Contents

Supporting Information

Remote induction of asymmetry in [13]-macro-dilactone topology by a single stereogenic center

W. Sean Fyvie & Mark W. Peczuh*

Department of Chemistry, The University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269

mark.peczuh@uconn.edu

Total Pages: 69

Ite	em	page
1.	Additional experimental procedures	
	a. Preparation of 3 and 4 and subsequent epoxidation	S2
	a. Determination of S6, S7 epoxide stereochemistry	S3
	a. Chiral shift reagent data (¹ H)	S4
	a. Preparation of (±)7:	S5
1.	Experimental data for S2-S7, (±)S11, 3, 4 and (±)7	S5
1.	Notes and references	S7
1.	NMR (1 H and 13 C) data	
	S2 (1 H and 13 C)	S8
	S3 (1 H and 13 C)	S10
	S4 (1 H and 13 C)	S12
	S5 (1 H and 13 C)	S14
	3 (1 H and 13 C)	S16
	4 (1 H and 13 C)	S18
	S6 (1 H and 13 C)	S20
	S7 (¹ H and ¹³ C)	S22
	(\pm) S11 (¹ H and ¹³ C)	S24
	$(\pm)7$ (¹ H and ¹³ C)	S26
5.	X-ray crystallographic report for 4[epox] (mp07)	S28
6.	X-ray crystallographic report for 3[epox] (mp08)	S42
1.	A-ray crystanographic report for 7 (mp09)	330

1. Additional experimental procedures. 1a. Preparation of 3 and 4 and subsequent epoxidation.

Scheme S-1. Preparation of cyclohexane-fused epoxy macrodiolides S6 and S7.

The synthesis of 3 and 4 was achieved from diastereomeric 1,3-diols S2 and S3 using the diacylation/RCM protocol we previously reported (see Scheme S-1).¹ Using known chemistry the (S)-proline catalyzed aldol condensation of cyclohexanone with formaldehyde in DMSO gave β -hydroxyketone S1² and established the stereochemical complement to the D-pyranose C-5 [carbohydrate nomenclature] bridgehead carbon in 1 and 2 (structures shown in manuscript). A diastereomeric mixture of the desired 1,3-diols S2 and S3 were obtained with the DIBAL-H reduction of S1. Separation of S2 and S3 was achieved via gravity column chromatography using 7% MeOH in CH₂Cl₂ as eluent. Stereochemistry of the 1,3 diols was assigned in accordance with distinct 2D NOESY signatures. The cis cyclohexane intermediates displayed nOe interactions between the protons on C1 and C2, while the trans cyclohexane derivatives did not. The remaining steps shown in scheme S-1 were performed in parallel for the cis/trans isomers. DCCmediated diacylation with 4-pentenoic acid gave diesters S4 and S5 (99% and 96% yields). Ring closing metathesis (RCM) was performed on the diesters to yield cis- and trans-fused [13]macro-dilactones 3 (78%) and 4 (89%) in single isomeric forms, respectively. As in the carbohydrate-derived series, the cis-fused bicycle (4) was a white solid while the trans-fused bicycle (3) was a clear, colorless syrup. Despite the apparent similarities to the carbohydrate analogues, the olefin geometries of 3 and 4 were unable to be verified through ${}^{3}J$ coupling constant values due to overlap of the vinylic protons in the ¹H spectra. The investigation continued under the assumption that the olefins were in an E (trans) configuration as we had observed previously for pyranose-fused [13]-macro-dilactones. Dimethyldioxirane (DMDO) epoxidation of 3 and 4 gave tricycles S6 and S7 in 92% and 76% yields. The epoxidation proved to be diastereoselective in each case.

1b. Determination of epoxide stereochemistry of S6 and S7.

Scheme S-2. Transesterification of tricycles S6 and S7 were conducted in parallel under Zemplén conditions (NaOCH₃/MeOH) to afford one of two enantiomeric epoxy daughter fragments 5 and 6 as identified by comparison to previously characterized 5 and 6 afforded from the transesterification of S8 and S9.

We next set about confirming the stereochemical configuration of the epoxidation products **S6** and **S7** based on our earlier work. The approach we took mirrored the one used to determine stereochemistry of epoxidation in the pyranose-fused [13]-macro-dilactones. Transesterification of the major diastereomers isolated from chromatography of **S6** and **S7** conducted under Zemplén conditions yielded respective optically active daughter fragments **6** and **5** (scheme S-2). The absolute configurations of **6** and **5** were determined to be the expected *S*,*S* and *R*,*R*, respectively. The absolute configurations were assigned by comparison to polarimetry and chiral shift reagent data (see part 1c.). We have previously reported on the assignment of absolute configuration of **5** and **6** prepared from carbohydrate-derived analogues **S8** and **S9**.¹ The earlier assignment was supported by chiral HPLC, and ¹H NMR chemical shift reagent experiments. X-ray crystallographic data for **S9**. The present results jointly confirmed the *E* olefin geometry of **3** and **4** (*Z* olefins would have generated *meso* epoxy-dioates) as well as the minimal effect the carbohydrate distinctions have on the facial selectivity.

1c. Chiral shift reagent data (¹H):

Each sample analyzed was exposed to complexation with chiral shift reagent europium tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorate] in $CDCl_3$ and ¹H NMR spectrum for 'racemate' was collected at 500 MHz and spectra for 'via **S6**' and 'via **S7**' were collected at 300 MHz.

Figure S:1. The methoxy group proton signal from the ¹H NMR spectra of three samples of 4,5epoxydioate as shown when complexed with $Eu(hfc)_3$ -(+) additive. Racemate). as prepared and analyzed previously in reference 1. Via **S6**). epoxy fragment as accessed from transesterification of **S6**. Via **S7**). epoxy fragment as accessed from transesterification of **S7**.

Conditions:

Racemate¹: 5.1 mg of epoxide and 5.1 mg of $Eu(hfc)_3$ -(+) dissolved in CDCl₃ Via **S6**: 3.9 mg of epoxide and 4.3 mg of $Eu(hfc)_3$ -(+) dissolved in CDCl₃ Via **S7**: 3.6 mg of epoxide and 5.6 mg of $Eu(hfc)_3$ -(+) dissolved in CDCl₃

Note: Upon complexation of the epoxides derived from either **S6** or **S7** to chiral shift reagent europium tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorate] in CDCl₃ a very small amount (ca. 13:1) of the opposite enantiomer was revealed. Because the ratio of enantiomers observed appeared to be in identical proportions for **S6** and **S7**, we presumed that this arose from the enantioselective limitations of the preparation of β -hydroxyketone **S1**.

1d. Preparation of (±)7:

Scheme S-3. Preparation of methyl substituted macrodiolides 7 and ent-7.

Macrodiolides 7 and ent-7 were prepared together as a racemate from racemic diol S10 in a manner analagous to the preparation of 3 and 4 from diols S2 and S3, respectively (scheme S-3).

2. Experimental:

Preparation of diols S2 and S3:

 β -hydroxyketone **S1** (0.0860 g, 0.671 mmol) was dissolved in dry CH₂Cl₂ (5 mL) and cooled to -78 °C with stirring under N₂. Added dropwise over about 25 minutes was 2.68 mL of a solution of DIBAL-H in CH₂Cl₂ (1.0 M, 4 eq.). After another 40 min the reaction mixture was quenched with dropwise addition of H₂O (2-3 mL). The resultant emulsion was broken with the addition of conc. HCl (~2 mL) and the biphasic mixture was allowed to stir for ~5 min. The organic layer was collected and due to the poor partition coefficient of these compounds for the organic phase the remaining aqueous layer was extracted with 5 x 25 mL CH₂Cl₂. The organic layers were combined, dried with Na₂SO₄, concentrated, and the residue was purified by gravity column chromatography using 7% MeOH in DCM giving *trans* **S2** (0.0412 g, 42%) as a clear, colorless oil, and *cis* **S3** (0.0384 g, 38%) as a clear colorless oil.

(1*R*,2*S*)-2-(hydroxymethyl)cyclohexanol (S2). R_f 0.38 (7:93, MeOH:CH₂Cl₂); [α]_D –3.84 (*c* 1.91, CHCl₃); IR (KBr) cm⁻¹:3343.22, 2927.93, 2856.06, 1449.40, 1351.83, 1261.73, 1192.99, 1087.93, 1063.38, 1040.23, 1014.84, 974.10, 801.50; ¹H NMR (CDCl₃): 500 MHz δ 3.81 (d, J = 3.0 Hz, 1H), 3.71-3.65 (m, 2H), 3.60 (ddd, J = 9.4, 9.4, 2.8 Hz, 1H), 3.47 (dddd, J = 9.8, 9.8, 3.5, 3.5 Hz, 1H), 1.94-1.88 (m, 1H), 1.74-1.72 (m, 1H), 1.66-1.63 (m, 1H), 1.59-1.55 (m, 1H), 1.54-1.47 (m, 1H), 1.31-1.15 (m, 3H), 0.89 (dddd, J = 12.6, 12.6, 12.6, 3.8 Hz, 1H); ¹³C NMR (CDCl₃): 100 MHz δ 76.5, 68.7, 46.2, 35.4, 27.4, 25.2, 24.6.

