Supplementary Information

For

Luminescent gold(III) organometallic complex of N-confused tetraphenylporphyrin

Motoki Toganoh, Teppei Niino and Hiroyuki Furuta*

Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. Tel/Fax: (+81)92-802-2865 E-mail: hfuruta@cstf.kyushu-u.ac.jp

General. Commercially available solvents and reagents were used without further purification unless otherwise mentioned. NBS was recrystallized from hot water. Toluene was distilled over CaH₂. AuCl•SMe₂ is freshly prepared from HAuCl₄•4H₂O and Me₂S in MeOH. Thin-layer chromatography (TLC) was carried out on aluminium sheets coated with silica gel 60 (Merck 5554). Preparative purifications were performed by flash column chromatography (KANTO Silica Gel 60 N, spherical, neutral, 40-50 um) or gravity column chromatography (KANTO Silica Gel 60 N, spherical, neutral, 63–210 µm). The ¹H NMR or ¹³C NMR spectra were recorded on a JNM-AI SERIES FT-NMR spectrometer (JEOL) at 300 MHz or 75 MHz, respectively. Proton chemical shifts were reported relative to residual proton of deuterated solvent (δ 7.26 ppm for CHCl₃). Carbon chemical shifts were reported relative to CDCl₃ at δ 77.00 ppm. UV-vis absorption spectra were recorded on a UV-3150PC spectrometer (Shimadzu). Emission spectra were recorded on an SPEX Fluorolog spectrometer (HORIBA). Mass spectra were recorded on an autoflex MALDI-TOF MS spectrometer (Bruker Daltonics). Cyclic voltammetric measurements were performed on a CH Instrument Model 620B (ALS) equipped with a Pt electrode.

Synthesis of AuNCTPP (3)

A mixture of 21-Br-NCTPP (16.6 mg, 23.9 μ mol, 1 equiv) and AuCl•SMe₂ (23.1 mg, 78.4 μ mol, 3.3 equiv) in toluene was refluxed for 11 h. The resulting mixture was dried under reduced pressure and the residue was purified by silica gel column chromatography (MeOH/CH₂Cl₂ = 1/100) to give **3** in 37% yield (7.1 mg, 8.8 μ mol). ¹H NMR (CDCl₃, 300 MHz, ppm): δ 7.72–7.77 (m, 12H), 8.08–8.19 (m, 8H), 8.64 (d, *J* =

5.2 Hz, 1H), 8.66 (d, J = 5.2 Hz, 1H), 8.68 (d, J = 4.9 Hz, 1H), 8.70 (d, J = 4.9 Hz, 1H), 8.86 (d, J = 5.2 Hz, 1H), 8.94 (d, J = 5.2 Hz, 1H), 9.43 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz, ppm): δ 104.07, 119.49, 120.64, 125.46, 126.80, 126.97, 127.13, 127.17, 127.21, 127.61, 127.93, 127.98, 128.12, 129.05, 129.49, 129.62, 129.94, 130.42, 131.18, 133.73, 133.79, 134.09, 134.21, 136.67, 137.53, 138.32, 138.45, 138.87, 139.52, 139.86, 139.93, 141.00, 141.59, 164.40; HRMS (ESI+) *m/z*: found: 809.19395, calcd for C₄₄H₂₈N₄Au (MH⁺): 809.19795; UV-vis (CH₂Cl₂, λ_{max}/nm (ε)): 435 (144000), 513 (15400), 549 (5600), 636 (8700).

Fig. S1 Emission spectra of 3 at room temperature (excited at 435 nm).

Fig. S2 ¹H NMR spectrum of **3** in CDCl₃ at room temperature.

Fig. S3 13 C NMR spectrum of 3 in CDCl₃ at room temperature.

Fig. S4 Cyclic voltammogram of 3 at room temperature.

Calculation details. All the DFT calculations were performed with a Gaussian 03 program package¹ without symmetry assumption. The geometries were fully optimized at the Becke's three-parameter hybrid functional² combined with the Lee-Yang-Parr correlation functional³ abbreviated as the B3LYP level of density functional theory. The SDD basis set⁴ was used for Au and the 6-31G** basis sets for C, H and N. This combination was denoted as 631S. The stationary points are verified by the frequency calculations.

