Supporting Materials:

Colloidal Deposition Synthesis of Supported Gold Nanocatalysts Based on Au-Fe₃O₄ Dumbbell Nanoparticles

Hongfeng Yin,¹ Chao Wang,² Haoguo Zhu,¹ Steven H. Overbury,¹ Shouheng Sun,^{2*}

Sheng Dai^{1*}

¹Chemical Sciences Division, Oak Ridge National Laboratory, TN 37831, USA ²Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA

Experimental Section

1. Synthesis of supported Au-Fe₃O₄ dumbbell catalysts

Au-Fe₃O₄ dumbbell nanoparticles were synthesized according to a modified reference method.^{S1} The resulting nanoparticles (unwashed) were washed via dispersion in hexane and precipitation in ethanol for 4 times before dispersing in hexane, with help of sonication and mixing with a solid support [CabOSil (Aldrich), P25 (Degussa), and carbopack (Supelco, Inc)] under vigorous stirring. The approximate ratio of dumbbell nanoparticles to supports is 1:6 in weight. Hexane was evaporated and the resulting powder was dried under vacuum at 60 °C overnight. The final catalyst is named as "as synthesized".

2. Synthesis of supported Au/SiO₂ catalysts.

 Au/SiO_2 was synthesized according to the deposition-precipitation method in our previous work.^{S2}

3. Pretreatment for stability test under HNO₃ vapor

The "as-synthesized" catalyst (80 mg) was packed into a U-shaped silica tube, and calcined at 500 °C, 300 °C, 300C ° for the support CabOSil, P25, and carbopack, respectively, in 8% O_2 /He mixture for 1 h. The resulting powder was exposed to concentrated HNO₃ vapor at room temperature for 12 h and used to perform CO oxidation.

3. Catalysis test: CO oxidation

To perform CO oxidation reaction test, 53 mg of a catalyst (either "as synthesized" or HNO₃ vapor treated) was packed into a U-shaped silica tube (4 mm i.d.) on an Altamira AMI 200 microreactor. The catalysts supported on CabOSil, P25, and carbopack were calcined at 500 °C, 300 °C, and 300 °C, respectively, in 8% O₂/He mixture for 1 h to remove possible organic residues or moisture. The catalysts were cooled down to room temperature and the gas stream was switched to 1% CO (balance air, < 4 ppm H₂O) through the catalysts at a rate of 37 cm³/min [space velocity 41900 cm³/(h·g_{cat})]. A portion of the product stream was extracted periodically with an automatic sample valve, and analyzed by a dual-column GC with a thermal conductivity detector.

4. Catalyst characterization

To characterize catalysts, XRD data were collected on a Siemens D5005 diffractometer with Cu K_{α} radiation ($\lambda = 1.5418$ Å). Scans were performed at a rate of 0.01°/s for TiO₂-based catalysts and 0.005°/6s for SiO₂- and carbon-based catalysts, typically in the range of 2 $\theta = 20-90^{\circ}$. The average gold particle sizes were estimated from X-ray line broadening analysis applying the Debye-Scherrer equation on the (111)

diffreaction $(2\theta = 44^{\circ})$. All "as synthesized" catalysts have the similar gold particle sizes of 3.0±0.1 nm. The gold and iron contents were estimated by EDAX on a JOEL JSM-6060 scanning electron microscope coupled with an EDAX detector. TEM (transmission electron microscopy) images were taken on a Hitachi HD2000 STEM electron microscope operated at 200 kV.

Results

Table S1 T₅₀ of Au-Fe₃O₄ dumbbell nanoparticle-based catalysts in CO oxidation

Catalyst	Au loading /	Pretreatment	T ₅₀ / °C
	wt%		
Au-Fe ₃ O ₄	6.55	1)	N/A
Au-Fe ₃ O ₄ , washed with	6.55	1)	-25
hexane/ethanol			
Au-Fe ₃ O ₄ /TiO ₂ ,	1.60	1)	260
unwashed			
Au-Fe ₃ O ₄ /SiO ₂ , washed	1.67	2)	-40
with hexane/ethanol			
Au-Fe ₃ O ₄ /TiO ₂ , washed	1.62	1)	68
with hexane/ethanol			
Au-Fe ₃ O ₄ /C,washed	1.52	1)	17
with hexane/ethanol			

