Supporting Information

Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Marco Bandini,* Riccardo Sinisi, Achille Umani-Ronchi*

Dipartimento di Chimica Organica "G. Ciamician", Università di Bologna Via Selmi 2, 40126 Bologna (Italy) *E-mail: marco.bandini@unibo.it, achille.umanironchi@unibo.it

General Methods. ¹H-NMR spectra were recorded on Varian 200 (200 MHz), Varian 300 (300 MHz) spectrometers. Chemical shifts are reported in ppm from TMS with the solvent resonance as the internal standard (deuterochloroform: δ 7.27 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = duplet, pd = pseudo duplet, t = triplet, q = quartet, br = broad, br s = broad singlet, m = multiplet), coupling constants (Hz). ¹³C-NMR spectra were recorded on a Varian 200 (50 MHz), Varian 300 (75 MHz) spectrometers with complete proton decoupling. Chemical shifts are reported in ppm from TMS with the solvent as the internal standard (deuterochloroform: δ 77.0 ppm). GC-MS spectra were taken by EI ionization at 70 eV on a Hewlett-Packard 5971 with GC injection. They are reported as: m/z(rel. intense). LC-electrospray ionization mass spectra were obtained with Agilent Technologies MSD1100 singlequadrupole mass spectrometer. Chromatographic purification was done with 240-400 mesh silica gel. IR analysis was performed with a FT-IR NICOLET 380 spectrophotometer and the spectra are expressed by wavenumber (cm⁻¹). Elemental analyses were carried out by using a EACE 1110 CHNOS analyzer. Analytical high performance liquid chromatography (HPLC) was performed on a liquid chromatograph equipped with a variable wave-length UV detector (deuterium lamp 190-600 nm), using a Daicel Chiracel[™] OD, AD, OF or OJ column (0.46 cm I.D. x 25 cm) (Daicel Inc. HPLC grade isopropanol and hexane were used as the eluting solvents. Separation via preparative HPLC was performed on a Agilent Technologies MSD 1100 liquid chromatograph using a Zorbax Eclipse SDB-C18 column (21.2 x 150 mm) with acetonitrile and milliQ-H₂O as eluents. Optical rotations were determined in a 1 ml cell with a path length of 10 mm (Na_D line). Melting points were determined with Bibby Stuart Scientific Melting Point Apparatus SMP 3 and are not corrected. ¹⁹F-NMR spectra were referred to CF₃CO₂H in CDCl₃ (-76.6 ppm).

Materials. Racemic nitroalcohols **2** were synthesized with TEA (20 mol%) in CH_2Cl_2 . Reagent grade solvents and MeNO₂ were used in the asymmetric Henry reaction. Commercially available ketones **1a-g**, **i-k** were used as received. Catalysts **3a-c** were synthesized following known protocols.¹

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Synthesis of catalysts 3

To a solution of 6'-OTIPS quinine derivative^[1] (2 mmol) in anhydrous CH_2Cl_2 (12 ml) were added 4 mmol of Et_3N and the mixture was cooled to 0 °C with an ice bath. Then a solution of the desired acidic chloride (2.0 mmol) in 5 ml of CH_2Cl_2 was added dropwise. The ice bath was removed and the mixture stirred for 4 h. The reaction was quenched with water (10 ml) the phases separated and the aqueous layer extracted with CH_2Cl_2 (3 x 8 ml). The combined organic phases were dried over Na_2SO_4 and evaporated under reduced pressure. Pure **3-TIPS** catalysts were obtained by flash chromatography from pure AcOEt.

3d-TIPS. Pale yellow solid. Yield = 67%. ¹H-NMR (200 MHz, CDCl₃): δ 1.15 (d, J = 6.6 Hz, 18H), 1.23-1.41 (m, 3H), 1.61 (br, 2H), 1.81 (br, 1H), 2.29 (br, 1H), 2.58 (br, 1H), 3.04 (br, 2H), 3.39 (q, J = 8.0 Hz, 1H), 3.79 (s, 3H), 3.87 (s, 3H), 4.96-5.03 (m, 2H), 5.70-5.80 (m, 1H), 6.74 (s, 1H), 6.81 (s, 1H), 7.16 (s, 1H), 7.35 (d, J = 9.2 Hz, 1H), 7.58 (br, 1H), 8.0 (d, J = 9.2 Hz, 1H), 8.66 (d, J = 4.4 Hz, 1H).

3e-TIPS. Pale yellow solid. Yield = 60%. ¹H-NMR (300 MHz, CDCl₃): δ 1.15 (d, J= 6.8 18H), 1.21-1.41 (m, 3H), 1.64-1.99 (m, 5H), 2.37 (br, 8H), 2.67-2.77 (m, 1H), 3.15-3.29 (m, 2H), 3.58 (q, J=7.8, 1H), 5.00-5.06 (m, 2H), 5.76-5.87 (m, 1H), 6.68 (br, 1H), 7.22 (br, 1H), 7.35 (dd, J = 2.2, 9.3 Hz, 1H), 7.42 (d, J= 4.5 Hz, 1H), 7.67 (s, 3H), 8.02 (d, J = 9.0 Hz, 1H), 8.73 (d, J = 4.5 Hz, 1H).