(1*S*,2*S*)-2-(hydroxymethyl)cyclohexanol (S3). R_f 0.34 (7:93, MeOH:CH₂Cl₂); $[\alpha]_D$ +24.36 (*c* 1.26, CHCl₃); IR (KBr) cm⁻¹: 3351.74, 2929.98, 2857.08, 1447.20, 1261.49, 1190.89, 1093.80, 1020.71, 973.85, 804.67; ¹H NMR (CDCl₃): 500 MHz δ 4.13 (s, 1H), 3.76-3.67 (m, 2H), 2.92 (brd s, 1H), 2.81 (brd s, 1H), 1.78 (dddd, J = 13.3, 4.4, 4.4, 4.4 Hz, 1H), 1.68-1.58 (m, 4H), 1.54-1.38 (m, 3H), 1.33-1.25 (m, 1H); ¹³C NMR (CDCl₃): 100 MHz δ 70.0, 66.3, 42.6, 33.1, 25.1, 23.8, 20.7.

General procedure for diester preparation:

To an ice cold, stirred solution of the appropriate diol in dry CH_2Cl_2 (10 mL) under N_2 , 2.2 eq. of 4-pentenoic acid, 0.6 eq. of DMAP, and 2.4 equivalents of DCC were added in that order. The reaction was allowed to warm to room temperature and stir overnight. The reaction mixture was diluted with 10 mL hexanes and filtered through a pad of celite which and washed with 100 mL of EtOAc. The organic layer was concentrated under reduced pressure and purified by column chromatography using 17:3 hexanes:EtOAc as eluent to give the corresponding diester.

(1*R*, 2*S*)-(methyl)cyclohexane-1,7-diyl-dipent-4-enoate (S4). R_f 0.65 (4:1, hexanes:EtOAc); $[\alpha]_D$ –38.70 (*c* 2.83, CHCl₃); IR (KBr) cm⁻¹: 3080.12, 2936.71, 2861.58,

1737.14, 1641.54, 1450.18, 1355.03, 1259.50, 1173.57, 1100.06, 1063.07, 1012.64, 913.97, 802.02; ¹H NMR (CDCl₃): 500 MHz δ 5.84-5.75 (m, 2H), 5.06 (s, 1H), 5.02 (s, 1H), 5.00 (d, J = 0.8 Hz, 1H), 4.98 (dd, J = 10.0 Hz, 1H), 4.64 (ddd, J = 10.2, 10.2, 4.3 Hz, 1H), 4.05-3.98 (m, 2H), 2.41-2.34 (m, 8H), 2.03-2.01 (m, 1H), 1.85-1.68 (m, 4H), 1.34-1.20 (m, 4H); ¹³C NMR (CDCl₃): 100 MHz δ 173.2, 172.6, 136.9, 136.8, 115.6 (2), 73.3, 65.2, 41.8, 33.9, 33.6, 31.9, 29.1, 29.0, 28.4, 25.0, 24.5; EMS [M+Na]⁺ *m/z* calcd for C₁₇H₂₆O₄Na⁺ 317.1723, found 317.1716.

(1*S*, 2*S*)-(methyl)cyclohexane-1,7-diyl-dipent-4-enoate (S5). R_f 0.65 (4:1, hexanes:EtOAc); $[\alpha]_D$ +45.88 (*c* 3.28, CHCl₃); IR (KBr) cm⁻¹: 3080.31, 2936.10, 2860.85, 1736.75, 1641.77, 1448.70, 1355.80, 1259.74, 1173.27, 1129.89, 1182.27, 992.57, 914.59, 804.84; ¹H NMR (CDCl₃): 500 MHz δ 5.86-5.76 (m, 2H), 5.10 (s, 1H), 5.06 (dd, J = 6.7, 1.2 Hz, 1H), 5.03 (dd, J = 6.6, 1.5 Hz, 1H), 5.00 (dd, J = 5.4, 0.8 Hz, 1H), 4.98 (dd, J = 5.5, 1.0 Hz, 1H), 3.97-3.88 (m, 2H), 2.43-2.33 (m, 8H), 1.93-1.87 (m, 2H), 1.74 (ddd, J = 12.6, 3.5, 3.5 Hz, 1H), 1.56-1.25 (m, 6H); ¹³C NMR (CDCl₃): 100 MHz δ 173.2, 172.5, 136.9, 136.8, 115.6 (2), 69.4, 65.2, 39.5, 34.0, 33.6, 29.8, 29.2, 29.0, 24.8, 24.1, 20.8; EMS [M+Na]⁺ *m/z* calcd for C₁₇H₂₆O₄Na⁺ 317.1723, found 317.1715.

Butane-2,3-diyl-dipent-4-enoate ((±)S11). ¹H NMR (CDCl₃): 400 MHz δ ; 5.85-5.75 (m, 2H), 5.06 (d, J = 1.5 Hz, 1H), 5.03-4.97 (m, 4H), 4.13-4.08 (m, 2H), 2.41-2.32 (m, 8H), 1.93-1.79 (m, 2H), 1.23 (d, J = 6.3 Hz, 3H); ¹³C NMR (CDCl₃): 100 MHz δ ; 173.0, 172.6, 136.8, 115.6, 67.9, 60.8, 35.0, 33.9, 33.6, 29.0 (2), 20.2.

RCM macrocyclization:

The RCM was conducted as described previously.¹

(1*R*, 13*S*)-2,11-dioxabicyclo[11.4.0]heptadec-6-ene-3,10-dione (3). R_f 0.52 (4:1, hexanes:EtOAc); $[\alpha]_D$ –6.98 (*c* 1.95, CHCl₃); IR (KBr) cm⁻¹: 2958.71, 2859.79, 1732.82, 1443.91, 1354.73, 1259.88, 1236.43, 1173.11, 1135.76, 1086.71, 1086.71, 1027.81, 960.67, 922.97, 801.69; ¹H NMR (CDCl₃): 300 MHz δ 5.48-5.32 (m, 2H), 4.64 (ddd, J = 10.8, 10.8, 3.8 Hz, 1H), 4.32 (dd, J = 11.2, 3.6 Hz, 1H), 3.66 (d, J = 11.2 Hz, 1H), 2.45-2.12 (m, 9H), 1.78-1.68 (m, 4H), 1.53-1.17 (m, 4H); ¹³C NMR (CDCl₃): 100 MHz δ 174.4, 172.9, 130.8, 130.0, 74.1, 65.7, 41.5, 34.8, 34.4, 32.0, 30.0, 29.4, 28.0, 25.9, 24.8; EMS [M+Na]⁺ *m*/*z* calcd for C₁₅H₂₂O₄Na⁺ 289.1410, found 289.1404.

(1*S*, 13*S*)-2,11-dioxabicyclo[11.4.0]heptadec-6-ene-3,10-dione (4). m.p. 81-84 °C; R_f 0.52 (4:1, hexanes:EtOAc); $[\alpha]_D$ +20.95 (*c* 2.50 , CHCl₃); IR (KBr) cm⁻¹: 2940.15, 2859.19, 1733.66, 1438.60, 1355.71, 1260.41, 1241.95, 1175.60, 1127.02, 1086.63, 1018.34, 974.13, 870.13, 801.14; ¹H NMR (CDCl₃): 300 MHz δ 5.48-5.31 (m, 2H), 5.08 (s, 1H), 3.90 (dd, J = 11.2, 11.2 Hz, 1H), 3.76 (dd, J = 10.9, 5.5 Hz, 1H), 2.46-2.08 (m, 9H), 1.95 (brd s, 1H), 1.74 (d, J = 4.7 Hz, 1H), 1.52-1.24 (m, 6H); ¹³C NMR (CDCl₃): 100 MHz δ 174.1, 173.0, 130.8, 130.0, 68.9, 65.0, 37.5, 34.7, 34.4, 29.4, 29.2, 28.1, 24.9, 24.3, 20.7; EMS [M+Na]⁺ *m/z* calcd for C₁₅H₂₂O₄Na⁺ 289.1410, found 289.1405.

2-methyl-1,5-dioxacyclotridec-9-ene-6,13-dione ((±)7). ¹H NMR (CDCl₃): 300 MHz δ ; 5.49-5.33 (m, 2H), 5.04 (m, 1H), 4.22 (ddd, J = 11.5, 11.5, 3.5 Hz, 1H), 3.92 (ddd, J = 11.2, 5.1, 2.9 Hz, 1H), 2.46-2.12 (m, 8H), 1.99 (dddd, J = 15.0, 11.6, 5.0, 3.4 Hz, 1H), 1.76 (dddd, J = 14.5, 11.2, 3.4, 3.4 Hz, 1H), 1.26 (d, J = 6.2 Hz, 3H); ¹³C NMR (CDCl₃): 100 MHz δ ; 174.1, 173.0, 130.5, 130.0, 67.3, 60.5, 34.7, 34.4, 33.6, 29.1, 28.0, 20.7.