1) 8% O₂/He, 300°C, 1h; 2) 8% O₂/He, 500°C, 1h;

Table S2 Average gold partic	le sizes (nm) in supported	Au-Fe ₃ O ₄ dumbbell	catalysts
------------------------------	----------------------------	--	-----------

Treatment method Support	Calcination	HNO ₃
SiO ₂	$2.9^{1)}$	3.0^{2}
TiO ₂	$3.4^{3)}$	3.44)
carbon	$3.0^{3)}$	4.2 ⁴⁾

1) 8% O₂/He, 500°C, 1h; 2) 8% O₂/He, 500°C, 1h / HNO₃ vapor, 12h / 8% O₂/He, 500°C, 1h; 3) 8% O₂/He, 300°C, 1h; 4) 8% O₂/He, 300°C, 1h / HNO₃ vapor, 12h / 8% O₂/He, 300°C, 1h.

Figure S1 TEM of Au-Fe₃O₄ : a), b) Au-Fe₃O₄ dispersed in hexane, Au nanoparticle size $2.5 \sim 3.5$ nm, Fe₃O₄ nanoparticle size $15 \sim 20$ nm; c), d) Au-Fe₃O₄ deposited on TiO₂ (P25): c) dark field, d) bright field; e), f) Au-Fe₃O₄ deposited on carbon (carbopack): e) dark field, f) bright field.

Figure S2 XRD pattern of as-synthesized Au-Fe₃O₄ dumbbell nanoparticles. Average gold particle sizes were estimated to be 2.9 nm from X-ray line broadening analysis applying the Debye-Scherrer equation on the (111) diffreaction ($2\theta = 44^{\circ}$).

Figure S3 XRD pattern of Au-Fe₃O₄ dumbbell catalysts deposited on SiO₂ (CabOSil).

Figure S4 XRD pattern of Au-Fe₃O₄ dumbbell catalysts deposited on TiO₂ (P25).

Figure S5 XRD pattern of Au-Fe₃O₄ dumbbell catalysts deposited on carbon (carbopack).

Figure S6 Light-off curves of CO oxidation with Au-Fe₃O₄/SiO₂. a), b), c): calcined at 500° C for 1 h for 1, 2, and 3 times; d): first calcined at 500° C for 1 h, then exposed to HNO₃ vapor for 12 h, then calcined at 500° C for 1 h.

Figure S7 Light-off curves of CO oxidation with Au-Fe₃O₄/TiO₂. a), b), c): calcined at 300° C for 1 h for 1, 2, and 3 times; d): first calcined at 300° C for 1 h, subsequently exposed to HNO₃ vapor for 12 h, then calcined at 300° C for 1 h.

Figure S8 Light-off curves of CO oxidation with Au-Fe₃O₄/carbon. a), b), c): calcined at 300° C for 1 h for 1, 2, and 3 times; d): first calcined at 300° C for 1 h, then exposed to HNO₃ vapor for 12 h, then calcined at 300° C for 1 h.

Figure S9 Light-off curves of CO oxidation with commercialized Au-Fe₂O₃ catalyst.

Figure S10 Catalyst durability (long-life) test for Au-Fe₃O₄ dumbbell nanoparticles supported on SiO₂, TiO₂ and Carbon.

Figure S11 CO oxidation conversion light-off curves of catalysts: Au/SiO₂, Au-Fe₃O₄ deposited on SiO₂, TiO₂ and carbon: Au-Fe₃O₄: Au-Fe₃O₄ nanoparticles calcined at 300 °C for 1h; Au-Fe₃O₄/SiO₂: Au-Fe₃O₄ deposited on SiO₂ was calcined at 500 °C for 1h; Au-Fe₃O₄/TiO₂: Au-Fe₃O₄ deposited on TiO₂ was calcined at 300 °C for 1h; Au-Fe₃O₄/C: Au-Fe₃O₄ deposited on carbon was calcined at 300 °C for 1h; Au/SiO₂ (Au: 2%), calcined at 500°C for 1h.

Reference

- S1. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White and S. H. Sun, *Nano Letters*, 2005, **5**, 379-382.
- S2. H. Zhu, Z. Ma, J. C. Clark, Z. Pan, S. H. Overbury and S. Dai, *Applied Catalysis A: General*, 2007, **326**, 89-99.