3f-TIPS. Pale yellow solid. Yield = 77%. ¹H-NMR (200 MHz, CDCl₃): δ 1.16 (d, J = 7.0 Hz, 18H), 1.23-1.44 (m, 3H), 1.63 (br, 3H), 1.92 (br, 1H), 2.05 (br, 1H), 2.32 (br, 1H), 2.66 (br, 2H), 3.02-3.14 (br, 2H), 3.67 (q, J = 8.0 Hz, 1H), 5.01-5.09 (m, 2H), 5.79-5.97 (m, 1H), 6.69 (d, J = 8.6 Hz, 1H), 7.37 (dd, J = 2.6, 9.2 Hz, 1H), 7.43 (d, J = 4.8 Hz, 2H), 7.65 (d, J = 2.6 Hz, 1H), 8.03 (d, J = 9.2 Hz, 1H), 8.09 (s, 1H), 8.48 (s, 2H), 8.77 (d, J = 4.8 Hz, 1H).

3g-TIPS. Pale yellow solid. Yield = 87%. ¹H-NMR (200 MHz, CDCl₃): δ 1.16 (d, J = 7.0 Hz, 18H), 1.23-1.44 (m, 3H), 1.53-1.73 (m, 3H), 1.92 (br, 1H), 1.95-2.13 (m, 1H), 2.32 (br, 1H), 2.59-2.75 (m, 2H), 3.02-3.14 (m, 2H), 3.67 (q, J = 8.0 Hz, 1H), 5.01-5.09 (m, 2H), 5.79-5.97 (m, 1H), 6.69 (d, J = 8.6 Hz, 1H), 7.37 (dd, J = 2.6, 9.2 Hz, 1H), 7.43 (d, J = 4.8 Hz, 1H), 7.65 (d, J = 2.6 Hz, 1H), 8.03 (d, J = 9.2 Hz, 1H), 8.09 (s, 1H), 8.48 (s, 2H), 8.77 (d, J = 4.8 Hz, 1H).

3h-TIPS. Pale green solid. Yield = 79%. ¹H-NMR (200 MHz, CDCl₃): δ 1.14 (d, J = 6.6 Hz, 18H), 1.23-1.38 (m, 3H), 1.47-1.79 (m, 3H), 1.89 (br, 1H), 1.97-2.09 (m, 1H), 2.28 (br, 1H), 2.51-2.71 (m, 2H), 2.97-3.18 (m, 2H), 3.54 (q, J = 8.4 Hz, 1H), 4.98-5.06 (m, 2H), 5.75-5.93 (m, 1H), 6.56 (d, J = 8.4 Hz, 1H), 7.38 (s, 1H), 7.40 (d, J = 2.4 Hz, 1H), 7.58 (d, J = 2.6 Hz, 1H), 8.03 (d, J = 9.2 Hz, 1H), 8.76 (d, J = 4.4 Hz, 1H).

3i-TIPS. Pale yellow solid. Yield = 65%. ¹H-NMR (200 MHz, CDCl₃): δ 1.16 (d, J = 6.6 Hz, 18H), 1.27-1.41 (m, 3H), 1.43-1.80 (m, 3H), 1.93 (br, 1H), 2.01-2.13 (m, 1H), 2.31 (br, 1H), 2.59-2.73 (m, 2H), 3.02-3.13 (m, 2H), 3.65 (q, J = 8.4 Hz, 1H), 5.02-5.09 (m, 2H), 5.81-5.94 (m, 1H), 6.68 (d, J = 8.4 Hz, 1H), 7.37 (dd, J = 2.6, 7.0 Hz, 1H), 7.44 (d, J = 4.4 Hz, 1H), 7.64 (d, J= 2.6 Hz, 1H), 8.03 (d, J = 9.2 Hz, 1H), 8.77 (d, J = 4.4 Hz, 1H), 9.14 (d, J = 2.2 Hz, 2H), 9.24 (d, J = 2.2 Hz, 1H).

3j-TIPS. Pale yellow solid. Yield = 87%. ¹H-NMR (200 MHz, CDCl₃): δ 1.13-1.21 (m, 27H), 1.32-1.44 (m, 5H), 1.71 (br, 3H), 2.27 (br, 1H), 2.49-2.75 (m, 2H), 2.97-3.26 (m, 2H), 3.40-3.49 (m, 1H), 4.96-5.05 (m, 2H), 5.74-5.92 (m, 1H), 6.31 (d, J = 8.0 Hz, 1H), 7.29-7.37 (m, 2H), 7.59 (d, J = 2.2 Hz, 1H), 8.0 (d, J = 9.0 Hz, 1H), 8.72 (d, J = 4.4 Hz, 1H).

3k-TIPS. Pale yellow solid. Yield = 56%. ¹H-NMR (200 MHz, CDCl₃): δ 0.89 (t, J = 7.0 Hz, 3H), 1.16 (d, J = 7.0 Hz, 18H), 1.26-1.59 (m, 8H), 1.68-1.81 (m, 1H), 1.88 (br, 1H), 1.94 (br, 1H), 2.30-2.37 (m, 1H), 2.57-2.71 (m, 1H), 2.99-3.19 (m, 2H), 3.62 (q, J = 8.4 Hz, 1H), 6.62 (d, J = 7.8 Hz, 1H), 7.36 (dd, J = 2.4, 9.0 Hz, 1H), 7.42 (d, J = 4.8 Hz, 1H), 7.64 (d, J = 2.6 Hz, 1H), 8.02 (d, J = 9.2 Hz, 1H), 8.09 (s, 1H), 8.48 (s, 2H), 8.76 (d, J = 4.4 Hz, 1H).

