Heterogeneous ultrathin films fabricated by alternate assembly of exfoliated layered double hydroxides and polyanion

Jing Bin Han,^a Jun Lu,^a Min Wei,^{*a} Zhong Lin Wang^{*b} and Xue Duan^a

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

^b Center for Nanoscience and Nanotechnology, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.

Preparation of M()Al-CO₃ LDH (M=Co, Mg)

The CoAl-CO₃ LDH with high crystallinity and well-defined hexagonal shape was prepared as reported in ref:¹ in order to avoid the formation of Co₃O₄ impurity, a three-neck flask (equipped with a reflux condenser) under a nitrogen flow instead of autoclave was employed. Typically, CoCl₂·6H₂O, AlCl₃·6H₂O and urea were dissolved in 800 cm³ deionized water to give the final concentrations of 10, 5.0 and 35 mM, respectively. The solution was then heated at 97 °C under refluxing and continuous stirring for 2 days. In the case of the preparation of MgAl-CO₃ LDH, Mg(NO₃)₂·6H₂O, Al(NO₃)₃·9H₂O, and urea were dissolved in 100 cm³ of deionized water to give the final concentrations of 0.2, 0.1, and 1.0 M, respectively. The mixed solution was placed into a Teflon-lined stainless steel autoclave, sealed, and hydrothermally treated at 110 °C for 24 h. The resulting product was filtered, washed with deionized water and anhydrous ethanol for several times, and finally dried at ambient temperature in air.

Preparation of M()Al-NO₃ LDH (M=Co, Mg, Ni)

The samples of CoAl- and MgAl-NO₃ LDH were synthesized by salt-acid method reported by Iyi et al.² Typically, 0.5 g of M()Al-CO₃ LDH (M=Co, Mg) was treated with 500 cm³ of an aqueous salt-acid solution containing NaNO₃ (0.75 mol) and HNO₃ (0.0025 mol) in a three-neck flask under nitrogen flow and continuous stirring conditions at ambient temperature for 24 h to expel interlayer carbonate ions. Otherwise, highly crystallized NiAl-NO₃ LDH was prepared directly by urea method under hydrothermal treatment. The mixed solution of Ni(NO₃)₂·6H₂O (0.10 M), Al(NO₃)₃·9H₂O (0.05 M), and urea (0.15 M) was placed in an autoclave and heated at 190 °C for 48 h. The resulting product

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2008

were filtered, washed as before, and finally vacuum-dried.

Exfoliation of M(II)Al-NO₃ LDH (M=Co, Mg, Ni)

The unilamellar, positively charged LDH nanosheets were synthesized by vigorously agitating 0.1 g of M(II)Al-NO₃ LDH in 100 cm³ of formamide at room temperature under a N_2 gas flow for 2 days.

Fabrication of (CoAl-LDH/PSS/NiAl-LDH/PSS)_{n/2} heterogeneous film

The deposition heterogeneous overall process of LBL of ultrathin film of $(CoAl-LDH/PSS/NiAl-LDH/PSS)_{n/2}$ consists of a cyclic repetition of the following steps: (a) dipping the treated substrate with negatively charged surface into formamide containing exfoliated CoAl-LDH nanosheets for 10 min; (b) rinsing with deionized water thoroughly and then dipping into an aqueous solution of PSS for 15 min; (c) rinsing with deionized water and dipping the substrate into the NiAl-LDH nanosheets colloid for another 10 min; (d) the same procedure as step b. A series of these operations were repeated to obtain multilayer films of $(CoAl-LDH/PSS/NiAl-LDH/PSS)_{n/2}$. The resulting films were finally rinsed with deionized water and dried at ambient temperature in a vacuum oven.

