SUPPORTING INFORMATION FOR CHEM. COMMUN.

Direct, facile synthesis of N-acyl- α -amino amides from α -keto esters and ammonia

Rukundo Ntaganda,^a Tamara Milovic,^a Jorge Tiburcio^b and Avinash N. Thadani^{a*}

^a Department of Chemistry & Biochemistry, University of Windsor 401 Sunset Avenue, Windsor, Ontario N9B 3P4, CANADA email: athadani@uwindsor.ca

^b Departamento de Química, Centro de Investigación y deEstudios Avanzados, Avenida IPN 2508, Zacatenco 07360, México, D. F., México email: jtiburcio@cinvestav.mx

EXPERIMENTAL PROCEDURES, OPTIMIZATION STUDIES, CHARACTERIZATION DATA and NMR SPECTRA

Table of Contents

General Information	S 1
Preparation of α -keto esters	S2
General procedure for the Synthesis of <i>N</i> -acyl- α -amino amides 2	
from α -keto esters (Table 2)	S 3
Optimization Studies	S 4
Characterization Data	S 5
References	S11
¹ H and ¹³ C NMR Spectra of 2	S12

General Information. Ethyl benzoyl formate (1a), ethyl pyruvate (1l) and ethyl 3-methyl-2oxobutyrate (1m) were purchased from Aldrich. α -Keto esters 1b, 1c, 1e, 1g and 1h were prepared as previously described.¹ α -Keto esters 1n was synthesized from phenyl pyruvic acid as previously described.² α -Keto esters 1d, 1f, 1i-k were prepared according to the procedure developed by Shimizu and Murakami.¹ All other reagents were used as received (Aldrich, Acros). MeOH was dried over magnesium methoxide and distilled prior to use. Melting points are uncorrected, and were measured on a Fisher-Johns melting point apparatus. ¹H and ¹³C NMR spectra were recorded at 300 or 500 MHz and 75 or 125 MHz respectively on a Bruker Spectrospin 300 or 500 MHz spectrometer. Proton chemical shifts were internally referenced to the residual proton resonance in (CD₃)₂SO or CD₃OD (δ 2.50 and 3.31 respectively). Carbon chemical shifts were internally referenced to the deuterated solvent signals in (CD₃)₂SO or CD₃OD (δ 39.52 and 49.00 respectively). Infrared spectra were obtained on a Bruker VECTOR22 FT-IR spectrometer.

Ι. Preparation of **α**-keto esters

 α -Keto esters 1d, 1f, 1i-k were prepared by exactly following the procedure developed by Shimizu and Murakami:¹

A solution of the aryl boronic acid (0.60 mmol, 1.2 equiv), H_3BO_2 (1.00 mmol, 2.0 equiv), $[Rh(OH)(cod)]_2$ (0.0125 mmol, 2.5 mol%) and ethyl cyanoformate (0.5 mmol, 1.0 equiv) in 1,4-dioxane (1.0 mL) was stirred for 30 min at rt and then at 60 °C for 3 h under argon. The reaction mixture was then cooled to rt and diluted with EtOAc (10 mL) and citric acid (10% in water, 5.0 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (10 mL x 3). The combined organic extracts was washed with water (5 mL), brine (5 mL), dried (MgSO₄), filtered and concentrated *in vacuo* to afford the crude α -keto ester, which was subsequently purified by silica gel chromatography (hexanes/EtOAc).

Ethyl 2-(2-bromophenyl)-2-oxoacetate (1d)

1d

1d isolated as a brown oil: ¹H NMR [C₆D₆, 500 MHz] δ 7.41 (1H, dd, *J* = 7.5, 1.5 Hz), 7.07 (1H, d, *J* = 7.5 Hz), 6.67 (1H, t, *J* = 7.5 Hz), 6.58 (1H, dt, *J* = 7.5 1.5 Hz), 3.98 (2H, q, *J* = 7.0 Hz), 0.88 (3H, t, *J* = 7.0 Hz); ¹³C NMR [C₆D₆, 75 MHz] δ 187.43, 162.88, 136.29, 133.60, 131.81, 130.18, 130.02, 121.71, 62.48, 18.62.