A solution of **3-TIPS** (0.5 mmol) in CH₃CN (10 ml) was cooled to 0 °C, then 10 drops of an aqueous solution of HF (50%) were added. After 10 min stirring at the same temperature, the reaction was quenched with a saturated solution of NaHCO₃ (5 ml) and diluted with AcOEt (5 ml). After separation, the organic phase was washed with NaHCO₃ (sat) and brine. After dryness, the volatiles were removed under reduced pressure and rude purified by repeated washings with *n*-pentane (chemical purity > 98% by LC-MS).

3d. Pale white solid. Yield = 83 %. Mp = 115 - 117 °C. $[\alpha]_D = -21.9$ (c = 0.94, CHCl₃). ¹H-NMR (200 MHz, CDCl₃): δ 1.62-1.81 (m, 3H), 1.91 (br, 1H), 2.45 (br, 1H), 2.87-2.94 (m, 2H), 3.15-3.32 (m, 2H), 3.39 (m, 2H), 3.89 (3, 3H), 3.84 (3, 3H), 4.86 (br, 1H), 4.95-5.04 (m, 2H), 5.54-5.72 (m, 1H), 6.81 (s, 2H), 6.85 (s, 2H), 6.98 (d, J = 4.4 Hz, 1H), 7.35 (d, J = 9.2 Hz, 1H), 7.75 (br, 1H), 7.99 (d, J = 8.8 Hz, 1H), 8.58 (d, J = 4.8 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃): δ 21.3, 26.0, 27.1, 38.2, 41.3, 42.8, 55.7, 55.9, 58.4, 72.8, 104.7, 111.2, 112.2, 115.7,

117.2, 121.5, 122.7, 125.6, 126.3, 131.5, 139.4, 141.6, 143.6, 146.1, 148.3, 149.0, 156.5, 169.6. IR (neat): υ 3388, 2935, 2644, 2279, 1740, 1619, 1592, 1514, 1465, 1420, 1263, 1238, 1142, 1026, 855, 735. ESI-MS: (M+1): 475. Anal. calcd for (C₂₈H₃₀N₂O₅: 474.22): C, 70.87; H, 6.37; N, 5.90. Found: C, 70.80; H, 6.32; N, 5.88.

3e. Pale white solid. Yield = 97 %. Mp = 146 - 147 °C. $[\alpha]_D = +$ 119.0 (c = 0.91, CHCl₃). ¹H-NMR (200 MHz, CDCl₃): δ 1.51-1.72 (m, 1H), 1.75-1.99 (m, 4H), 2.38 (br, 7H), 2.67-2.81 (m, 2H), 3.09-3.44 (m, 3H), 4.94-5.03 (m, 2H), 5.69-5.86 (m, 1H), 6.85 (d, J= 4.4, 1H), 7.23 (br, 1H), 7.28 (d, J = 2.6 Hz, 1H), 7.39 (d, J = 4.4 Hz, 1H), 7.70 (s, 2H), 7.83 (d, J = 2.2 Hz, 1H), 7.97 (d, J = 8.8 Hz, 1H), 8.67 (d, J = 6.6 Hz, 1H). ¹³C-NMR (50 MHz, CDCl₃): δ 21.1 (2C), 23.0,

27.3, 27.5, 39.3, 42.5, 56.4, 59.0, 73.8, 105.6, 114.7, 117.9, 122.8, 127.3 (2C), 129.5, 130.9, 134.9, 135.0, 138.2 (2C), 140.9, 143.3, 143.6, 145.9, 156.6, 165.4. IR (neat): v 33240, 2940, 1721, 1618, 1512, 1455, 1311, 1208, 1112, 1072, 996, 917, 852, 767, 736. ESI-MS: (M+1): 443. Anal. calcd for ($C_{28}H_{30}N_2O_3$: 442.55): C, 75.99; H, 6.83; N, 6.33. Found: C, 75.91; H, 6.80; N, 6.28.

3f. Pale white solid. Yield = 91 %. Mp = 232 - 234 °C. $[α]_D = + 132.3$ (c = 1.79, CHCl₃). ¹H-NMR (200 MHz, CDCl₃): δ 1.80 (m, 3H), 1.93 (br, 2H), 2.35 (br, 1H), 2.65-2.72 (m, 2H), 3.01-3.20 (m, 2H), 3.49 (q, J = 5.0 Hz, 1H), 4.96-5.05 (m, 2H), 5.70-5.87 (m, 1H), 6.82 (d, J = 5.2 Hz, 1H), 7.23-7.27 (m, 1H), 7.39 (d, J = 4.4 Hz, 1H), 7.81 (d, J = 2.0 Hz, 1H), 7.99 (d, J = 8.8 Hz, 1H), 8.24 (q, J = 8.2 Hz, 4H), 8.69 (d, J = 4.4 Hz, 2H). ¹³C-NMR (50 MHz, CDCl₃): δ

23.6, 27.4(2C), 39.2, 42.5, 56.4, 59.0, 75.3, 105.9, 115.1, 118.4, 122.6, 123.7(2C), 127.2, 130.7(), 131.3, 134.9, 140.8, 142.8, 143.6, 146.3, 150.7, 156.4, 163.5. IR (neat): υ 3414, 3055, 2986, 2360, 2342, 1738, 1710, 1617, 1547, 1466, 1420, 1342, 1284, 1180, 1075, 921, 896, 763, 748. ESI-MS: (M-1): 458. Anal. calcd for (C₂₆H₂₅N₃O₅: 459.49): C, 67.96; H, 5.48; N, 9.14. Found: C, 67.94; H, 5.45; N, 9.10.