Optimized structure of 3 at B3LYP/631S level

Stoichiometry	C44H27	AuN4		
Framework group	C1[X(C4	4H27AuN4)]		
Deg. of freedom	222			
Full point group		C1		
Largest Abelian sub	ogroup	C1	NOp	1
Largest concise Abelian subgroup C1 NOp				1
Standard orientation:				

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	79	0	-0.002247	-0.003455	-0.009040	
2	6	0	-4.041952	-1.258604	-0.049437	
3	6	0	-2.610535	-1.582701	-0.034149	
4	6	0	-2.030828	-2.858458	-0.048610	
5	6	0	-0.637712	-3.037406	-0.029764	
6	6	0	0.039383	-4.300370	0.004031	
7	6	0	1.380970	-4.056502	0.037345	
8	6	0	1.568336	-2.632634	0.037857	
9	6	0	2.827983	-2.004766	0.073742	
10	6	0	3.042955	-0.623042	0.051247	
11	6	0	4.330016	0.031310	0.101279	
12	6	0	4.106149	1.373120	0.059051	
13	6	0	2.676905	1.571861	-0.016899	
14	6	0	2.023503	2.807297	-0.067041	
15	6	0	0.625962	2.990552	-0.079546	
16	6	0	-0.015566	4.268806	-0.172270	
17	6	0	-1.365003	4.061511	-0.136901	
18	6	0	-1.592833	2.652833	-0.024277	
19	6	0	-2.861873	2.033476	0.009274	
20	6	0	-2.994928	0.640927	-0.010636	
21	6	0	-1.970029	-0.329047	-0.020307	
22	6	0	-2.910521	-4.065562	-0.076530	
23	6	0	-3.793501	-4.328550	0.983451	
24	6	0	-4.627014	-5.447093	0.954754	
25	6	0	-4.594640	-6.319617	-0.134636	
26	6	0	-3.723505	-6.066763	-1.195947	
27	6	0	-2.888127	-4.949698	-1.167503	
28	6	0	4.038599	-2.889731	0.138457	

29	6	0	4.402899	-3.516205	1.339767
30	6	0	5.532495	-4.333624	1.401860
31	6	0	6.314998	-4.536427	0.263328
32	6	0	5.962135	-3.917503	-0.937305
33	6	0	4.832105	-3.100240	-0.999090
34	6	0	2.880816	4.037220	-0.104923
35	6	0	3.624174	4.354248	-1.252083
36	6	0	4.429926	5.493516	-1.286214
37	6	0	4.505461	6.332738	-0.173183
38	6	0	3.770570	6.026933	0.974095
39	6	0	2.964307	4.888451	1.007742
40	6	0	-4.076753	2.896097	0.062338
41	6	0	-5.081329	2.787887	-0.912957
42	6	0	-6.210004	3.603304	-0.862208
43	6	0	-6.364118	4.532368	0.169361
44	6	0	-5.379815	4.639765	1.152480
45	6	0	-4.244597	3.830139	1.097895
46	1	0	-4.851460	-1.980564	-0.078749
47	1	0	-0.456844	-5.259068	0.007604
48	1	0	2.183833	-4.777295	0.063840
49	1	0	5.278393	-0.480739	0.167145
50	1	0	4.837101	2.167328	0.085493
51	1	0	0.505288	5.209378	-0.264345
52	1	0	-2.146967	4.802286	-0.201924
53	1	0	-3.815818	-3.655419	1.835402
54	1	0	-5.299618	-5.637685	1.786200
55	1	0	-5.244910	-7.189329	-0.157235
56	1	0	-3.697393	-6.736249	-2.051100
57	1	0	-2.219320	-4.749513	-1.999389
58	1	0	3.796051	-3.356936	2.226540
59	1	0	5.802308	-4.809227	2.340565
60	1	0	7.194159	-5.172527	0.311634
61	1	0	6.564515	-4.072160	-1.828045
62	1	0	4.556636	-2.621167	-1.934324
63	1	0	3.563337	3.703877	-2.119942
64	1	0	4.995594	5.726295	-2.183986
65	1	0	5.132637	7.219198	-0.199468
66	1	0	3.827087	6.672724	1.845819
67	1	0	2.395759	4.650065	1.902018
68	1	0	-4.971684	2.057964	-1.706662
69	1	0	-6.973540	3.510344	-1.629392
70	1	0	-7.247250	5.163831	0.208859
71	1	0	-5.495140	5.350184	1.966352
72	1	0	-3.486465	3.908556	1.871431
73	7	0	-4.272304	0.021572	-0.021897
74	7	0	0.320214	-2.031512	-0.004501
75	7	0	2.063829	0.340372	-0.013213
76	7	0	-0.360540	2.016691	-0.004939

References

- Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- 2 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 3 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 4 P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker and P. D. W. Boyd, *J. Chem. Phys.*, 1989, **91**, 1762.