General procedure for epoxidation:

The DMDO epoxidation was conducted as described previously.¹

(1*R*, 6*S*, 7*S*, 13*S*)-2,11,18-trioxatricyclo[12.4.0.0^{6,7}]octadecane-3,10-dione (86). m.p. 132-134 °C; R_f 0.30 (4:1, hexanes:EtOAc); $[\alpha]_D$ +33.50 (*c* 1.94, CHCl₃); IR (KBr) cm⁻¹: 2945.24, 2863.10, 1732.39, 1429.36, 1360.12, 1261.91, 1226.82, 1192.36, 1095.55, 1064.45, 977.53, 885.09, 798.39, 702.62; ¹H NMR (CDCl₃): 300 MHz δ 4.86-4.76 (m, 2H), 3.50 (d, J = 11.0 Hz, 1H), 2.77 (ddd, J = 9.9, 2.4, 2.4 Hz, 1H), 2.69 (ddd, 6.9, 2.9, 2.9 Hz, 1H), 2.49-2.35 (m, 4H),

2.24-2.10 (m, 2H), 1.98-1.94 (m, 1H), 1.77-1.73 (m, 4H), 1.61-1.17 (m, 6H); ¹³C NMR (CDCl₃): 100 MHz δ 173.0, 172.5, 73.8, 65.3, 58.6, 58.5, 42.1, 32.1, 30.3, 29.7, 29.6, 27.2, 26.6, 25.8, 24.9; EMS [M+Na]⁺ *m/z* calcd for C₁₅H₂₂O₅Na⁺ 305.1359, found 305.1354.

(1*S*, 6*R*, 7*R*, 13*S*)-2,11,18-trioxatricyclo[12.4.0.0^{6,7}]octadecane-3,10-dione (S7). m.p. 122-124 °C; R_f 0.30 (4:1, hexanes:EtOAc); $[\alpha]_D$ +0.96 (*c* 2.01, CHCl₃); IR (KBr) cm⁻¹: 2942.48, 2859.69, 1732.66, 1424.57, 1362.17, 1262.65, 1232.07, 1187.98, 1100.06, 1021.10, 983.92, 883.32, 801.60, 677.85; ¹H NMR (CDCl₃): 300 MHz δ 5.26 (s, 1H), 4.43 (dd, J = 11.3, 11.3 Hz, 1H), 3.59 (dd, J = 11.0, 5.8 Hz, 1H), 2.74 (ddd, J = 9.8, 2.4, 2.4 Hz, 1H), 2.68 (ddd, J = 9.7, 2.3, 2.3 Hz, 1H), 2.50-2.31 (m, 4H), 2.19-2.08 (m, 2H), 2.08-1.95 (m, 1H), 1.95-1.86 (m, 1H), 1.83-1.70 (m, 1H), 1.61-1.25 (m, 8H); ¹³C NMR (CDCl₃): 100 MHz δ 172.8, 172.51, 68.0, 64.4, 58.8, 58.7, 37.9, 29.6, 29.5 (2), 27.1. 26.7. 24.9. 24.1. 20.7; EMS [M+Na]⁺ *m/z* calcd for C₁₅H₂₂O₅Na⁺ 305.1359, found 305.1356.

Notes and References:

- 1. W. S. Fyvie and M. W. Peczuh, J. Org. Chem. 2008, 73, 3626.
- 2. J. Casas, H. Sundén and A. Cordova, Tetrahedron Lett. 2004, 45, 6117.

1.40	bbm	- 5	- 4	80 60	- 1 00	120	140	160	- 180	200
Processing parameters 32768 125.7577667 MHz EM 1.00 Hz	HIGH ANG AND	ار سایر می از م انداز می از می	an ang ang ang ang ang ang ang ang ang a	المحادث المحاد محادث المحادث ا	ما هر به این از این از این از را به این از این ا مراجع این از ا	and a second	a bide a fragmente de la companya d La companya de la comp	and a state of the state of the	la de la constanta de la const	الما مع العرب العالم المالية عالم المح والما المالية المحالية المحالية المحالية المحالية المحالية المحالية الم
=== CHANNEL f2 ===================================	CPDPR CPDPR PCPD2 PL12 PL13 SF02 SF02				-					
=== CHANNEL fl ======= 13C 7.75 usec 0.00 dB 125.7703643 MHz	===== NUC1 PL1 SF01									
2 2 Acquisition Parameters 20080117 Acquisition Parameters 5:12 UM 5:12 D 5 mm TXI 1H-13 OG 5:12 NT spect D 5 mm TXI 1H-13 OG 5:12 S 0.916444 At 30030.029 Hz 52 S 0.5456539 S 0.5456539 S 0.5456539 S 0.5456539 1.50000000 sec 1.50000000 sec 1.39999998 sec	FZPNO FROCN FZCN FZTRE FULPRY FULPRY FULPRY FULPRY SWH FZDRE		_						\frown	ОН
nt Data Parameters wsf011708a_500 0 1	Curre NAME EXPNO PROCN									ОН
		60.02.02 62.02	LI.35	₽∠`89 ∠₽`9↓ 86`9↓ 85`↓↓	80.96					

	0 ppm	0 20	60	80	100	120	140	160	180	200
0 1.00 Hz 0 1.40	SSB CB CB CB CB CB CB CB CB CB CB CB CB CB			-			-			- - -
Processing parameters 32768 125.7577646 MHz FM	and a function of the second secon	ىنى ئىلىش لىلىنى ئىلىكى لىلار. مەرىپىلىرىلىنى ئىلارىيىتى بىلارىيىتى ب	يلوز بالمراجع المراجع المراجع المراجع المراجع موالية المراجع	بزرانه منظرار مثل التجليلية. من المار منظرار مثل التجليلية (اند الذاخي _ا بالتكمية. يقتل محمد المحمد المحمد التلية	ف المنطقة عن المأوليات. 1919 - مراجعة المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا	ىنىشىلىغ _م ارمىتىنى بەرمىتىدىكى مارمىتىكى	ىناغازارارلى الارتىلى چىرىزار ارتى تىرىزىرى	بالجورية، والمحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة محافظة المحافظة المحاف	المحمد المحم محمد المحمد ال
CHANNEL f2	CPDPR CPDPR PCPD2 PL12 PL13 SF02							-	- - -	-
CHANNEL fl 13C 7.75 usec 0.00 dB 125.7703643 MHz	===== NUC1 P11 P11 SF01									
<pre>wsf011708c_500 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</pre>	NAME EXPNO FROCN FROBH FROBH FIME FIME SULVE SULVE SULVE FROBH FIME FIDRE C C C C C C C C C C C C C C C C C C C									́Р Р
nt Data Parameters wsf011708c_500 10 11	Curre NAME EXPNO PROCN	-	-							,iv/OH
		22.14 23.75	45.62	69.77 89.63 89.63 89.63 89.63 89.63 89.63 89.63 89.63 80.63						

	tent Data Parameters wsf012208b_500 10 2	- Acquisition Parameters - Acquisition Parameters - 20080121 20.39 - 20.39 - 20.39 - 20.39 - 20.39 - 14 - 20.39 - 14 - 20.32768 - 299330 - 299330 - 20 - 30030.029 Hz - 20 - 30030.029 Hz - 20 - 20	32768 16.650 usec 6.00 usec 5.00 usec 1.5000000 sec 0.03000000 sec 1.3999998 sec	CHANNEL fl ===================================	CHANNEL f2 == RG2 waltz16 70.00 usec -1.00 dB 14.69 dB 17.00 dB 17.00 dB	- Processing parameters 32768 125.7577670 MHz EM 0 1.00 Hz	1.40
	Curi NAME EXPN PROC	F2 Date Timee PROB PULP PULP SOLV SSU SSU SWH SSWH SWH	RG DE DE DE L1 TD0 TD0	==== NUC1 PL1 SF01	СРОР СРОР РССР РССР РССР РСС2 РС13 8702 SF02	F2 SE SSB CB CB CB	b D
						radioal beneficial a surface a	- 0
60.65 84.85 84.85 84.85	=						- 0 2
98.15 33.86 23.82 89.14	-						- 6
₽Z.29 ——	-						- 09
64.77 86.97 86.97							- 8
						t ve die needer ook op die seelen die seelen ook op die seelen die seelen die seelen die seelen die seelen die Seelen die seelen die s	- 00
19'SII 59'SII							120
08.921 38.951	-					An and a second se	140
							160
LG.STI 21.871							- 1 80
	°=						200
	1	//					ŀ