3g. Pale white solid. Yield = 74%. Mp = 195 - 197 °C. $[\alpha]_D = +69.3$ (c = 3.34, CHCl₃). ¹H-NMR (200 MHz, CDCl₃): δ 1.68-1.82 (m, 3H), 1.96 (br, 2H), 2.38 (br, 1H), 2.70-2.80 (m, 2H), 3.12-3.25 (m, 2H), 3.52 (br, 1H), 4.99-5.05 (m, 2H), 5.74-5.86 (m, 1H), 6.89 (d, J = 3.0 Hz, 1H), 7.25 (d, J = 7.0 Hz, 1H), 7.40 (d, J = 3.0 Hz, 1H), 7.87 (s, 1H), 7.98 (d, J = 6.0 Hz, 1H), 8.12 (s, 1H), 8.51 (s, 2H), 8.71 (d, J = 3.2 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃): δ 20.2,

24.6, 26.5, 36.4, 44.2, 55.3, 58.6, 72.2, 103.9, 116.2, 117.6, 122.5 (q, ${}^{1}J_{C-F} = 271,2$ Hz, 2C), 123.1, 125.5, 127.4, 129.3(2C), 131.1, 131.8 (br), 132.8 (q, ${}^{2}J_{C-F} = 33.9$ Hz, 2C), 136.4, 138.6, 143.8, 146.1, 157.2, 161.7. ${}^{19}F$ -NMR (282 MHz, CDCl₃): δ -63.8. IR (neat): υ 3077, 2926, 2867, 2331, 1732, 1651, 1573, 1469, 1279, 1244, 1182, 1140, 989, 912, 847, 746, 740, 700, 682. ESI-MS: (M+1): 551. Anal. calcd for (C₂₈H₂₄F₆N₂O₃: 550.17): C, 61.09; H, 4.39; N, 5.09. Found: C, 61.00; H, 4.31; N, 5.08.

3h. Pale white solid. Yield = 74 %. Mp = 205 - 207 °C. $[\alpha]_D$ = + 56.2 (*c* = 0.92, CHCl₃). ¹H-NMR (200 MHz, CDCl₃): δ 1.58-1.90 (m, 5H), 2.34 (br, 1H), 2.64-2.82 (m, 2H), 3.06-3.40 (m, 3H), 4.95-5.04 (m, 2H), 5.67-5.84 (m, 1H), 6.84 (d, J = 4.8 Hz, 1H), 7.32-7.40 (m, 2H), 7.78 (d, J = 2.2 Hz, 1H), 8.02 (d, J = 9.2 Hz, 1H), 8.73 (d, J = 4.4 Hz, 1H). ¹³C-NMR (50 MHz, CDCl₃): δ 24.2, 27.3, 29.4, 39.3, 42.3, 56.4, 59.1, 76.5, 77.2, 104.5, 114.5, 118.4, 122.1, 126.9, 131.5,

135.0 (m, 1C), 140.0 (m, 1C), 141.2, 141.7, 143.0 (m, 1C), 143.8, 145.8 (m, 1C), 146.4, 148.0 (m, 1C), 156.1, 157.9 (br). ¹⁹F-NMR (282 MHz, CDCl₃): δ -133.6(2F), -143.5, -156.1(2F). IR (neat): υ 3054, 2986, 2685, 2521, 2410, 2305, 1742, 1712, 1651, 1620, 1524, 1499, 1421, 1361, 1330, 1265, 1224, 1102, 1006, 896, 854, 738, 705. ESI-MS: (M+1): 505. Anal. calcd for (C₂₆H₂₁F₅N₂O₃: 504.15): C, 61.90; H, 4.20; N, 5.55. Found: C, 69.40; H, 4.18; N, 5.50.

3i. Pale white solid. Yield = 85%. Mp = 243 - 245 °C. $[\alpha]_D = +139$ (*c* = 2.55, DMSO). ¹H-NMR (300 MHz, DMSO): δ 1.52-1.70 (m, 3H), 1.80 (br, 2H), 1-98-2.07 (m, 1H), 2.25 (br, 1H), 2.43-2.51 (m, 2H), 2.89 (t, J= 10.0 Hz, 1H), 3.12 (br, 1H), 3.60 (q, J = 7.5 Hz, 1H), 4.98-5.06 (m, 2H), 5.93-6.05 (m, 1H), 6.50 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 9.0 Hz, 1H), 7.57 (s, 1H), 7.64 (d, J = 4.5 Hz, 1H), 7.88 (d, J = 9.0 Hz, 1H), 9.00 (s, 2H), 10.18 (s, 1H). ¹³C-NMR (50 MHz, DMSO): δ 24.9, 27.2, 27.3, 39.1, 40.7, 56.0, 59.3, 76.2, 104.3, 114.4, 119.2,

121.7, 122.9, 126.9, 129.1(2C), 131.4, 132.0, 142,3, 142.6, 143.2, 146.7, 148.5(2C), 155.8, 162.1. IR (neat): υ 3082, 3054, 2986, 2938, 2870, 2685, 2522, 2410, 2385, 1738, 1614, 1595, 1548, 1536, 1466, 1421, 1340, 1265, 1165, 922, 896, 738. ESI-MS: (M+1): 505. Anal. calcd for (C₂₆H₂₄N₄O₇: 504,49): C, 61.90; H, 4.80; N, 11.11. Found: C, 61.89; H, 4.75; N, 11.04.