Ethyl 2-(3-nitrophenyl)-2-oxoacetate (1f)

1f isolated as a yellow oil: ¹H NMR [CDCl₃, 300 MHz] δ 8.86 (1H, s), 8.51 – 8.47 (1H, d, J = 8.0 Hz), 8.48 (1H, d, J = 8.0 Hz), 7.75 (1H, t, J = 8.0 Hz), 4.48 (2H, q, J = 7.0 Hz), 1.44 (3H, t, J = 7.0 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 183.63, 162.25, 148.49, 135.58, 134.01, 130.34, 128.94, 125.04, 63.15, 14.12.

Ethyl 2-(naphthalen-1-yl)-2-oxoacetate (1i)

1i isolated as a pale yellow solid: m.p. = 79-82 °C; ¹H NMR [CDCl₃, 300 MHz] δ 9.04 (1H, d, J = 8.0 Hz), 8.13 (1H, d, J = 8.0 Hz), 7.96 (1H, d, J = 7.5 Hz), 7.93 (1H, d, J = 8.0 Hz), 7.73 – 7.68 (1H, m), 7.63 – 7.54 (2H, m), 4.50 (2H, q, J = 7.0 Hz), 1.45 (3H, t, J = 7.0 Hz); ¹³C NMR [CDCl₃, 75 MHz] δ 188.90, 164.67, 135.83, 134.04, 133.92, 131.09, 129.31, 128.80, 128.40, 127.10, 125.71, 124.36, 62.43, 14.20.

Ethyl 2-(naphthalen-2-yl)-2-oxoacetate (1j)

1j isolated as a dark brown oil; ¹H NMR (CDCl₃, 300 MHz) δ 8.55 (1H, s), 8.04 (1H, d, *J* = 8.5 Hz), 7.97 – 7.85 (3H, m), 7.76 – 7.53 (2H, m), 4.52 (2H, q, *J* = 7.0 Hz), 1.46 (3H, t, *J* = 7.0 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 186.46, 164.06, 136.44, 133.57, 132.35, 130.08, 129.90, 129.67, 129.03, 128.01, 127.26, 124.03, 62.50, 14.26.

Ethyl 2-oxo-2-(thiophen-3-yl)acetate (1k)

1k isolated as a yellow oil; ¹H NMR (C₆D₆, 300 MHz) δ 8.14 (1H, dd, J = 3.0, 1.0 Hz), 7.53 (1H, dd, J = 5.0, 1.0 Hz), 6.50 (1H, dd, J = 5.0, 3.0 Hz), 3.89 (2H, q, J = 7.0 Hz), 0.87 (3H, t, J = 7.0 Hz); ¹³C NMR (C₆D₆, 75 MHz) δ 182.13, 162.97, 138.24, 137.21, 125.21, 124.59, 61.96, 13.35.

II. General experimental procedure for the synthesis of *N*-acyl-**a**-amino amides (Table 2)

<u>CAUTION: The procedure described below generates pressure in a closed reaction vessel.</u> <u>The reaction vessel should be placed behind a blast shield in a well-ventilated fume hood.</u>

To a solution of ammonia in methanol (*ca*. 7M in MeOH, 3.0 mL, *ca*. 21 equiv.) in a Swagelock[®] 50 mL stainless steel cylinder or an Ace[®] pressure tube was added the α -keto ester (1.00 mmol). The cylinder (or tube) was sealed and heated in an oil bath at 60 °C or 80 °C for 6 h or 12 h respectively. The cylinder (or tube) was then removed was allowed to cool to room temperature (1 h), and then cooled further in a -40 °C bath. The Swagelock[®] cylinder (or pressure tube) was opened and the contents were transferred to a small Erlenmeyer flask (50 mL). A steady stream of air was blown over the reaction mixture until some precipitation was observed. The reaction mixture was then heated slightly to redissolve all solid matter, and allowed to stand at room

temperature for 2 h. The precipitated product was filtered off through a scintered glass funnel, and washed with ice-cold methanol (ca. 5 ml).