Sample characterization

Powder X-ray diffraction data were recorded by a Shimadzu XRD-6000 power X-ray diffractometer using Cu K α radiation ($\lambda = 0.154$ nm) at 40 kV, 30 mA, a scanning rate of 5° min⁻¹, and a 2 θ angle ranging from 3° to 70°. UV absorption spectra were performed on a Shimadzu UV-2501PC spectrometer. The Fourier transform infrared (FT-IR) spectra were recorded using a Vector 22 (Bruker) spectrophotometer using the KBr pellet technique in the range of 4000~400 cm⁻¹ with 2 cm⁻¹ resolution. The morphology of the LDH samples was investigated by using a Hitachi S-4700 scanning electron microscope (SEM) at an acceleration voltage of 20 KV. The surface topography and thickness of LDH nanosheets deposited onto Si wafers were examined using a NanoScope IIIa atomic force microscope (AFM) from Veeco Instruments. The contents of the metals of LDH samples were determined by inductively coupled plasma (ICP) emission spectroscopy on a Shimadzu ICPS-7500 instrument. Carbon, Hydrogen and nitrogen analyses were carried out using a Perkin Elmer Elementarvario elemental analysis instrument. The interlayer water content was evaluated by thermogravimetry and differential thermal analysis using a Hengjiu HCT-2 thermal instrument.

Fable S1. Chemical formulae of the LDH precurso
--

LDH samples	chemical formulae
CoAl-CO ₃ LDH	$[Co_{0.66}Al_{0.34}(OH)_2](CO_3^{2-})_{0.17} \cdot 0.49H_2O$
MgAl-CO ₃ LDH	$[Mg_{0.68}Al_{0.32}(OH)_2](CO_3^{2-})_{0.16} \bullet 0.52H_2O$
CoAl-NO ₃ LDH	$[Co_{0.66}Al_{0.34}(OH)_2](NO_3^{-})_{0.34} \bullet 0.51H_2O$
MgAl-NO ₃ LDH	$[Mg_{0.68}Al_{0.32}(OH)_2](NO_3^{-})_{0.32} \bullet 0.52H_2O$
NiAl-NO ₃ LDH	$[Ni_{0.67}Al_{0.33}(OH)_2](NO_3^{-})_{0.33} \bullet 0.51H_2O$

Fig. S1 Powder XRD patterns of the (a) CoAl- and (b) MgAl-CO₃ LDH samples.

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2008

Fig. S2 FT-IR spectra of the (a) CoAl- and (b) MgAl-CO₃ LDH samples.

Fig. S3 SEM images of (A) CoAl- and (B) MgAl-CO₃ LDH samples.

Fig. S4 FT-IR spectra of the (a) CoAl-, (b) MgAl- and (c) NiAl-NO₃ LDH samples.

Electronic Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2008

Fig. S5 SEM images of (A) CoAl- (B) MgAl- and (C) NiAl-NO₃ LDH samples.

Fig. S6 Tapping-mode AFM images of (A) the exfoliated CoAl- and (B) MgAl-LDH nanosheets deposited on Si wafer substrate.

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2008

Fig. S7 UV absorption spectra of (A) $(CoAl-LDH/PSS/MgAl-LDH/PSS)_{n/2}$ and (B) $(MgAl-LDH/PSS/NiAl-LDH/PSS)_{n/2}$ films. The numbers of bilayers are 1 to 10 from the bottom to the top (An LDH nanosheet/PSS layer is defined as one bilayer).

Georgia Tech Georg **Georgia Tech** Tech BUCT BUCT BUCT BUCT BUCT **Georgia Tech Georgia Tech** Geor Tech B B BUCT BUCT BUCT BUC **Georgia Tech Georgia Tech** Tech BUCT BUCT B BUCT BUCT C Tech **Georgia Tech Georgia Tech** BUC BUC BUC BUCT

Fig. S8 Photograph of transparent films of (A) $(CoAl-LDH/PSS/MgAl-LDH/PSS)_{n/2}$, (B) $(MgAl-LDH/PSS/NiAl-LDH/PSS)_{n/2}$ and (C) $(CoAl-LDH/PSS/NiAl-LDH/PSS)_{n/2}$ (*n*=50). The size of the quartz glass substrate is 3.0×3.0 cm.

References:

- Z. P. Liu, R. Z. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada and T. Sasaki, J. Am. Chem. Soc., 2006, 128, 4872.
- 2 N. Iyi, T. Matsumoto, Y. Kaneko and K. Kitamura, Chem. Mater., 2004, 16, 2926.