SUPPLEMENTARY INFORMATION

Development of Fluorescent Aryltryptophans by Pd Mediated Cross-Coupling of Unprotected Halotryptophans in Water

Abhijeet Deb Roy, Rebecca J. M. Goss,* Gerd K. Wagner,* and Michael Winn

School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK. Fax +44(0)1603 592003; Tel: +44 (0)1603 593766; E-mail: <u>r.goss@uea.ac.uk</u>; <u>g.wagner@uea.ac.uk</u>

General: All chemicals were obtained commercially and used as received unless stated otherwise. TLC was performed on precoated aluminium plates (Silica Gel 60 F254, Merck). Compounds were visualized by exposure to UV light. NMR spectra were recorded at 298 K on a Varian Inova spectrometer at 500 MHz (1H). Chemical shifts (δ) are reported in ppm and referenced to methanol (¹H δ 3.33, ¹³C δ 39.49). Coupling constants (*J*) are reported in Hz. Accurate electrospray ionisation mass spectra (HR ESI-MS) were obtained on a Finnigan MAT 900 XLT mass spectrometer at the EPSRC National Mass Spectrometry Service Centre, Swansea.

General procedure for the synthesis of aryltryptophans: L-Halotryptophan (0.035mmol), Na₂Cl₄Pd (2.5 mol %), TPPTS (2.5 equiv. to Pd) or TXPTS (10 equiv. to Pd), K₂CO₃ (5 equiv.), and arylboronic acid (1.1 equiv.) were placed in a flask and purged with N₂. Degassed water (6 mL) was added via a syringe, and the reaction was stirred at 80 °C under N₂ for the given time. Upon completion, the aqueous reaction was diluted with H₂O (10 mL) and the pH adjusted to 7 using 10% HCl. The solution was washed with ethyl aceteate (2 × 10 mL) and the aqueous layer was collected and evaporated to dryness. The crude residue was passed through a 0.22µm teflon filter and purified by reverse phase HPLC. Analytical chromatograhy (HPLC) was carried out on an Gilson 800 machine equipped with a Phenomex Synergi Polar-RP80A column (25cm ×15.00 mm, particle size 4µm); gradient: MeOH against 0.1% TFA in Water; detection (diode array detector): 254 / 280 nm.

5-Phenyl tryptophan (3a):

7.62 mg (78% yield using TPPTS) and 8.9 mg (90% yield using TXPTS), ¹H NMR (CD₃OD, 500 MHz) δ = 3.36 (dd, 1H, *J* = 7.5 Hz, 15.5 Hz), 3.50 (dd, 1H, *J* = 5.0 Hz, 15.5 Hz), 4.23 (dd, 1H, *J* = 5.0 Hz, 7.5 Hz), 7.21 (s, 1H), 7.24 (tt, *J* = 1.0 Hz, 2.5 Hz, 7.5 Hz), 7.36-7.43 (m, 4H), 7.62 (dd, 2H, *J* = 1.0 Hz, 7.5 Hz), 7.81 (s, 1H): ¹³C NMR (CD₃OD, 125 MHz) δ = 27.5, 54.6, 108.3, 112.9, 117.4, 112.6, 126.3, 127.2, 128.2, 128.8, 129.6, 134.1, 137.8, 143.9, 171.9: HRMS (ESI) *m*/*z* 281.1288 [M+H] ⁺ (Calcd. For C₁₇H₁₇O₂N₂ 281.1285).

5-Tolyl tryptophan (3b):

9.85 mg (90% yield), ¹H NMR (CD₃OD, 500 MHz) δ = 2.33, (s, 3H), 3.36 (dd, 1H, *J* = 7.5 Hz, 15.5 Hz), 3.48 (dd, 1H, *J* = 5.0 Hz, 15.5 Hz), 4.24 (dd, 1H, *J* = 5.0 Hz, 7.5 Hz), 7.20 (t, 3H, *J* = 11 Hz), 7.37 (dd, 1H, *J* = 1.5 Hz, 8.5 Hz), 7.40 (d, 1H, *J* = 8.5 Hz), 7.50 (d, 2H, *J* = 8.5 Hz), 7.77 (s, 1H): ¹³C NMR (CD₃OD, 125 MHz) δ = 21.0, 27.5, 54.5, 108.2, 112.8, 117.1, 122.5, 126.2, 128.0, 128.8, 130.3, 130.6, 134.0, 136.9, 137.7, 141.0, 171.8: HRMS (ESI) *m*/*z* 295.1444 [M+H]⁺ (Calcd. For C₁₈H₁₉O₂N₂ 295.1441).