II. Optimization Studies

Ĺ		DEt <u>NH₃ (<i>ca.</i> 21 equiv.</u> MeOH, Δ, 6 h		
	Entry	Temperature/°C	Time/h	Yield/% ^a
	1	20	6	<10
	2	20	18	13
	3	35	6	15
	4	35	18	29
	5	50	6	63
	6	50	18	80
	7	60	6	90
	8	60	18	82
	9	90	6	84
	10	90	18	68

Table 3. Effect of Reaction Time and Temperature on the Isolated Yield of 2a

^a Isolated Yield

ſ

Table 4. Effect of Equivalence of Ammonia on the Isolated Yield of 2a

OEt O	NH ₃ MeOH, 60 °C, 6 h		NH ₂
Entry	Equivalence of Ammonia ^b	Yield/% ^a	
1	3	9	
2	7	17	
3	14	49	
4	21	90	

^a Isolated Yield; ^b Approximate

e e e e e e e e e e e e e e e e e e e	OEt O	NH ₃ (<i>ca.</i> 21 equiv.) solvent, 60 °C, 6 h		NH ₂
	Entry	Solvent ^b	Yield/% ^a	
	1	H ₂ O	29	
	2	MeOH	90	
	3	EtOH	84	
	4	PhCH ₃	<10	
	5	DMSO	<10	
	6	THF	24	
	7	DME	34	

^{*a*} Isolated Yield; ^{*b*} Solutions of *ca*. 7M ammonia were made by adding the appropriate volume of liquid ammonia to the solvent.

III. Characterization Data

N-(2-Amino-2-oxo-1-phenylethyl)benzamide (2a)³

2a isolated as a white solid: m.p. = 199-201 °C (MeOH); ¹H NMR [(CD₃)₂SO, 500 MHz] δ 8.70 (1H, d, *J* = 8.0 Hz), 7.91 (2H, d, *J* = 7.0 Hz), 7.90 (1H, br s), 7.57 – 7.50 (3H, m), 7.46 (2H, t, *J* = 7.5 Hz), 7.36 (2H, t, *J* = 7.5 Hz), 7.30 (1H, t, *J* = 7.5 Hz), 7.24 (1H, br s), 5.63 (1H, d, *J* = 8.0 Hz); ¹³C NMR (CD₃OD, 75 MHz) δ 172.16, 166.42, 139.30, 134.47, 131.89, 128.72 (two signals overlapped), 128.10, 127.98 (two signals overlapped), 56.42; IR (KBr) υ 3372, 3321, 3169, 3056, 1698, 1650 cm⁻¹; HRMS (EI) *m*/*z* calcd. for C₁₅H₁₄N₂O₂ (M⁺) 254.1055, found 254.1057.

N-[2-Amino-1-(2-methylphenyl)-2-oxoethyl]-2-methylbenzamide (2b)

2b isolated as a white solid: m.p. = 205-207 °C (MeOH); ¹H NMR [(CD₃)₂SO, 500 MHz] δ 8.62 (1H, d, *J* = 8.0 Hz), 7.48 (1H, br s), 7.43 – 7.28 (3H, m), 7.25 – 7.13 (6H, m), 5.74 (1H, d, *J* = 8.0 Hz), 2.44 (3H, s), 2.32 (3H, s); ¹³C NMR [(CD₃)₂SO, 75 MHz] δ 172.06, 168.69, 136.75, 136.60 (two signals overlapped), 135.35, 130.24, 130.14, 129.29, 127.58, 127.52, 127.35, 125.86, 125.28, 53.70, 19.38, 19.11; IR (KBr) υ 3431, 3284, 1680, 1629 cm⁻¹; HRMS (EI) *m/z* calcd. for C₁₇H₁₈N₂O₂ (M⁺) 282.1368, found 282.1366.