3j. Pale white solid. Yield = 98%. Mp = 203-205 °C. $[\alpha]_D = -68.7 (c = 3.04, CHCl_3)$. ¹H-NMR (300 MHz, CDCl₃): δ 1.24-1.32 (m, 9H), 1.60 (br, 1H), 1.75-1.84 (m, 3H), 1.88 (br, 1H), 2.32 (br, 1H), 2.62 (br, 1H), 2.69-2.78 (m, 1H), 3.10 (t, J = 10.5 Hz, 1H), 3.27 (br, 2H), 4.94-5.01 (m, 2H), 5.68-5.80 (m, 1H), 6.53 (d, J = 3.3 Hz, 1H), 7.23-7.28 (m, 2H), 7.73 (s, 1H), 7.97 (d, J = 9.0 Hz, 1H),

8.68 (d, J = 4.2 Hz, 1H). ¹³C-NMR (50 MHz, CDCl₃): δ 23.4, 26.9, 27.3(3C), 27.5, 38.7, 39.4, 42,3, 56.4, 59.1, 73.8, 106,2, 114.8, 118.1, 122.7, 127.3, 130.8, 141.1, 143.4, 144.1, 146.0, 156.3, 176.8. IR (neat): υ 3418, 3054, 2081, 2871, 2305, 1731, 1620, 1512, 1469, 1478, 1421, 1364, 1265, 1146, 1095, 1073, 1033, 991, 918, 895, 853, 745, 704. ESI-MS: (M+1): 395. Anal. calcd for (C₂₄H₃₀N₂O₃: 394.51): C, 73.07; H, 7.66; N, 7.10;. Found: C, 73.05; H, 7.61; N, 7.08.

3k. Pale white solid. Yield = 66 %. Mp = 130 - 132 °C. $[\alpha]_D = +96.3$ (c = 1.91, CHCl₃). ¹H-NMR (300 MHz, CDCl₃): δ 0.84 (t, J= 7.5, 3H), 1.08 (d, J= 7.8, 2H), 1.26-1.37 (m, 1H), 1.53-1.67 (m, 2H), 1.77-1.89 (m, 3H), 1.96 (br, 1H), 2.45-2.48 (m, 1H), 2.79-2.89 (m, 1H), 3.13-3.33 (m, 2H), 6.93 (d, J=4.5, 1H), 7.24 (d, J=8.7, 1H), 7.37 (d, J=4.5, 1H), 7.86 (s, 1H), 7.97 (d, J=9.0, 1H), 8.12 (s, 1H), 8.52 (s, 2H), 8.70 (d, J=4.5, 1H). ¹³C-NMR (75 MHz, CDCl₃): δ

23.1, 25.0, 27.4, 27.9, 30.2, 36.8, 42.7, 58.0, 58.7, 75.3, 105.5, 117.9, 122.6 (q, J= 271,6, 2C), 122.9 (br), 126.8, 127.2, 129.6 (2C), 131.1, 132.5 (q, ¹J= 34.0, 2C), 142.5, 143.4, 145.9, 156.8, 162.7. ¹⁹F-NMR (282 MHz, CDCl₃): δ -59.1. IR (neat): υ 3415, 3056, 2958, 2873, 1736, 1712, 1620, 1513, 1468, 1421, 1365, 1280, 1245, 1141, 913, 851, 739, 700,

682. ESI-MS: (M+1): 553. Anal. calcd for ($C_{28}H_{26}F_6N_2O_3$: 552.51): C, 60.87; H, 4.74; F, 20.63; N, 5.07. Found: C, 60.80; H, 4.69; F, 20.61; N, 5.04.

Synthesis of ketone 1h.²

To a mixture of H_2O and acetone (3 mL, 1.2:1) were added in sequence 4'-bromo-2,2,2trifluoroacetophenone **2b** (127 mg, 0.5 mmol), 136 mg of 4-methylphenylboronic acid (1 mmol), 106 mg of Na₂CO₃ (1 mmol) and 1 mg of Pd(OAc)₂ (5 mol%). The mixture was stirred at rt for 2 h, then the aqueous phase extracted with DCM (3 x 5 mL), the organic phases collected, dried

under Na₂SO₄ and evaporated under reduced pressure. Pure **1h** was obtained by flash chromatography (*c*-Hex).Yellow viscous oil. Yield = 83%. ¹H-NMR (200 MHz, CDCl₃): δ 2.32 (s, 3H), 7.23 - 7.35 (m, 4H), 7.54 (d, J = 8.6 Hz, 2H), 8.16 (d, J = 8.6 Hz, 2H). ¹³C-NMR (50 MHz, CDCl₃): δ 20.3, 115.6 (q, ¹J_{*C*-*F*} = 289.8 Hz), 126.1(2C), 128.3(2C), 129.4 (2C), 130.1(2C), 130.7, 135.1, 140.0, 149.5, 180.0 (q, ²J_{*C*-*F*} = 37.5 Hz). ¹⁹F-NMR (282 MHz, CDCl₃): δ -72.1. GC-MS (*m*/*z*): 51(5), 63(7), 82(9), 97(10), 115(12), 152(45), 165(52), 195(100), 264(31).