	Current Data Parameters NAME wsf012208a_500 EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date20080121 Time18.42 INSTRUM Spect PROBHD 5 mm BBO BB-1H PULPROG 299930 TD 32768 SOLVENT CDC13 NS 72 DS DS DS DS DS 72 DS DS DS 000000000000000000000000000000	SWH30030.029HzFIDRES0.916444HzAQ0.5456539secRG0.5456539secBW16.650usecDE0.000000secTE1.50000000secd110.03000000secTD01.39999998secTD011	====== CHANNEL fl ======== NUC1 13C Pl1 7.75 usec Pl1 0.00 dB SF01 125.7703643 MHz	====== CHANNEL f2 ====== CPDPRG2 waltz16 NUC2 1H PCPD2 70.00 usec PL2 14.69 dB PL13 17.00 dB PL13 500.1320005 MHz	F2 - Processing parameters 32768 32768 32768 MDW 125.7577657 MHz WDW 0 EM 0 LB 1.00 Hz GB 0 0	PC 1.40
61.02 -						الله من المراجع من المراجع الم محمد المراجع ال	- 0
62 02 LL: b2 92 b2 L0: 62 SL: 62 SL: 62	-						- 5 0
33.55 9.56 9.56 9.54	-			_		الله الله من الله عنه الله من الله من الله من الله من الله الله من الله من الله من الله من الله من الله من الل الله من الله من	- 40
14.03	-		=			an a start a s	- 09
64.77 86.87 86.87	•					a de la contraction d	- 80
							100
19.311 79.311	-					a series a s	120
98.951 >>	-		_				140
		_				المعادية المحد بأورد والكيل بالم	160
SI.ETI	=					an tra industria di tra di	- 1 80
						an a	200
							-

sec

ΗZ

	Current Data Parameters NAME wsf012608a EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date20080126 Time21.16 INSTRUM spect PROBHD 5 mm Multinucl PULPROG 29P930 TD 29P930 TD 32768 SOLVENT 1556.291 Hz SWH 16556.291 Hz	FIDKES 0.9896436 sec AQ 0.9896436 sec DW 32768 32768 sec DW 30.200 usec E 6.00 usec TE 2.0000000 sec D11 2.0000000 sec D11 1.8999998 sec TD0 1 1	====== CHANNEL f1 ======= NUC1 13C P1 8.50 usec P1 -2.00 dB SFO1 75.4752953 MHz	CHANNEL f2 f2 <thf2< th=""></thf2<>	F2 - Processing parameters SI 32768 SF 75.4677344 MHz WDW 5SB 15.4677344 MHz EM 0 LB 1.00 Hz GB 1.00 Hz	PC 1.40
							bpm
L8 • #Z 68 • 5Z 86 • LZ 86 • 6Z 86 • 6Z							- 50
90.28 96.48 97.48 18.14	-	-					- 4
2I.47 ZI.47	-						- 09
18'9L 22'LL 99'LL							- 80
						and the set of the set	100
							120
48.051 130.84	:					in the second	140
						i e si i	160
174.40	-						- 180
	, ,						200

90.5 119.200 usec 6.00 usec 1H 8.20 usec 0.00 dB 300.1315007 MHz usec K 4194.631 Hz 0.128010 Hz 3.9059956 sec F2 - Acquisition Parameters Date____20080127 Time____0.14 sec 300.1300034 MHz EM - Processing parameters 32768 ΗZ spect Multinucl zg30 32768 CDC13 16 1.00000000 0.30 298.7 Current Data Parameters NAME wsf012608b Ļ1 CHANNEL mm ഗ I PROBHD PULPROG INSTRUM SOLVENT PROCNO FIDRES EXPNO NUC1 P1 PL1 SF01 NS DS SWH AQ RG DW TE D1 TD0 1D mdd 1.243 J.278 60E'T 1965.1 965.1 J.435 Z7₽.1 τε*L*•τ 9*ΦL*•τ 2 T₽6.I က -S IE ဖ ~ ω ດ 0 ó 9

	Current Data Parameters NAME wsf012608b EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date20080127 Time20080127 INSTRUM spect PROBHD 5 mm Multinucl PULPROG 32768 32768 SOLVENT C13 SOLVENT 156 NS 156 SOLVENT 16556.291 Hz	FIDRES 0.505258 Hz AQ 0.9896436 sec RG 32768 DW 30.200 usec 6.00 usec 300.3 K 01 2.0000000 sec 011 1.89999998 sec FID0 1	====== CHANNEL f1 ======== NUC1 13C P1 8.50 usec P1 -2.00 dB SFO1 75.4752953 MHz	CFDPRG2 CHANNEL f2 f2 ======== CPDPRG2 waltz16 1H NUC2 1 10.00 usec PL2 -2.00 dB 15.00 dB PL13 15.00 dB 15.00 dB PL13 300.1312005 MHz 15.00 dB	F2 - Processing parameters SI 32768 SF 75.4677336 MHz WDW 5SB 00 LB 1.00 Hz 3B 00	PC 1.40
	ОДНН			панно			bbu
22.62 82.92 82.92 82.92 82.92 82.92 82.92	-						50
23.95 73.95 73.95 73.95	-	-					- 40
₩ 18.89 ₩0.29	-						- 09
08 9/L 59 · LL							- 8
						n de la constant de l	- 00
86.621 -						in the second	120
£8.051	:	_				and the state of the second	- 140
							160
10.571 00.971	- •						- 180
	0						500

	Current Data Parameters NAME wsf012908a EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date20080129 Time20080129 Time22.11 INSTRUM spect PULPROG 5 mm Multinucl PULPROG 32768 SOLVENT CDC13 NS 16556.291 Hz CDC13 NS 16556.291 Hz CDC13 NS 0.505258 Hz AQ 0.9896436 sec RG 0.9896436 sec RG 0.9896436 sec RG 0.9896436 sec CD11 0.09899436 sec DM 2.20000000 sec D11 0.03000000 sec	====== CHANNEL fl ======= NUC1 13C P1 8.50 usec P1 -2.00 dB SFO1 75.4752953 MHz	====== CHANNEL f2 ====== CPDPRG2 waltz16 NUC2 1H PCPD2 100.00 usec PL2 -2.00 dB PL12 15.00 dB PL13 15.00 dB PL13 300.1312005 MHz	WINNELS - Processing parameters SF 75.4677346 MHz WDW SSB 1.00 Hz CB 0 CB 0 CB 0	Ppm 1.40
28 - 52 29 - 22 20 - 22 20 20 - 22 20 20 - 22 20 20 - 22 20 20 20 20 20 20 20 20 20 20 20 20 2	-					40 - 20
23 23 22 23 28 22 23 28 22 23 28 22 24 24 24 24 24 24 24 24 24 24 24 24 24						- 09
59 · <i>LL</i>				-	مراجع المراجع ا المراجع المراجع	100 8(
						40 120
					المراجع	160
173.01	= 0					- 180
	of the					200

80.6 119.200 usec 6.00 usec 1H 8.20 usec 0.00 dB 300.1315007 MHz usec K 4194.631 Hz 0.128010 Hz 3.9059956 sec F2 - Processing parameters SI 32768 SF 300.1300034 MHz WDW EM SSB 0.30 Hz CB 0.30 Hz GB 0.30 Hz CB 0.30 Hz F2 - Acquisition Parameters Date_____20080129 Time_____23.46 sec 300.1300034 MHz EM . Multifuci 2930 32768 CDC13 16 298.5 1.00000000 Current Data Parameters NAME wsf012908b spect i Ļ1 CHANNEL шш ഗ I PROBHD PULPROG INSTRUM SOLVENT PROCNO FIDRES EXPNO NUC1 P1 PL1 SF01 NS DS SWH AQ RG DW TE D1 TD0 Ê ppm 1.250 1.283 1.469 1.419 2.419 ₽*L*₽'T <u>8.75</u> 1.483 1.500 J02.1 909 519 1729 1729 1729 1729 279 77 279 7 7 6 7 9 0 7 2 ო יד די די ₽SS 09S 4 F S Q ~ ω C 0 ດ ó O 9

	Data Parameters wsf012908b 2	quisition Parameters 20080129 23.51 5 mm Multinucl 229930 32768 CDC13	135 4 16556.291 Hz 0.505258 Hz 0.9896436 sec	30.200 usec 6.00 usec 2.00000000 sec 0.03000000 sec 1.8999998 sec 1	<pre>= CHANNEL f1 ===================================</pre>	<pre>= CHANNEL f2 ===================================</pre>	ocessing parameters 32768 75.4677351 MHz EM 0 1.00 Hz 0	1.40
	Current NAME EXPNO PROCNO	F2 - Ac Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT	NS DS SWH FIDRES AQ RG	DE TE D1 D11 TD0 TD0	NUC1 P1 PL1 SF01	CPDPRG2 CPDPRG2 PLC2 PL12 PL13 SFO2 SFO2	F2 - Pr martines WDW SSB LB GB GB	ppm
69.92 80.42 80.42 25.65	-		_					- 20
20°22 9†°62 6†°62 59°62 88°28	-						an a	- 4
Ь0.88 27.82 27.82 20.88 2	-						and a second	- 09
8.97 8.23 8.77 8.23 8.77 8.23 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	•						a formation to the formation of the second se	- 8
								- 9
							भू तेत्रे स्थल के लिए स्थल के स्थल जन्म के संस्थान के स्थल	120
							an a	- 140
10.211		\frown					ja kija standara ka ja kija Se se ugesta standara standara Se se	160
13 271	- 						nin kanalan ang kanalan kanala	- 180
	O'	$\overline{}$					in the second	200