N-[2-Amino-1-(biphenyl-2-yl)-2-oxoethyl]biphenyl-2-carboxamide (2c)

2c isolated as a white solid: m.p. = 108-109 °C (MeOH); ¹H NMR [(CD₃)₂SO, 300 MHz] δ 8.78 (1H, d, *J* = 7.5 Hz), 7.55 – 7.15 (19H, m), 6.83 (1H, br s), 5.42 (1H, d, *J* = 7.5 Hz); ¹³C NMR [(CD₃)₂SO, 75 MHz] δ 172.03, 168.39, 141.85, 140.41, 140.01, 139.35, 136.26, 135.32, 129.89, 129.75, 129.45, 129.21, 128.35, 128.28, 128.08, 128.04, 127.90, 127.51, 127.43, 127.06, 126.97, 126.79, 54.21; IR (KBr) υ 3430, 3253, 3057, 1689, 1631 cm⁻¹; HRMS (EI) *m/z* calcd. for C₂₇H₂₂N₂O₂ (M⁺) 406.1681, found 406.1684.

N-[2-Amino-1-(2-bromophenyl)-2-oxoethyl]-2-bromobenzamide (2d)

2d isolated as a white solid: m.p. = 181-183 °C (MeOH); ¹H NMR (CD₃OD, 300 MHz) δ 7.70 – 7.15 (11H, m), 6.05 (1H, s);¹³C NMR (CD₃OD, 75 MHz) δ 173.49, 169.91, 138.77, 137.47, 134.14, 134.06, 132.23, 130.99, 130.53, 130.00, 128.86, 128.37, 125.43, 120.33, 58.41; IR (KBr) υ 3433, 3304, 1669, 1621 cm⁻¹; HRMS (EI) *m*/*z* calcd. for C₁₅H₁₂Br⁷⁹₂N₂O₂ (M⁺) 409.9266, found 409.9261.

N-[2-Amino-1-(3-methoxyphenyl)-2-oxoethyl]-3-methoxybenzamide (2e)

2e isolated as a white solid: m.p. = 144-146 °C (MeOH); ¹H NMR (CD₃OD, 300 MHz) δ 7.47 – 7.25 (4H, m), 7.13 – 7.05 (3H, m), 6.93 – 6.87 (1H, m), 5.64 (1H, s) [N-H signals absent]; ¹³C NMR (CD₃OD, 75 MHz) δ 175.02, 169.61, 161.60, 161.42, 140.60, 136.69, 130.97, 130.83, 121.10, 120.78, 119.02, 115.02, 114.57, 113.92, 59.03, 56.03, 55.88; IR (KBr) υ 3303, 3154, 1697, 1630 cm⁻¹; HRMS (EI) *m*/*z* calcd. for C₁₇H₁₈N₂O₄ (M⁺) 314.1267, found 314.1266.

N-[2-Amino-1-(3-Nitrophenyl)-2-oxoethyl]-3-nitrobenzamide (2f)

2f isolated as a white solid: m.p. = 178-179 °C (MeOH); ¹H NMR [(CD₃)₂SO, 300 MHz] δ 9.55 (1H, d, *J* = 8.0 Hz), 8.78 (1H, t, *J* = 2.0 Hz), 8.46 (1H, t, *J* = 2.0 Hz), 8.40 – 8.25 (2H, m), 8.20 (1H, dt, *J* = 8.0, 2.0 Hz), 8.00 (1H, d, *J* = 8.0 Hz), 7.93 (1H, br s), 7.82 – 7.62 (2H, m), 7.43 (1H, br s), 5.84 (1H, d, *J* = 8.0 Hz); ¹³C NMR [(CD₃)₂SO, 75 MHz] δ 170.60, 164.34, 147.74, 147.63, 140.69, 135.13, 134.70, 134.37, 129.99, 129.90, 126.15, 122.71, 122.65, 122.53, 56.41; IR (KBr) υ 3310, 3150, 1698, 1635, 1606, 1535, 1348 cm⁻¹; HRMS (EI) *m*/*z* calcd. for C₁₅H₁₂N₄O₆ (M⁺) 344.0757, found 344.0760.