5-(4-Methoxyphenyl) tryptophan (3c):

9.55 mg (87% yield), ¹H NMR (CD₃OD, 500 MHz) δ = 3.35 (dd, 1H, *J* = 7.5 Hz, 15.5 Hz), 3.48 (dd, 1H, *J* = 4.5 Hz, 15.5 Hz), 3.79 (s, 3H), 4.25 (dd, 1H, *J* = 5.0 Hz, 7.5 Hz), 6.94 (d, 2H, *J* = 7.0 Hz), 7.19 (s, 1H), 7.35 (dd, 1H, *J* = 1.5 Hz, 8.5 Hz), 7.39 (dd, 1H, *J* = 1.0 Hz, 8.5 Hz), 7.55 (d, 2H, *J* = 8.5 Hz), 7.43 (s, 1H): ¹³C NMR (CD₃OD, 125 MHz) δ = 27.5, 54.5, 55.7, 108.1, 112.8, 115.0, 116.8, 122.4, 126.2, 128.8, 129.1, 133.9, 136.5, 137.5, 160.0, 171.8: HRMS (ESI) *m/z* 311.1389 [M+H]⁺ (Calcd. For C₁₈H₁₉O₃N₂ 311.1390).

5-(4-Carboxyphenyl) tryptophan (3d):

7.80 mg (68% yield), ¹H NMR (CD₃OD, 500 MHz) δ = 3.40 (dd, 1H, *J* = 7.0 Hz, 15.0 Hz), 3.50 (dd, 1H, *J* = 5.0 Hz, 15.5 Hz), 4.27 (dd, 1H, *J* = 5.0 Hz, 7.5 Hz), 7.24 (s, 1H), 7.45-7.49 (m, 2H), 7.76 (d, 2H, *J* = 8.5 Hz), 7.90 (s, 1H), 8.05 (d, 2H, *J* = 8.5 Hz): ¹³C NMR (CD₃OD, 125 MHz) δ = 27.4, 54.6, 108.5, 113.1, 117.9, 122.6, 126.7, 128.0, 128.9, 129.5, 131.2, 132.7, 138.4, 148.6, 170.0, 171.7: HRMS (ESI) *m*/*z* 325.1185 [M+H]⁺ (Calcd. For C₁₈H₁₇O₄N₂ 325.1183).

5-(4-Trifluoromethylphenyl) tryptophan (3e):

4.3 mg (35% yield), ¹H NMR (CD₃OD, 500 MHz) δ = 3.33 (dd, 1H, *J* = 8.0 Hz, 15.5 Hz), 3.50 (dd, 1H, *J* = 5.0 Hz, 15.5 Hz), 4.16 (dd, 1H, *J* = 5.0 Hz, 7.5 Hz), 7.24 (s, 1H), 7.46 (d, 2H, *J* = 1.0 Hz), 7.67 (d, 2H, *J* = 8.0 Hz), 7.83 (d, 2H, *J* = 8.0 Hz), 7.93 (s, 1H): ¹³C NMR (CD₃OD, 125 MHz) δ = 27.7, 55.0, 109.0, 113.1, 118.1, 122.4, 126.5, 126.7, 128.5, 129.0, 132.2, 138.4, 147.8, 172.4: HRMS (ESI) *m*/*z* 349.1157 [M+H]⁺ (Calcd. For C₁₈H₁₆O₂N₂F₃ 349.1158).

7-Phenyl tryptophan (4):

1.5 mg (15% yield using TPPTS), and 8.69 mg (88% yield using TXPTS), ¹H NMR (CD₃OD, 500 MHz) $\delta = 3.33$ (dd(o), 1H, J = 10.0 Hz, 19.0 Hz), 3.50 (dd, 1H, J = 6.0 Hz, 19.0 Hz), 4.25 (dd, 1H, J = 6.5 Hz, 9.5 Hz), 7.15 (d, 2H, J = 5.5 Hz), 7.20 (s, 1H), 7.35 (t, 1H, J = 9.0 Hz), 7.47 (t, 2H, J = 9.0 Hz), 7.57-7.59 (m, 3H): ¹³C NMR (CD₃OD, 125 MHz) $\delta = 27.6$, 54.6, 108.2, 118.3, 120.9, 123.1, 127.5, 128.3, 129.3, 129.9, 130.2, 134.5, 140.5, 171.8: HRMS (ESI) *m*/*z* 281.1284 [M+H]⁺ (Calcd. For C₁₇H₁₇O₂N₂ 281.1285).