MUC1 CHANNEL 11 PL1 13C PL1 -3.00 dB SF01 100.6263505 MHz -3.00 dB SF01 CPDPRG2 Maltz16 NUC2 110.00 usec PL12 110.00 usec PL2 0.00 dB PL12 19.00 dB PL13 100.1456006 MHz F2 Processing parameters S1 100.6162724 MHz S1 100.6162724 MHz BD0M 1.40	50	- 4		80		120	- 140	- 1 160		200
NUC2 1H PCPD2 110.00 usec PL2 0.00 dB PL12 19.00 dB PL13 19.00 dB PL13 8F02 400.1456006 MHz										
SF01 100.6263505 MHz CHANNEL f2										
======= CHANNEL f1 ======== NUC1 13C P1 8.30 usec PL1 -3.00 dB										
DW 20.850 usec DE 6.00 usec TE 300.0 K D1 1.5000000 sec d11 0.0300000 sec d11 1.39999998 sec MCREST 0.01500000 sec MCWRK 0.01500000 sec			-							
SWH 23980.814 Hz FIDRES 0.365918 Hz AQ 1.3664756 sec RG 32768							-		<u> </u>	Ŧ
Time 20.41 INSTRUM 20.41 INSTRUM 20.41 PROBHD 5 mm 2NP 1H/1 PULPROG 259930 TD 299930 TD 29930 SOLVENT 20213 NS 152 DS 152										
Current Data Parameters NAME wsf032008a EXPNO 2 PROCNO 1				I						
	50.24 28.96 28.34	68°58 66°78	58.09 16.75 52.77	SS·LL	₽9°GTT		97.851 ———	8G•Z/T	70·6/1	

use

Ч

sec

use dB MHz

Нz

use

	Current Data Parameters NAME wsf032508c EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date20080326 Time20080326 INSTRUM spect PROBHD 5 mm Multinucl PULPROG 32768 32768 SOLVENT CDC13 NS 194 DS 16556.291 Hz FIDRES 0.505258 Hz	AQ 0.9896436 sec RG 32768 DW 30.200 usec DE 6.00 usec 300.4 K D1 2.00000000 sec D11 0.03000000 sec DELTA 1.8999998 sec TD0 1	CHANNEL fl NUC1 13C P1 8.50 usec PL1 -2.00 dB SF01 75.4752953 MHz	CPDPRG2 CHANNEL f2 CPDPRG2 waltz16 NUC2 1H PCPD2 100.00 usec PL2 -2.00 dB PL12 15.00 dB PL13 15.00 dB PL13 300.1312005 MHz	F2 - Processing parameters SI 32768 32768 32768 MDW 55.4677337 MHz WDW 58B 15.4677337 MHz EM 00 LB 1.00 Hz GB 1.00 Hz	Pc 1.40
	-						- 5
23 - 52 23 - 58 33 - 58 34 - 63	-	_					- 4
62.78 ———	-	_					- 09
ες. <i>TT</i> δ3. <i>TT</i> δ3. <i>TT</i>	•	-					- 8
							- <mark>1</mark> 00
96°671							120
							140
96.271	_	/					- 160
90.471	- 	() () () () () () () () () () () () () (- 1 80
	Ó						200

YALE CHEMICAL INSTRUMENTATION CENTER

X-Ray Structure Report Reference Number: UCONN_MP07

April 2, 2008

YALE CHEMICAL INSTRUMENTATION CENTER

X-Ray Structure Report Reference Number: UCONN_MP07

April 2, 2008

Data Collection

A colorless plate crystal of $C_{15}H_{22}O_5$ having approximate dimensions of 0.30 x 0.20 x 0.10 mm³ was mounted with epoxy cement on the tip of a fine glass fiber. All measurements were made on a Nonius KappaCCD diffractometer with graphite monochromated Mo-K α radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

a = 7.0375(14) Å	$\alpha = 90$ o
b = 11.004(2) Å	$\beta = 102.95(3)$ o
c = 9.6494(19) Å	$\gamma=90 \ o$
$V = 728.3(3) \text{ Å}^3$	

For Z = 2 and F.W. = 282.33, the calculated density is 1.287 g/cm³. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be $P2_1$ (#4).

The data were collected at a temperature of 173(2) K to a maximum 20 value of 57.96°. Five omega scans consisting of 37, 29, 34, 29, and 32 data frames, respectively, were collected with a frame width of 2.0° and a detector-to-crystal distance, Dx, of 36.0 mm. Each frame was exposed twice (for the purpose of de-zingering) for a total of 20 s. The data frames were processed and scaled using the DENZO software package.¹

Data Reduction

A total of 3617 reflections were collected of which 3617 were unique and observed ($R_{int} = 0.000$, Friedel pairs not merged). The linear absorption coefficient, μ , for Mo-K α radiation is 0.96 cm⁻¹, and no absorption correction was applied. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods and expanded using Fourier techniques². The non-hydrogen atoms were refined anisotropically, and hydrogen atoms were treated as idealized contributions. The final cycle of full-matrix least-squares refinement³ on F was based on 3617

observed reflections (I > $2.00\sigma(I)$) and 181 variable parameters and converged with unweighted and weighted agreement factors of:

 $R = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0507$ $R_{W} = \{\Sigma[w (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma[w (F_{o}^{2})^{2}]\}^{1/2} = 0.0811$

The maximum and minimum peaks on the final difference Fourier map corresponded to 0.177 and $-0.206 \text{ e}^{-}/\text{Å}^{3}$ respectively.

REFERENCES

(1) Z. Otwinowski and W. Minor, "Processing of X-Ray Diffraction Data Collected in Oscillation Mode," Methods in Enzymology, vol. 276: Macromolecular Crystallography, part A, 307-326, 1997, C.W. Carter, Jr. & R.M. Sweet, Eds., Academic Press.

(2) SHELXTL, v.6.12, Bruker-AXS, Madison, WI, 2001.

(3) Least Squares function minimized: $\Sigma w (F_o^2 - F_c^2)^2$

Structural Description

The compound crystallized in the chiral monoclinic space group $P2_1$ with one molecule in the asymmetric unit and two molecules in the unit cell.

Torsion angles of interest in the molecule are as follows: $C(3)-C(4)-C(5)-C(6) = 151.8^{\circ}$, $O(1)-C(11)-C(10)-C(9) = 51.0^{\circ}$, $C(1)-C(2)-C(3)-C(4) = 73.7^{\circ}$, $C(5)-C(6)-C(7)-C(8) = 69.4^{\circ}$.

An ambiguous Flack parameter was calculated due to the lack of substantially weighted atoms and thus the absolute configuration of the molecule could not be determined. There are no significant intermolecular contacts. ORTEPs, packing diagrams and full crystallographic tables follow.

Figure 2

Figure 3

Packing diagram – View down the a-axis

Packing diagram – View down the b-axis

Packing diagram - View down the c-axis

Table 1. Crystal data and structure refinement for uconn_mp07.

Identification code	uconn_mp07		
Empirical formula	$C_{15} H_{22} O_5$	$C_{15} H_{22} O_5$	
Formula weight	282.33		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)		
Unit cell dimensions	a = 7.0375(14) Å	α= 90°.	
	b = 11.004(2) Å	β= 102.95(3)°.	
	c = 9.6494(19) Å	$\gamma = 90^{\circ}$.	
Volume	728.3(3) Å ³		
Z	2		
Density (calculated)	1.287 g/cm ³		
Absorption coefficient	0.96 cm ⁻¹		
F(000)	304		
Crystal size	0.30 x 0.20 x 0.10 mm ³		
Theta range for data collection	2.97 to 28.98°.		
Index ranges	-9<=h<=9, -15<=k<=14	-13<=1<=13	
Reflections collected	3617		
Independent reflections	2167 [R(int) = 0.0000]		
Completeness to theta = 28.98°	98.5 %		
Absorption correction	None		
Max. and min. transmission	0.9905 and 0.9718		
Refinement method	Full-matrix least-squares	s on F ²	
Data / restraints / parameters	3617 / 1 / 181		
Goodness-of-fit on F ²	1.009		
Final R indices [I>2sigma(I)]	R1 = 0.0507, wR2 = 0.03	811	
R indices (all data)	R1 = 0.1130, wR2 = 0.09	R1 = 0.1130, wR2 = 0.0956	
Absolute structure parameter	-0.3(10)		
Largest diff. peak and hole	0.177 and -0.206 e.Å ⁻³		