HO CF₃ (R)-2 NO₂ colu

HO CFa

(*R*)-2a. Pale yellow oil. Yield = 95%. Ee = 90%. $[\alpha]_D$ = - 2.1 (*c* = 5.3, CHCl₃). HPLC analysis: OJ column (214 nm), 40 °C, method: *n*-Hex:IPA = 90:10, flow 0.8 ml/min, $t_{(S)}$ = 17.4 min, $t_{(R)}$ = 21.0 min. ¹H-NMR (200 MHz, CDCl₃): δ 4.33 (s, 1H), 4.99 (d, J = 13.6 Hz, 1H), 5.07 (d, J = 13.6 Hz, 1

1H), 7.47 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 8.8 Hz, 1H). ¹³C-NMR (50 MHz, CDCl₃): δ 75.1, 75.6, 76.2, 76.8 (q, ²J_{C-F} = 29.5 Hz), 76.3, 124.5, 127.9(2C), 132.1(2C), 132.5. ¹⁹F-NMR (282 MHz, CDCl₃): δ -79.7. GC-MS (*m*/*z*): 50(6), 75(9), 91(13), 140(19), 157(22), 159(23), 169(6), 171(8), 183(98), 185(100), 201(15), 203(17), 246(24), 248(26), 313(89), 315(91).

(*R*)-2**b**. Pale yellow oil. Yield = 70%. Ee = 92%. $[\alpha]_D$ = +2.4 (*c* = 2.9, CHCl₃). HPLC analysis: AD column (214 nm), 30 °C, method: *n*-Hex:IPA = 99:1, flow 1.0 ml/min, t_(S) = 28.7 min, t_(R) = 32.3 min. ¹H-NMR (300 MHz, CDCl₃): δ 2.75 (d, J = 14.4 Hz, 1H), 3.30 (d, J = 14.4 Hz, 1H), 4.24 (d, J = 13.5 Hz, 1H), 4.34 (s, 1H), 4.65 (d, J = 13.5 Hz, 1H), 7.27–7.36 (m, 3H), 7.37–7.38 (m, 2H). ¹³C-NMR (75 MHz, CDCl₃): δ 38.2, 74.5 (q, ²J_{C-F} = 28.6 Hz), 75.7, 124.8 (q, ¹J_{C-F} = 285.2 Hz), 128.1 128.8(2C), 130.8(2C), 131.9. ¹⁹F-NMR (282 MHz, CDCl₃): δ - 80.7. GC-MS (*m*/z): 65(13), 91(100), 107(8), 133(3), 188(21), 231(3), 249(5).

(*R*)-2c. Pale yellow oil. Yield = 80%. Ee = 92%. [α]_D = - 2.3 (c = 3.5, CHCl₃). HPLC analysis: OJ column (214 nm), 30 °C, method: *n*-Hex:IPA = 90:10, flow 0.5 ml/min, $t_{(S)}$ = 35.6 min, $t_{(R)}$ = 44.4 min. ¹H-NMR (200 MHz, CDCl₃): δ 4.70 (s, 1H), 5.02 (d, J = 13.6 Hz, 1H), 5.07 (d, J = 13.6 Hz, 1H)

1H), 7.43 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 8.8 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃): δ 76.4 (q, ²J_{*C-F*} = 29.7 Hz), 75.7, 124.8 (t, ¹J_{*C-F*} = 285.2 Hz), 128.1 128.8(2C), 130.8(2C), 131.9. ¹⁹F-NMR (282 MHz, CDCl₃): δ -79.7. GC-MS (*m*/*z*): 50(10), 75(19), 91(8), 111(31), 139(100), 157(15), 200(8), 209(9), 269(41).

F₃C HO CF₃ NO₂

(*R*)-2d. Pale yellow oil. Yield = 86%. Ee = 96%. $[\alpha]_D$ = - 5.3 (*c* = 3.7, CHCl₃). HPLC analysis: OJ column (215 nm), 30 °C, method: *n*-Hex:IPA = 90:10, flow 1.0 ml/min, $t_{(S)}$ = 26.1 min, $t_{(R)}$ = 31.1 min. ¹H-NMR (200 MHz, CDCl₃): δ 4.79 (s, 1H), 5.07 (d, J = 13.8 Hz, 1H), 5.12 (d, J = 13.8 Hz, 1H)

1H), 7.61 (t, J = 7.8 Hz, 1H), 7.76 (t, J = 7.8 Hz, 2H), 7.92 (s, 1H). ¹³C-NMR (50 MHz, CDCl₃): δ 76.0 (q, ²J_{*C-F*} = 30.0 Hz), 77.2, 123.1 (q, ¹J_{*C-F*} = 285.0 Hz), 123.4 (d, ³J_{*C-F*} = 3.05 Hz), 123.8 (q, ¹J_{*C-F*} = 271.2 Hz), 127.0 (q, J_{3*C-F*} = 3.4 Hz), 129.5, 129.6, 131.6 (q, ²J_{*C-F*} = 32.7 Hz), 134.2. ¹⁹F-NMR (282 MHz, CDCl₃): δ -63.6, -79.5. GC-MS (*m*/*z*): 50(7), 95(11), 127(13), 145(59), 159(30), 173(100), 191(22), 209(11), 234(16), 284(10), 303(5).

