d}, J 8.9) ; \delta_{\mathrm{C}} 15.9$, 28.2, $42.2(\mathrm{~d}, J 158), 52.9(\mathrm{~d}, J 7), 53.2(\mathrm{~d}, J 7), 80.1,155.0 ; \delta_{\mathrm{P}} 29.2 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 276\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.
(R)-Benzyl 1-(dimethoxyphosphoryl)ethylcarbamate (3m). Following the general procedure the title compound was ${ }^{\mathrm{Cbz}}{ }_{\mathrm{NH}} \quad$ obtained as a colourless oil in 76% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH} 90: 10$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, t_{\text {maj }} 13.8 \mathrm{~min} ; t_{\text {min }} 17.1 \mathrm{~min} ; 80 \%$ ee). $[\alpha]_{\mathrm{D}}{ }^{20}-15$ (c 1.0 in CHCl_{3}); δ_{H} [some protons show multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] $1.39(3 \mathrm{H}, \mathrm{dd}, J 7.4$ and 16.6$), 3.73(3 \mathrm{H}, \mathrm{d}, J$ 10.8), 3.75 ($3 \mathrm{H}, \mathrm{d}, J 10.8$), 4.11-4.26 ($1 \mathrm{H}, \mathrm{m}$), $4.85(0.1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.09(0.9 \mathrm{H}, \mathrm{d}, J 11.0), 5.11(2 \mathrm{H}, \mathrm{s}), 7.28-7.37(5 \mathrm{H}$, $\mathrm{m}) ; \delta_{\mathrm{C}} 15.9,42.8$ (d, J 158), 53.0 (d, J 6), 53.2 (d, J 6), 67.1, 128.1, 128.2, 128.5, 136.1, 155.6; $\delta_{\mathrm{P}} 28.6 ; \mathrm{m} / \mathrm{z}$ (ESI) 310 $\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.
The absolute configuration of compound 3 m was determined to be R by comparison of its optical rotation with a literature value:
Measured optical rotation (80% ee): $[\alpha]_{\mathrm{D}}{ }^{20}-15$ (c 1.0 in CHCl_{3})
Lit. ${ }^{3}[\alpha]_{D}{ }^{20}-17.5$ ($c 1$ in CHCl_{3}) for the (R)-isomer.
(R)-tert-Butyl 1-(dimethoxyphosphoryl)-2-phenylethylcarbamate (3n). Following the general procedure the title
 compound was obtained as a colourless oil in 83% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH} 80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, t_{\text {maj }} 10.7 \mathrm{~min}$; $t_{\text {min }}$ $8.3 \mathrm{~min} ; 84 \%$ ee). $[\alpha]_{\mathrm{D}}{ }^{20}-22$ (c 0.73 in CHCl_{3}); δ_{H} [some protons show multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] $1.20(2 \mathrm{H}, \mathrm{s}), 1.38(7 \mathrm{H}$, s), 2.61-2.75 ($0.2 \mathrm{H}, \mathrm{m}$), $2.83(0.8 \mathrm{H}$, td, $J 10.2$ and 14.5$), 3.20(1 \mathrm{H}$, ddd, $J 5.1,8.9$ and 13.7), $3.76(6 \mathrm{H}, \mathrm{d}, J 10.9)$, 4.12-4.20 ($0.2 \mathrm{H}, \mathrm{m}$), $4.41(0.8 \mathrm{H}$, dtd, $J 4.9,10.6$ and 21.2$)$, $4.49(0.2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.68(0.8 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.19-7.31(5 \mathrm{H}, \mathrm{m})$; δ_{C} $28.1,36.0,47.4$ (d, J 157), 52.9 (d, J 7), 53.2 (d, J 7), 80.0, 126.7, 128.4, 129.2, 136.5 (d, J 12), 155.0; $\delta_{\mathrm{P}} 27.8 ; \mathrm{m} / \mathrm{z}$ (ESI) $352\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.

Preparation of (R)-1-amino-3-phenylpropylphosphonic acid hydrochloride (5). In a test tube equipped with
 magnetic stirrer bar was placed phosphonate $\mathbf{3 b}(0.1 \mathrm{mmol})$ in $\mathrm{HCl} 10 \mathrm{M}(1.8 \mathrm{~mL})$. The solution was refluxed for 18 h , which was followed by removal of the solvent under reduced pressure. The title compound was obtained as a white solid in 84% yield. The ee of the product was determined by