	Х	у	Z	U(eq)
O(1)	967(2)	8471(1)	2564(1)	30(1)
O(2)	525(2)	9561(1)	4435(1)	39(1)
O(3)	3649(2)	7955(1)	8203(1)	41(1)
O(4)	5572(2)	7613(1)	4426(1)	41(1)
O(5)	5322(2)	9327(1)	3138(1)	35(1)
C(1)	634(3)	8597(2)	3877(2)	28(1)
C(2)	418(3)	7381(2)	4532(2)	31(1)
C(3)	894(3)	7426(2)	6156(2)	34(1)
C(4)	3042(3)	7539(2)	6744(2)	32(1)
C(5)	3988(3)	8730(2)	7072(2)	32(1)
C(6)	6073(3)	8945(2)	7019(2)	38(1)
C(7)	6240(3)	9534(2)	5616(2)	33(1)
C(8)	5668(3)	8695(2)	4365(2)	31(1)
C(9)	4607(3)	8644(2)	1832(2)	34(1)
C(10)	2811(3)	9278(2)	958(2)	29(1)
C(11)	1319(3)	9582(2)	1832(2)	28(1)
C(12)	-555(3)	10048(2)	906(2)	36(1)
C(13)	-173(4)	11176(2)	92(2)	40(1)
C(14)	1402(4)	10947(2)	-737(2)	42(1)
C(15)	3257(4)	10437(2)	219(2)	35(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for uconn_mp07. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.346(2)	O(2)-C(1)-C(2)	125.17(18)
O(1)-C(11)	1.461(2)	O(1)-C(1)-C(2)	111.08(19)
O(2)-C(1)	1.200(2)	C(1)-C(2)-C(3)	112.54(18)
O(3)-C(5)	1.446(2)	C(4)-C(3)-C(2)	111.23(17)
O(3)-C(4)	1.451(2)	O(3)-C(4)-C(5)	59.29(13)
O(4)-C(8)	1.196(3)	O(3)-C(4)-C(3)	116.51(17)
O(5)-C(8)	1.347(2)	C(5)-C(4)-C(3)	121.70(19)
O(5)-C(9)	1.457(2)	O(3)-C(5)-C(4)	59.62(13)
C(1)-C(2)	1.503(3)	O(3)-C(5)-C(6)	116.59(18)
C(2)-C(3)	1.528(3)	C(4)-C(5)-C(6)	122.1(2)
C(3)-C(4)	1.496(3)	C(5)-C(6)-C(7)	111.55(17)
C(4)-C(5)	1.473(3)	C(8)-C(7)-C(6)	113.06(19)
C(5)-C(6)	1.499(3)	O(4)-C(8)-O(5)	123.8(2)
C(6)-C(7)	1.528(3)	O(4)-C(8)-C(7)	125.56(19)
C(7)-C(8)	1.501(3)	O(5)-C(8)-C(7)	110.65(19)
C(9)-C(10)	1.522(3)	O(5)-C(9)-C(10)	109.00(18)
C(10)-C(11)	1.524(3)	C(9)-C(10)-C(11)	112.56(16)
C(10)-C(15)	1.528(3)	C(9)-C(10)-C(15)	114.15(19)
C(11)-C(12)	1.507(3)	C(11)-C(10)-C(15)	108.30(17)
C(12)-C(13)	1.525(3)	O(1)-C(11)-C(12)	110.55(16)
C(13)-C(14)	1.526(4)	O(1)-C(11)-C(10)	107.26(16)
C(14)-C(15)	1.526(3)	C(12)-C(11)-C(10)	111.52(16)
		C(11)-C(12)-C(13)	110.54(19)
C(1)-O(1)-C(11)	116.95(16)	C(12)-C(13)-C(14)	111.59(19)
C(5)-O(3)-C(4)	61.10(13)	C(13)-C(14)-C(15)	111.57(19)
C(8)-O(5)-C(9)	116.96(17)	C(14)-C(15)-C(10)	110.6(2)
O(2)-C(1)-O(1)	123.7(2)		

Table 3. Bond lengths [Å] and angles [°] for uconn_mp07.

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	41(1)	25(1)	26(1)	-2(1)	11(1)	-4(1)
O(2)	59(1)	26(1)	35(1)	0(1)	21(1)	7(1)
O(3)	54(1)	46(1)	24(1)	1(1)	9(1)	1(1)
O(4)	53(1)	30(1)	40(1)	5(1)	13(1)	4(1)
O(5)	41(1)	29(1)	31(1)	2(1)	3(1)	-4(1)
C(1)	25(1)	32(1)	27(1)	-1(1)	8(1)	3(1)
C(2)	35(1)	27(1)	32(1)	1(1)	9(1)	-2(1)
C(3)	44(2)	27(1)	33(1)	4(1)	14(1)	-2(1)
C(4)	43(2)	32(1)	23(1)	-1(1)	8(1)	3(1)
C(5)	41(2)	32(1)	22(1)	2(1)	8(1)	2(1)
C(6)	41(2)	38(1)	30(1)	0(1)	2(1)	-2(1)
C(7)	30(1)	30(1)	38(1)	1(1)	4(1)	-2(1)
C(8)	26(1)	33(1)	36(1)	4(1)	8(1)	2(1)
C(9)	39(1)	35(1)	30(1)	-2(1)	9(1)	1(1)
C(10)	37(1)	24(1)	26(1)	-2(1)	8(1)	-4(1)
C(11)	35(1)	23(1)	25(1)	2(1)	7(1)	-3(1)
C(12)	36(2)	33(1)	35(1)	-3(1)	3(1)	0(1)
C(13)	48(2)	32(1)	37(1)	4(1)	4(1)	9(1)
C(14)	59(2)	33(1)	32(1)	7(1)	8(1)	-1(1)
C(15)	46(2)	32(1)	28(1)	2(1)	9(1)	-6(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for uconn_mp07. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for uconn_mp07.

	Х	у	Z	U(eq)
H(2A)	1294	6790	4218	38
H(2B)	-938	7091	4189	38
H(3A)	220	8127	6474	41
H(3B)	411	6677	6530	41
H(4A)	3867	6889	6453	39
H(5A)	3108	9451	6849	38
H(6A)	6781	8161	7132	45
H(6B)	6693	9479	7818	45
H(7A)	5396	10263	5450	40
H(7B)	7602	9803	5694	40
H(9A)	4270	7806	2063	41
H(9B)	5633	8598	1280	41
H(10A)	2174	8698	197	35
H(11A)	1873	10215	2553	33
H(12A)	-1484	10249	1505	43
H(12B)	-1150	9408	225	43
H(13A)	239	11852	770	48
H(13B)	-1395	11422	-577	48
H(14A)	1710	11719	-1166	50
H(14B)	905	10366	-1517	50
H(15A)	3833	11050	942	42
H(15B)	4221	10257	-360	42

YALE CHEMICAL INSTRUMENTATION CENTER

X-Ray Structure Report Reference Number: UCONN_MP08

April 7, 2008

YALE CHEMICAL INSTRUMENTATION CENTER

X-Ray Structure Report Reference Number: UCONN_MP08

April 7, 2008

Data Collection

A colorless plate crystal of $C_{15}H_{22}O_5$ having approximate dimensions of 0.15 x 0.15 x 0.08 mm³ was mounted with epoxy cement on the tip of a fine glass fiber. All measurements were made on a Nonius KappaCCD diffractometer with graphite monochromated Mo-K α radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive orthorhombic cell with dimensions:

a = 6.4153(13) Å	$\alpha = 90$ 0
b = 12.269(3) Å	$\beta = 90$ 0
c = 18.605(4) Å	$\gamma=90 \ o$
$V = 1464.4(5) \text{ Å}^3$	

For Z = 4 and F.W. = 282.33, the calculated density is 1.281 g/cm³. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be $P2_12_12_1$ (#19).

The data were collected at a temperature of 173(2) K to a maximum 20 value of 57.94 °. Three omega scans consisting of 37, 29, and 22 data frames, respectively, were collected with a frame width of 2.0 ° and a detector-to-crystal distance, Dx, of 35.0 mm. Each frame was exposed twice (for the purpose of de-zingering) for a total of 60 s. The data frames were processed and scaled using the DENZO software package.¹

Data Reduction

A total of 3801 reflections were collected of which 3801 were unique and observed ($R_{int} = 0.000$, Friedel pairs not merged). The linear absorption coefficient, μ , for Mo-K α radiation is 0.95 cm⁻¹, and no absorption correction was applied. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods and expanded using Fourier techniques². The non-hydrogen atoms were refined anisotropically, and hydrogen atoms were treated as idealized contributions. The final cycle of full-matrix least-squares refinement³ on F was based on 3801

observed reflections (I > $2.00\sigma(I)$) and 181 variable parameters and converged with unweighted and weighted agreement factors of:

$$\begin{split} R &= \Sigma \; ||Fo| - |Fc|| \; / \; \Sigma \; |Fo| = 0.0586 \\ R_W &= \{ \Sigma [w \; (F_o{}^2 - F_c{}^2)^2] \; / \; \Sigma [w (F_o{}^2)^2] \}^{1/2} = 0.0833 \end{split}$$

The maximum and minimum peaks on the final difference Fourier map corresponded to 0.205 and $-0.235 \text{ e}^{-/}\text{Å}^{3}$ respectively.

REFERENCES

(1) Z. Otwinowski and W. Minor, "Processing of X-Ray Diffraction Data Collected in Oscillation Mode," Methods in Enzymology, vol. 276: Macromolecular Crystallography, part A, 307-326, 1997, C.W. Carter, Jr. & R.M. Sweet, Eds., Academic Press.

(2) SHELXTL, v.6.12, Bruker-AXS, Madison, WI, 2001.

(3) Least Squares function minimized: $\Sigma w (F_o^2 - F_c^2)^2$

Structural Description

The compound crystallized in the chiral orthorhombic space group $P2_12_12_1$ with one molecule in the asymmetric unit and four molecules in the unit cell.

Torsion angles of interest in the molecule are as follows: $C(3)-C(4)-C(5)-C(6) = 155.2^{\circ}$, $O(1)-C(11)-C(10)-C(9) = 51.3^{\circ}$, $C(1)-C(2)-C(3)-C(4) = 73.3^{\circ}$, $C(5)-C(6)-C(7)-C(8) = 67.2^{\circ}$.

An ambiguous Flack parameter was calculated due to the lack of substantially weighted atoms and thus the absolute configuration of the molecule could not be determined. There are no significant intermolecular contacts. ORTEPs, packing diagrams and full crystallographic tables follow.