(*R*)-2e. Pale yellow oil. Mp = 107 - 109 °C. Yield = 99%. Ee = 96%. $[\alpha]_D$ = + 3.2 (*c* = 1.12, CHCl₃). HPLC analysis: OF column (210 nm), 30 °C, method: *n*-Hex:IPA = 96:4, flow 0.6 ml/min, $t_{(S)} = 27.7$ min, $t_{(R)} = 30.3$ min. ¹H-NMR (300 MHz, CDCl₃): δ 4.80 (br s, 1H), 5.04 (d, J = 13.5 Hz, CHCl₃).

1H), 5.15 (d, J = 13.5 Hz, 1H), 7.45-7.54 (m, 4H), 7.66-7.67 (m, 5H). ¹³C-NMR (75 MHz, CDCl₃): δ 76.4 (q, ²J_{C-F} = 29.8 Hz), 119.5 (q, ¹J_{C-F} = 289.5 Hz), 126.6(2C), 127.1(2C), 127.5(2C), 128.7(2C), 130.7, 130.8, 137.1, 139.7. ¹⁹F-NMR (282 MHz, CDCl₃): δ -79.5.

HOCF₃ (*R*)-**2f**. White wax. Yield = 85%. Ee = 99%. $[\alpha]_D = -67.0 (c = 1.54, MeOH), (lit. <math>[\alpha]_D = +41.8 (c = 1.7, MeOH, (S)-$ **2f**ee = 96%)).³ HPLC analysis: OJ column (210 nm), 30 °C, method: *n*-Hex:IPA = 90:10, flow 1.0 ml/min, $t_{(S)} = 28.9 \text{ min}, t_{(R)} = 30.5 \text{ min}$. ¹H-NMR (300 MHz, CDCl₃): δ 4.66 (s, 1H), 5.02 (d, J = 13.8 Hz, 1H), 5.12 (d, J = 13.8 Hz, 1H), 7.45-7.48 (m, 3H), 7.57-7.62 (m, 2H). ¹³C-NMR (75 MHz, CDCl₃): δ 75.5, 75.9, 76.3, 76.7 (q, ²J_{C-F} = 29.7 Hz), 77.2, 117.7, 121.5, 125.3, 129.0 (q, ¹J_{C-F} = 283.9 Hz), 126.1 128.9(2C), 129.9(2C), 132.9. ¹⁹F-NMR (282 MHz, CDCl₃): δ -79.6. GC-MS (*m*/*z*): 51(12), 77(45), 91(62), 105(100), 123(13), 141(32), 166(20), 235(23).

HO CF₃ NO₂ (*R*)-2g. Pale yellow oil. Yield = 82%. Ee = 96%. $[\alpha]_D = -4.0 \ (c = 2.74, CHCl_3), (lit. <math>[\alpha]_D = +15.0 \ (c = 0.80, CHCl_3, (S)-2g \ ee = 97.0\%))^1$. HPLC analysis: OJ column (215 nm), 40 °C, method: *n*-Hex:IPA = 90:10, flow 1.0 ml/min, $t_{(S)} = 14.5 \text{ min}, t_{(R)} = 15.7 \text{ min}. ^1\text{H-NMR}$ (200 MHz, CDCl₃): δ 4.80 (br s, 1H), 5.01 (d, J = 13.6 Hz, 1H), 5.09 (d, J = 13.6 Hz, 1H), 7.14 (pt, J = 8.4 Hz, 2H), 7.59 (dd, J = 5.2, 8.4 Hz, 2H). ¹³C-NMR (50 MHz, CDCl₃): δ 75.7 (t, ²J_{C-F} = 30.0 Hz), 77.5, 116.0 (d, ²J_{C-F} = 22.0 Hz, 2C), 123.5 (q, ¹J_{C-F} = 284.0 Hz), 128.3 (d, ³J_{C-F} = 8.4.0 Hz, 2C), 163.2 (d, ¹J_{C-F} = 248.9 Hz). ¹⁹F-NMR (282 MHz, CDCl_3): δ -79.8, -111.9. GC-MS (*m/z*): 75(3), 75(9), 95(31), 109(38), 123(100), 141(15), 159(23), 184(13), 207(5), 253(11).

HO CF₃ NO₂ (*R*)-2h. Pale colorless oil. Yield = 85%. Ee = 90%. $[\alpha]_D = + 4.1$ (*c* = 1.50, CHCl₃). HPLC analysis: AD column (210 nm), 40 °C, method: *n*-Hex:IPA = 99:1, flow 1.2 ml/min, t_(S) = 21.4 min, t_(R) = 26.6 min. ¹H-NMR (300 MHz, CDCl₃): δ 2.27 (s, 3H), 4.34 (s, 1H), 5.10 (d, J = 13.8 Hz, 1H), 5.19 (d, J = 13.8 Hz, 1H), 7.21-7.30 (m, 4H), 7.40 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃): δ 20.3, 76.1 (t, ²J_{C-F} = 29.8 Hz), 77.4, 117.0 (q, ¹J_{C-F} = 289.4 Hz), 125.8(2C, 125.9(2C), 127.7, 128.3, 129.3(2C), 129.7(2C), 130.1, 139.0. ¹⁹F-NMR (282 MHz, CDCl₃): δ -79.4.