[^2]HPLC, after conversion into its $\mathrm{N}-\mathrm{Cbz}$ dimethyl derivative 3d according to literature procedure, ${ }^{4}$ using a Daicel Chiralpak AD-H column (hexane $/ \mathrm{iPrOH} 80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}$, $t_{\text {maj }} 12.4 \mathrm{~min} ; t_{\text {min }} 14.7 \mathrm{~min} ; 85 \%$ ee). mp >300 ${ }^{\circ} \mathrm{C}$ (dec.); $[\alpha]_{\mathrm{D}}{ }^{20}-17\left(c 0.48\right.$ in $1 \mathrm{~N} \mathrm{NaOH}_{\mathrm{aq}}$); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOH}\right) 1.64(1 \mathrm{H}$, br s), $2.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.47-2.76(2 \mathrm{H}, \mathrm{m})$, 2.82-3.00 (1 H, m), 7.27 (1 H, br s), $7.37(4 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOH}\right) 35.9(\mathrm{~d}, J 13.5), 37.0,52.7(\mathrm{~d}, J 138), 128.8$, 131.6, 146.2; $\delta_{\mathrm{P}}\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOH}\right) 22.0 \mathrm{~m} / \mathrm{z}(\mathrm{ESI}) 216\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Preparation of (R)-benzyl 1-(monomethoxyphosphoryl)ethylcarbamate (6). In a test tube equipped with magnetic $\mathrm{Cbz}_{\mathrm{NH}} \quad$ stirrer bar was placed phosphonate $3 \mathrm{~m}(0.076 \mathrm{mmol})$ in $\mathrm{NaOH} 2 \mathrm{M}(0.1 \mathrm{ml})$. The mixture was stirred at 20 ${ }^{\circ} \mathrm{C}$ overnight. After dilution with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, the solution was washed twice with CHCl_{3}, acidified with 0.7 mL of concentrated HCl , and extracted 4 times with CHCl_{3}. The combined CHCl_{3} extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was evaporated to give the title compound was obtained as a pale yellow waxy solid in 88% yield. The ee of the product was determined by HPLC, after conversion into its dimethyl derivative 3m according to literature procedure, ${ }^{4}$ using a Daicel Chiralpak AD-H column (hexane/iPrOH 90:10, flow rate 0.75 $\mathrm{mL} / \mathrm{min}, t_{\mathrm{maj}} 13.8 \mathrm{~min} ; t_{\min } 17.1 \mathrm{~min} ; 80 \%$ ee). δ_{H} [some protons show multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] 1.35 (3 H , dd, $J 7.4$ and 17.4), 3.72 ($3 \mathrm{H}, \mathrm{d}, J 11.2$), 3.92-4.31 $(1 \mathrm{H}, \mathrm{m}), 5.11(1 \mathrm{H}, \mathrm{s}), 5.28(0.85 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.67(0.15 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.34(5 \mathrm{H}, \mathrm{br} \mathrm{s}) 8.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}} 15.6,43.0(\mathrm{~d}, J 161)$, 52.6 (d, J 6), 67.2, 128.1, 128.2, 128.5, 136.1, 155.8; $\delta_{\mathrm{P}}\left[{ }^{31} \mathrm{P}\right.$ spectrum shows multiple resonances for the presence of different rotamers due to restricted rotation around the C-N bonds] 28.3 (0.15 P), 28.9 (0.85 P).

[^3]Copies of the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra for compounds $\mathbf{4 f}, \mathbf{4 g}, \mathbf{3 b}, \mathbf{3 d}-\mathbf{n}, 5$ and $\mathbf{6}$. ${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19} \mathrm{~F}$ NMR

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008

${ }^{1} \mathrm{H}$ NMR

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR
${ }^{31}$ P NMR

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR

${ }^{31} \mathrm{P}$ NMR

$$
0 \varepsilon s^{\prime} / L z
$$

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR

220	200	180	160	140	120	100	80	60	40	20	0

${ }^{31}$ P NMR

$$
\stackrel{\vec{y}}{\stackrel{\rightharpoonup}{x}}
$$

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR

NMR

$$
\left.\right|_{0} ^{\circ}
$$

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{31} \mathrm{P}$ NMR

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR
${ }^{31}$ P NMR

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{31} \mathrm{P}$ NMR

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$ NMR

[^0]: ${ }^{1}$ (a) E. Bernacka, A. Kapacz and A. Zwierzak, Tetrahedron Lett., 2001, 42, 5093-5094; (b) A. G. Wenzel and E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124, 12964-12965.

[^1]: ${ }^{2}$ P. A. Bartlett, J. E. Hanson and P. G. Giannousis, J. Org. Chem., 1990, 55, 6268-6274.

[^2]: ${ }^{3}$ J. E. Hanson, A. K. Kaplan and P. A. Bartlett, Biochemistry, 1989, 28, 6294-6305.

[^3]: ${ }^{4}$ G. D. Joly and E. N. Jacobsen, J. Am. Chem. Soc., 2004, 126, 4102-4103.