<u>Figure 2</u>

Figure 3

Packing diagram – View down the a-axis

Packing diagram – View down the b-axis

Packing diagram - View down the c-axis

Table 1. Crystal data and structure refinement for uconn_mp08.

Identification code	uconn_mp08		
Empirical formula	C ₁₅ H ₂₂ O ₅		
Formula weight	282.33		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P2(1)2(1)2(1)		
Unit cell dimensions	a = 6.4153(13) Å	α= 90°.	
	b = 12.269(3) Å	β= 90°.	
	c = 18.605(4) Å	$\gamma = 90^{\circ}$.	
Volume	1464.4(5) Å ³		
Z	4		
Density (calculated)	1.281 g/cm ³		
Absorption coefficient	0.95 cm ⁻¹		
F(000)	608		
Crystal size	0.15 x 0.15 x 0.08 mm ³		
Theta range for data collection	3.32 to 28.97°.		
Index ranges	-8<=h<=8, -16<=k<=16,	-25<=1<=25	
Reflections collected	3801		
Independent reflections	2021 [R(int) = 0.0000]		
Completeness to theta = 28.97°	99.4 %		
Absorption correction	None		
Max. and min. transmission	0.9924 and 0.9859		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	3801 / 0 / 181		
Goodness-of-fit on F ²	1.001		
Final R indices [I>2sigma(I)]	R1 = 0.0586, WR2 = 0.08	333	
R indices (all data)	R1 = 0.1525, WR2 = 0.10	R1 = 0.1525, $wR2 = 0.1022$	
Absolute structure parameter	0.2(12)		
Largest diff. peak and hole	0.205 and -0.235 e.Å ⁻³		

	X	У	Z	U(eq)
O(1)	6662(2)	4687(1)	2028(1)	29(1)
O(2)	3324(3)	4135(1)	2060(1)	38(1)
O(3)	1174(3)	4080(1)	-114(1)	49(1)
O(4)	5892(2)	6329(1)	435(1)	35(1)
O(5)	5231(2)	6997(1)	1538(1)	29(1)
C(1)	5039(4)	4095(2)	1793(1)	28(1)
C(2)	5622(4)	3378(2)	1169(1)	34(1)
C(3)	3754(4)	3150(2)	678(1)	38(1)
C(4)	3180(4)	4130(2)	240(1)	35(1)
C(5)	1517(4)	4884(2)	444(1)	32(1)
C(6)	1475(4)	6050(2)	196(1)	30(1)
C(7)	2392(4)	6817(2)	757(1)	28(1)
C(8)	4664(4)	6668(2)	874(1)	25(1)
C(9)	7416(3)	6889(2)	1725(1)	31(1)
C(10)	7619(4)	6447(2)	2485(1)	25(1)
C(11)	6238(4)	5462(2)	2614(1)	28(1)
C(12)	6629(4)	4914(2)	3333(1)	34(1)
C(13)	8934(4)	4688(2)	3466(1)	36(1)
C(14)	10219(4)	5719(2)	3390(1)	35(1)
C(15)	9920(4)	6212(2)	2640(1)	31(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for uconn_mp08. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.342(3)	O(2)-C(1)-C(2)	124.6(2)
O(1)-C(11)	1.471(3)	O(1)-C(1)-C(2)	112.0(2)
O(2)-C(1)	1.208(3)	C(1)-C(2)-C(3)	111.9(2)
O(3)-C(4)	1.447(3)	C(4)-C(3)-C(2)	111.7(2)
O(3)-C(5)	1.449(3)	O(3)-C(4)-C(5)	59.74(15)
O(4)-C(8)	1.207(3)	O(3)-C(4)-C(3)	115.6(2)
O(5)-C(8)	1.351(3)	C(5)-C(4)-C(3)	123.1(2)
O(5)-C(9)	1.451(3)	O(3)-C(5)-C(4)	59.61(15)
C(1)-C(2)	1.504(3)	O(3)-C(5)-C(6)	115.22(19)
C(2)-C(3)	1.533(3)	C(4)-C(5)-C(6)	122.4(2)
C(3)-C(4)	1.499(3)	C(5)-C(6)-C(7)	111.81(19)
C(4)-C(5)	1.462(3)	C(8)-C(7)-C(6)	113.8(2)
C(5)-C(6)	1.503(3)	O(4)-C(8)-O(5)	123.1(2)
C(6)-C(7)	1.523(3)	O(4)-C(8)-C(7)	125.7(2)
C(7)-C(8)	1.485(3)	O(5)-C(8)-C(7)	111.2(2)
C(9)-C(10)	1.520(3)	O(5)-C(9)-C(10)	109.75(18)
C(10)-C(11)	1.518(3)	C(11)-C(10)-C(9)	112.40(19)
C(10)-C(15)	1.531(3)	C(11)-C(10)-C(15)	112.5(2)
C(11)-C(12)	1.519(3)	C(9)-C(10)-C(15)	108.99(19)
C(12)-C(13)	1.524(3)	O(1)-C(11)-C(10)	106.86(18)
C(13)-C(14)	1.517(3)	O(1)-C(11)-C(12)	109.63(18)
C(14)-C(15)	1.532(3)	C(10)-C(11)-C(12)	113.29(19)
		C(11)-C(12)-C(13)	112.5(2)
C(1)-O(1)-C(11)	116.56(17)	C(14)-C(13)-C(12)	111.1(2)
C(4)-O(3)-C(5)	60.65(14)	C(13)-C(14)-C(15)	110.3(2)
C(8)-O(5)-C(9)	116.87(18)	C(10)-C(15)-C(14)	111.51(19)
O(2)-C(1)-O(1)	123.4(2)		

Table 3. Bond lengths [Å] and angles [°] for uconn_mp08.

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	27(1)	33(1)	28(1)	-5(1)	1(1)	0(1)
O(2)	32(1)	40(1)	42(1)	-7(1)	2(1)	-6(1)
O(3)	63(1)	38(1)	48(1)	-1(1)	-27(1)	-9(1)
O(4)	29(1)	48(1)	27(1)	-1(1)	3(1)	0(1)
O(5)	24(1)	37(1)	25(1)	-2(1)	-3(1)	3(1)
C(1)	33(2)	22(1)	31(1)	1(1)	-5(1)	2(1)
C(2)	43(2)	26(2)	34(1)	-2(1)	-2(1)	2(1)
C(3)	49(2)	29(2)	35(1)	-6(1)	-8(1)	1(1)
C(4)	42(2)	33(2)	28(1)	-4(1)	-6(1)	-3(1)
C(5)	32(1)	34(2)	30(1)	1(1)	-7(1)	-9(1)
C(6)	28(1)	34(2)	30(1)	4(1)	-2(1)	-1(1)
C(7)	27(1)	32(2)	26(1)	6(1)	-2(1)	1(1)
C(8)	30(1)	21(1)	23(1)	6(1)	2(1)	-1(1)
C(9)	19(1)	38(2)	35(1)	2(1)	-4(1)	-2(1)
C(10)	26(1)	25(1)	24(1)	-1(1)	-3(1)	2(1)
C(11)	30(1)	31(1)	24(1)	-7(1)	4(1)	4(1)
C(12)	42(2)	34(2)	26(1)	0(1)	1(1)	-2(1)
C(13)	45(2)	38(2)	25(1)	5(1)	-2(1)	3(1)
C(14)	32(1)	45(2)	30(1)	3(1)	-5(1)	2(1)
C(15)	26(1)	39(2)	28(1)	2(1)	-4(1)	-1(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for uconn_mp08. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for uconn_mp08.

	X	У	Z	U(eq)
H(2A)	6177	2679	1353	41
H(2B)	6737	3736	887	41
H(3A)	4097	2538	352	45
H(3B)	2545	2929	975	45
H(4A)	4336	4454	-51	41
H(5A)	824	4734	915	38
H(6A)	17	6266	95	36
H(6B)	2278	6117	-256	36
H(7A)	2134	7578	604	34
H(7B)	1658	6702	1219	34
H(9A)	8108	7609	1692	37
H(9B)	8110	6389	1383	37
H(10A)	7159	7034	2822	30
H(11A)	4746	5693	2588	34
H(12A)	5852	4217	3350	40
H(12B)	6089	5386	3722	40
H(13A)	9117	4388	3956	43
H(13B)	9434	4137	3118	43
H(14A)	11711	5549	3466	42
H(14B)	9787	6254	3759	42
H(15A)	10725	6899	2605	37
H(15B)	10467	5701	2274	37

YALE CHEMICAL INSTRUMENTATION CENTER

X-Ray Structure Report Reference Number: UCONN_MP09

April 7, 2008

YALE CHEMICAL INSTRUMENTATION CENTER

X-Ray Structure Report Reference Number: UCONN_MP09

April 7, 2008

Data Collection

A colorless plate crystal of $C_{12}H_{18}O_4$ having approximate dimensions of 0.20 x 0.10 x 0.08 mm³ was mounted with epoxy cement on the tip of a fine glass fiber. All measurements were made on a Nonius KappaCCD diffractometer with graphite monochromated Mo-K α radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

a = 7.8101(16) Å	$\alpha = 90^{\circ}$
b = 18.266(4) Å	$\beta = 112.26(3)$ o
c = 9.2291(18) Å	$\gamma = 90 \ o$
$V = 1218.5(4) \text{ Å}^3$	

For Z = 4 and F.W. = 226.26, the calculated density is 1.233 g/cm³. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be $P2_1/n$ (#14).