^{HQ} CF₃ NO₂ (*R*)-**2i**. Pale yellow oil. Yield = 79%. Ee = 76%. $[\alpha]_D = + 4.9$ (*c* = 1.44, CHCl₃). HPLC analysis: OJ column (220 nm), 30 °C, method: *n*-Hex:IPA = 90:10, flow 0.9 ml/min, $t_{(S)} = 33.2$ min, $t_{(R)} = 35.3$ min. ¹H-NMR (200 MHz, CDCl₃): δ 5.01 (s, 2H), 5.03 (s, 1H), 7.07 (dd, J = 3.6, 5.2 Hz, 1H), 7.17-7.18 (m, 1H), 7.50 (dd, J = 1.0, 5.2 Hz, 1H). ¹³C-NMR (50 MHz, CDCl₃): δ 74.8, 75.2, 75.6, 76.0 (q, $J_{2H-F} = 30.9$ Hz), 77.2, 117.2, 120.9, 124.7, 128.5 (q, $J_{1C-F} = 283.9$ Hz), 127.6 127.9, 129.1. ¹⁹F-NMR (282 MHz, CDCl₃): δ -80.5. GC-MS (*m*/*z*): 50(5), 69(9), 84(10), 97(42), 111(100), 126(33), 147(25), 181(14), 241(39).

HO CF₃ NO₂ 2j. Pale yellow oil. Yield = 67%. Ee = 93%. [α]_D = + 5.52 (c = 1.16, CHCl₃). HPLC analysis: OJ column (210 nm), 30 °C, method: *n*-Hex:IPA = 96:4, flow 0.6 ml/min, $t_{(S)}$ = 25.2 min, $t_{(R)}$ = 27.9 min. ¹H-NMR (300 MHz, CDCl₃): δ 1.01 (t, J = 11.0 Hz, 3H), 1.81-1.93 (m, 2H), 4.55-4.62 (m, 2H). ¹³C-NMR (50 MHz, CDCl₃): δ 8.3, 25.6, 74.6 (q, ²J_{C-F} = 28.5 Hz), 76.0, 124.5 (q, ¹J_{C-F} = 285.6 Hz). ¹⁹F-NMR (282 MHz, CDCl₃): δ -80.2. GC-MS (m/z): 51(10), 57(100), 69(39), 75(85), 91(29), 103 (60), 123(68), 158(65), 170(5).

^{HO} CHF₂ NO₂ 2**k**. White solid. Yield = 77%. Ee = 99%. $[\alpha]_D = -2.54$ (*c* = 2.7, CHCl₃). HPLC analysis: OD column (210 nm), 30 °C, method: *n*-Hex:IPA = 85:15, flow 1.2 ml/min, $t_{(minor)} = 23.4$ min, $t_{(major)} = 23.4$ min. ¹H-NMR (200 MHz, CDCl₃): δ 4.94 (d, J = 13.2 Hz, 1H), 5.05 (d, J = 13.2 Hz, 1H), 5.85 (t, ²J_{H-F} = 54.8 Hz, 1H), 7.39–7.49 (m, 3H), 7.50-7.47 (m, 2H). ¹³C-NMR (50 MHz, CDCl₃): δ 75.5 (t, ²J_{H-F} = 22.7 Hz), 76.3, 115.0 (t, ¹J_{C-F} = 248.9 Hz), 125.8 129.0(2C), 129.5(2C), 134.8. ¹⁹F-NMR (282 MHz, CDCl₃): δ -129.2 (dd, ²J_{H-F} = 55.2 Hz, ²J_{H-F} = 282.0 Hz, 1H), -130.9 (dd, ²J_{H-F} = 55.2 Hz, ²J_{H-F} = 282.0 Hz, 1H). IR (CH₂Cl₂): 3442, 3020, 2926, 1636, cm⁻¹. GC-MS (*m/z*): 51(31), 77(60), 91(21), 105(100), 123(26), 166(29), 217(3).

11 Pale yellow solid. Yield = 71%. Ee = 92%. $[\alpha]_D = -2.54$ (*c* = 2.7, CHCl₃). HPLC analysis: AD column (210 nm), 30 °C, method: *n*-Hex:IPA = 85:15, flow 0.6 ml/min, $t_{(minor)} = 22.8$ min, $t_{(major)} = 25.5$ min. ¹H-NMR (200 MHz, CDCl₃): δ 5.07 (d, J = 14.0 Hz, 1H), 5.17 (d, J = 14.0 Hz, 1H), 5.94 (t, ²J_{H-F} = 55.2 Hz, 1H), 7.53-7.68 (m, 3H), 7.88-7.93 (m, 3H), 8.07 (br s, 1H). ¹³C-NMR (50 MHz, CDCl₃): δ 75.5 (t, ²J_{H-F} = 22.7 Hz), 76.3, 115.0 (t, ¹J_{C-F} = 248.9 Hz), 125.8 129.0(2C), 129.5(2C), 134.8. ¹⁹F-NMR (282 MHz, CDCl₃): δ -129.2 (dd, ²J_{H-F} = 55.2 Hz, ²J_{H-F} = 282.0 Hz, 1H), -130.9 (dd, ²J_{H-F} = 55.2 Hz, ²J_{H-F} = 282.0 Hz, 1H). IR (CH₂Cl₂): 3442, 3020, 2926, 1636, cm⁻¹. ESI-MS: (M+1): 268, (M+Na): 299.

¹ H. Li, B. Wang, L. Deng, J. Am. Chem. Soc. 2006, 128, 732 – 733.

²L. Liu, Y. Zhang, B. Xin, J.Org. Chem. 2006, 71, 3994-3997.

³ F. Tur, J. M. Saa, Org.Lett. 2007, 9, 5079-5082.

129.05-

069-08-

S 42