N-Boc-L-Ala-5-Bromo-L-Trp methyl ester (5):

58% yield, ¹H NMR (CD₃OD, 500 MHz) δ = 1.22 (d, 3H, *J* = 9.0 Hz), 1.37 (s, 9H), 3.17-3.20 (m, 2H), 3.61 (s, 3H), 4.02 (d, 1H, *J* = 8.5 Hz), 4.66 (q, 1H, *J* = 8.0 Hz, 8.5 Hz), 7.14 (d, 2H, *J* = 11.0 Hz), 7.20 (d, 1H, *J* = 11.0 Hz), 7.59 (s, 1H), 7.98 (brs, 1H, *J* = 8.5 Hz). MS (ESI) *m/z* 469 [M+H]⁺.

N-Boc-L-Ala-5-Phenyl-L-Trp (6):

62%, ¹H NMR (CD₃OD, 500 MHz) δ = 1.17 (d, 3H, *J* = 10.0 Hz), 1.36 (s, 9H), 3.26(m (o), 2H), 4.01 (m, 1H), 4.71 (m, 1H), 7.13 (s, 1H), 7.22 (t, 1H, *J* = 10.0 Hz), 7.35-7.39 (m, 4H), 7.62 (d, 2H, *J* = 10.0 Hz), 7.76 (s, 1H): HRMS (ESI) *m*/*z* 452.2180 [M+H]⁺ (Calcd. For C₂₅H₃₀O₅N₃ 452.2180).

UV absorbance spectra

UV absorbance spectra were recorded on a Perkin Elmer Lambda 25 UV/VIS spectrometer at room temperature. Sample concentration was 100 μ M in methanol.

Fluorescence emission spectra

Fluorescence emission spectra were recorded on a Perkin Elmer LS-45 spectrometer at room temperature after excitation at the respective wavelength. Samples were measured in a quartz micro fluorescence cell (path length 1.0 cm) at a concentration of 100 μ M (unless otherwise stated) in methanol or water.

Samples:

3a: 5-phenyl tryptophan
3c: 5-(4-methoxyphenyl) tryptophan
3d: 5-(4-carboxyphenyl) tryptophan
4: 7-phenyl tryptophan

Figure S1

<u>Solvent</u>: water <u>Excitation wavelength</u> λ_{ex} : 254 nm

Figure S2

<u>Solvent</u>: water <u>Excitation wavelength</u> λ_{ex} : 295 nm

emission wavelength (nm)

Figure S3

<u>Solvent</u>: methanol <u>Excitation wavelength</u> λ_{ex} : 295 nm

Fig 1. ¹H NMR spectra of 5-Phenyltryptophan (3a).

Fig 2. ¹³C NMR spectra of 5-Phenyltryptophan (3a).

Fig 3. ¹H NMR spectra of 5-Tolyltryptophan (3b).

Fig 4. ¹³C NMR spectra of 5-Tolyltryptophan (3b).

Fig 5. ¹H NMR spectra of 5-(4methoxyphenyl)tryptophan (3c).

Fig 6. ¹³C NMR spectra of 5-(4methoxyphenyl)tryptophan (3c).

Fig 7. ¹H NMR spectra of 5-(4carboxyphenyl)tryptophan (3d).

Fig 8. ¹³C NMR spectra of 5-(4carboxyphenyl)tryptophan (3d).

Fig 9. ¹H NMR spectra of 5-(trifluoromethylphenyl)tryptophan (3e).

Fig 10. ¹³C NMR spectra of 5-(trifluoromethylphenyl)tryptophan (3e).

500 MHz, CD₃OD, ¹⁹F NMR

Fig 11. ¹⁹F NMR spectra of 5-(trifluoromethylphenyl)tryptophan (3e).

Fig 12. ¹H NMR spectra of 7-Phenyltryptophan (4).

Fig 13. ¹³C NMR spectra of 7-Phenyltryptophan (4).

Fig 14. ¹H NMR spectra of *N*-Boc-L-Ala-5-Phenyl-L-Trp.