The data were collected at a temperature of 173(2) K to a maximum 20 value of 58.00°. Four omega scans consisting of 75, 75, 39, and 54 data frames, respectively, were collected with a frame width of 1.0° and a detector-to-crystal distance, Dx, of 35.0 mm. Each frame was exposed twice (for the purpose of de-zingering) for a total of 80 s. The data frames were processed and scaled using the DENZO software package.¹

Data Reduction

A total of 5332 reflections were collected of which 3180 were unique and observed ($R_{int} = 0.0614$). The linear absorption coefficient, μ , for Mo-K α radiation is 0.92 cm⁻¹, and no absorption correction was applied. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods and expanded using Fourier techniques². The non-hydrogen atoms were refined anisotropically, and hydrogen atoms were treated as idealized contributions. The final cycle of full-matrix least-squares refinement³ on F was based on 3180 observed reflections (I > $2.00\sigma(I)$) and 145 variable parameters and converged with unweighted and weighted agreement factors of:

$$R = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.586$$
$$R_{W} = \{\Sigma[w (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma[w (F_{o}^{2})^{2}]\}^{1/2} = 0.1110$$

The maximum and minimum peaks on the final difference Fourier map corresponded to 0.204 and $-0.226 \text{ e}^{-}/\text{Å}^{3}$ respectively.

REFERENCES

(1) Z. Otwinowski and W. Minor, "Processing of X-Ray Diffraction Data Collected in Oscillation Mode," Methods in Enzymology, vol. 276: Macromolecular Crystallography, part A, 307-326, 1997, C.W. Carter, Jr. & R.M. Sweet, Eds., Academic Press.

(2) SHELXTL, v.6.12, Bruker-AXS, Madison, WI, 2001.

(3) Least Squares function minimized: $\Sigma w (F_o^2 - F_c^2)^2$

Structural Description

The compound crystallized in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit and four molecules in the unit cell.

Torsion angles of interest in the molecule are as follows: $C(3)-C(4)-C(5)-C(6) = 174.8^{\circ}$,

C(12)-C(11)-O(1)-C(1) = 87.5 °, C(12)-C(11)-C(10)-C(9) = 169.9 °.

There are no significant intermolecular contacts. ORTEPs, packing diagrams and full

crystallographic tables follow.

<u>Figure 2</u>

Figure 3

Packing diagram - View down the a-axis

Packing diagram – View down the b-axis

Packing diagram - View down the c-axis

Table 1. Crystal data and structure refinement for uconn_mp09.

Identification code	uconn_mp09	
Empirical formula	$C_{12} H_{18} O_4$	
Formula weight	226.26	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 7.8101(16) Å	<i>α</i> = 90°.
	b = 18.266(4) Å	β=112.26(3)°.
	c = 9.2291(18) Å	$\gamma = 90^{\circ}$.
Volume	1218.5(4) Å ³	
Z	4	
Density (calculated)	1.233 g/cm ³	
Absorption coefficient	0.92 cm ⁻¹	
F(000)	488	
Crystal size	0.20 x 0.10 x 0.08 mm ³	
Theta range for data collection	2.23 to 29.00°.	
Index ranges	-10<=h<=10, -24<=k<=	23, -12<=1<=12
Reflections collected	5332	
Independent reflections	3180 [R(int) = 0.0614]	
Completeness to theta = 29.00°	98.0 %	
Absorption correction	None	
Max. and min. transmission	0.9927 and 0.9819	
Refinement method	Full-matrix least-squares	s on F ²
Data / restraints / parameters	3180 / 0 / 145	
Goodness-of-fit on F ²	1.003	
Final R indices [I>2sigma(I)]	R1 = 0.0586, wR2 = 0.1	110
R indices (all data)	R1 = 0.1480, wR2 = 0.1	376
Largest diff. peak and hole	0.204 and -0.226 e.Å ⁻³	

	Х	у	Z	U(eq)
O(1)	377(2)	1573(1)	5531(1)	38(1)
O(2)	422(2)	714(1)	7294(1)	40(1)
O(3)	6024(2)	1804(1)	6431(2)	59(1)
O(4)	3887(2)	975(1)	5122(2)	44(1)
C(1)	566(3)	1345(1)	6972(2)	35(1)
C(2)	970(3)	1967(1)	8115(2)	41(1)
C(3)	2504(3)	1762(1)	9682(2)	44(1)
C(4)	4318(3)	1637(1)	9514(2)	41(1)
C(5)	5006(3)	994(1)	9425(2)	40(1)
C(6)	6735(3)	851(1)	9130(2)	45(1)
C(7)	6286(3)	588(1)	7452(2)	45(1)
C(8)	5423(3)	1191(1)	6312(2)	43(1)
C(9)	2870(3)	1537(1)	4027(2)	48(1)
C(10)	902(3)	1275(1)	3216(2)	44(1)
C(11)	26(3)	1005(1)	4329(2)	37(1)
C(12)	-2028(3)	867(1)	3558(2)	45(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for uconn_mp09. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.347(2)	C(8)-O(4)-C(9)	116.46(15)
O(1)-C(11)	1.467(2)	O(2)-C(1)-O(1)	123.56(16)
O(2)-C(1)	1.207(2)	O(2)-C(1)-C(2)	124.40(17)
O(3)-C(8)	1.204(2)	O(1)-C(1)-C(2)	112.04(16)
O(4)-C(8)	1.343(2)	C(1)-C(2)-C(3)	111.01(16)
O(4)-C(9)	1.449(2)	C(4)-C(3)-C(2)	111.79(17)
C(1)-C(2)	1.501(3)	C(5)-C(4)-C(3)	124.80(19)
C(2)-C(3)	1.534(3)	C(4)-C(5)-C(6)	126.05(19)
C(3)-C(4)	1.500(3)	C(5)-C(6)-C(7)	111.21(17)
C(4)-C(5)	1.306(3)	C(8)-C(7)-C(6)	110.56(17)
C(5)-C(6)	1.499(3)	O(3)-C(8)-O(4)	123.05(19)
C(6)-C(7)	1.529(3)	O(3)-C(8)-C(7)	124.37(19)
C(7)-C(8)	1.495(3)	O(4)-C(8)-C(7)	112.58(17)
C(9)-C(10)	1.511(3)	O(4)-C(9)-C(10)	107.86(16)
C(10)-C(11)	1.516(3)	C(9)-C(10)-C(11)	113.78(16)
C(11)-C(12)	1.509(3)	O(1)-C(11)-C(12)	109.61(16)
		O(1)-C(11)-C(10)	106.23(15)
C(1)-O(1)-C(11)	116.58(14)	C(12)-C(11)-C(10)	113.98(16)

Table 3. Bond lengths [Å] and angles [°] for uconn_mp09.

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	46(1)	28(1)	36(1)	-2(1)	11(1)	0(1)
O(2)	44(1)	31(1)	47(1)	2(1)	18(1)	-3(1)
O(3)	54(1)	56(1)	62(1)	4(1)	15(1)	-21(1)
O(4)	42(1)	43(1)	44(1)	-3(1)	14(1)	-5(1)
C(1)	28(1)	34(1)	40(1)	0(1)	10(1)	3(1)
C(2)	43(1)	34(1)	45(1)	-3(1)	17(1)	3(1)
C(3)	53(1)	40(1)	37(1)	-6(1)	14(1)	0(1)
C(4)	41(1)	39(1)	39(1)	-6(1)	9(1)	-6(1)
C(5)	39(1)	35(1)	41(1)	4(1)	11(1)	0(1)
C(6)	37(1)	41(1)	51(1)	2(1)	10(1)	-2(1)
C(7)	34(1)	46(1)	55(1)	-3(1)	16(1)	-3(1)
C(8)	38(1)	48(1)	46(1)	-6(1)	19(1)	-12(1)
C(9)	56(2)	48(1)	42(1)	6(1)	18(1)	-5(1)
C(10)	49(1)	42(1)	36(1)	2(1)	9(1)	-2(1)
C(11)	42(1)	29(1)	35(1)	-3(1)	9(1)	-1(1)
C(12)	41(1)	41(1)	45(1)	-2(1)	6(1)	5(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for uconn_mp09. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for uconn_mp09.

	x	У	Z	U(eq)
H(2A)	-168	2096	8291	49
H(2B)	1356	2401	7673	49
H(3A)	2647	2160	10447	53
H(3B)	2143	1312	10093	53
H(4A)	5019	2055	9470	50
H(5A)	4349	579	9560	48
H(6A)	7484	475	9872	54
H(6B)	7478	1306	9314	54
H(7A)	7435	423	7337	54
H(7B)	5426	167	7226	54
H(9A)	3438	1626	3249	58
H(9B)	2894	2000	4590	58
H(10A)	882	873	2490	53
H(10B)	145	1681	2583	53
H(11A)	654	542	4837	45
H(12A)	-2498	697	4344	68
H(12B)	-2261	493	2744	68
H(12C)	-2658	1322	3084	68