N-[2-Amino-1-(4-fluorophenyl)-2-oxoethyl]-4-fluorobenzamide (2g)

2g isolated as a white solid: m.p. = 202-204 °C (MeOH); ¹H NMR [(CD₃)₂SO, 300 MHz] δ 8.72 (1H, d, *J* = 7.5 Hz), 7.87 (2H, app t, *J* = 7.5 Hz), 7.60 (1H, br s), 7.44 (2H, app t, *J* = 7.5 Hz), 7.30 – 7.00 (5H, m), 5.50 (1H, d, *J* = 7.5 Hz); ¹³C NMR [(CD₃)₂SO, 75 MHz] δ 171.59, 165.03, 164.47 (d, *J* = 182 Hz), 161.21 (d, *J* = 177 Hz), 134.96, 134.93, 130.43 (d, *J* = 9 Hz), 129.67 (d, *J* = 8 Hz), 115.20 (d, *J* = 6.5 Hz), 114.92 (d, *J* = 6.5 Hz), 56.21; IR (KBr) υ 3425, 3338, 1699,

1637 cm⁻¹; HRMS (EI) m/z calcd. for $C_{15}H_{12}F_2N_2O_2$ (M⁺) 290.0867, found 290.0869. [app = apparent]

N-[2-Amino-1-(4-methoxyphenyl)-2-oxoethyl]-4-methoxybenzamide (2h)

2h isolated as a clear, colourless, crystalline solid: m.p. = 253-255 °C (MeOH); ¹H NMR $[(CD_3)_2SO, 300 \text{ MHz}] \delta 8.48 (1H, d, J = 8.0 \text{ Hz}), 7.91 (2H, d, J = 8.5 \text{ Hz}), 7.63 (1H, br s), 7.44 (2H, d, J = 8.5 \text{ Hz}), 7.20 (1H, br s), 6.99 (2H, d, J = 8.5 \text{ Hz}), 6.92 (2H, d, J = 8.5 \text{ Hz}), 5.56 (1H, d, J = 8.0 \text{ Hz}), 3.80 (3H, s), 3.74 (3H, s); ¹³C NMR [(CD_3)_2SO, 75 MHz] \delta 172.20, 165.28, 161.70, 158.70, 130.98, 129.46, 128.74, 126.22, 113.63, 113.40 56.16, 55.33, 55.10; IR (KBr) v 3365, 3321, 1696, 1646, 1622 cm⁻¹; HRMS (EI)$ *m*/*z*calcd. for C₁₇H₁₈N₂O₄ (M⁺) 314.1267, found 314.1267.

N-[2-Amino-1-(naphthalen-1-yl)-2-oxoethyl]-1-naphthamide (2i)

2i isolated as a white solid: m.p. = 245-247 °C (MeOH); ¹H NMR [(CD₃)₂SO, 300 MHz] δ 9.22 (1H, d, *J* = 8.0 Hz), 8.40 – 8.28 (2H, m), 8.05 – 7.90 (4H, m), 7.81 (1H, br s), 7.75 – 7.42 (9H, m), 6.54 (1H, d, *J* = 8.0 Hz); ¹³C NMR [(CD₃)₂SO, 75 MHz] δ 171.99, 168.19, 134.16, 134.05, 133.41, 132.96, 131.26, 129.81, 129.73, 128.57, 128.24, 128.03, 126.50, 126.37, 126.03, 125.75, 125.70, 125.53, 125.41, 125.27, 124.74, 123.57, 53.65; IR (KBr) υ 3445, 3286, 1685, 1633 cm⁻¹; HRMS (EI) *m*/*z* calcd. for C₂₃H₁₈N₂O₂ (M⁺) 354.1368, found 354.1367.

N-[2-Amino-1-(naphthalen-2-yl)-2-oxoethyl]-2-naphthamide (2j)

2j isolated as a white solid: m.p. = 230-232 °C (MeOH); ¹H NMR [(CD₃)₂SO, 300 MHz] δ 9.06 (1H, d, *J* = 7.0 Hz), 8.65 (1H, br s), 8.30 - 7.65 (10H, m), 7.60 - 7.25 (5H, m), 5.94 (1H, d, *J* =

7.0 Hz); ¹³C NMR [(CD₃)₂SO, 75 MHz] δ 171.74, 166.10, 136.39, 134.27, 132.75, 132.46, 132.12, 131.25, 128.93, 128.00, 127.89, 127.80 (2 signals overlapped), 127.68, 127.61, 127.55, 126.70, 126.38, 126.32, 126.09, 125.89, 124.55, 57.17; IR (KBr) υ 3301, 3142, 1678, 1645 cm⁻¹; HRMS (EI) *m*/*z* calcd. for C₂₃H₁₈N₂O₂ (M⁺) 354.1368, found 354.1370.

N-[2-Amino-2-oxo-1-(thiophen-3-yl)ethyl]thiophene-3-carboxamide (2k)

2k isolated as a clear, crystalline solid: m.p. = 216-218 °C (MeOH); ¹H NMR [(CD₃)₂SO, 300 MHz] δ 8.63 (1H, d, *J* = 8.5 Hz), 8.35 (1H, t, *J* = 1.0 Hz), 7.69 (1H, br s), 7.65 – 7.47 (4H, m), 7.28 – 7.22 (2H, m), 5.73 (1H, d, *J* = 8.5 Hz); ¹³C NMR [(CD₃)₂SO, 75 MHz] δ 172.09, 162.13, 139.60, 137.62, 129.94, 127.87, 127.80, 126.97, 126.58, 123.28, 53.16; IR (KBr) υ 3386, 3276, 1678, 1633 cm⁻¹; HRMS (EI) *m*/*z* calcd. for C₁₁H₁₀N₂O₂S₂ (M⁺) 266.0184, found 266.081.

2-Acetamidopropanamide (2l)⁴

21 isolated as a clear, crystalline solid: m.p. = 157-159 °C (MeOH); ¹H NMR [(CD₃)₂SO, 300 MHz] δ 7.96 (1H, d, *J* = 7.5 Hz), 7.33 (1H, br s), 6.97 (1H, br s), 4.17 (1H, pentet, *J* = 7.5 Hz), 1.81 (3H, s), 1.15 (3H, d, *J* = 7.5 Hz); ¹³C NMR [(CD₃)₂SO, 75 MHz] δ 174.78, 169.15, 48.04, 22.61, 18.36; IR (KBr) υ 3338, 3267, 1697, 1611 cm⁻¹; HRMS (EI) *m*/*z* calcd. for C₅H₁₀N₂O₂ (M⁺) 130.0742, found 130.0742.

3-Methyl-2-[(2-Methylpropanoyl)amino]butanamide (2m)

2m isolated as a white solid: m.p. = 175-177 °C (MeOH); ¹H NMR [(CD₃)₂SO, 300 MHz] δ 7.64 (1H, d, *J* = 9.0 Hz), 7.37 (1H, br s), 7.01 (1H, br s), 4.11 (1H, dd, *J* = 9.0, 7.0 Hz), 2.53 (1H, heptet, *J* = 7.0 Hz), 1.94 (1H, octet, *J* = 7.0 Hz), 0.99 (3H, d, *J* = 7.0 Hz), 0.96 (3H, d, *J* = 7.0 Hz), 0.84 (3H, d, *J* = 7.0 Hz), 0.82 (3H, d, *J* = 7.0 Hz); ¹³C NMR [(CD₃)₂SO, 75 MHz] δ 176.13,

173.34, 57.14, 33.63, 30.41, 20.07, 19.32, 19.25, 18.01; IR (KBr) υ 3335, 3270, 1690, 1638 cm⁻¹; HRMS (EI) *m*/*z* calcd. for C₉H₁₈N₂O₂ (M⁺) 186.1368, found 186.1370.

3-Phenyl-2-(2-phenylacetamido)propanamide (2n)⁵

2n isolated as a white solid: m.p. = 204-206 °C (MeOH); ¹H NMR [(CD₃)₂SO, 500 MHz] δ 8.19 (1H, d, *J* = 8.5 Hz), 7.46 (1H, br s), 7.25 – 7.13 (8H, m), 7.09 (2H, d, *J* = 7.5 Hz), 7.05 (1H, br s), 4.46 (1H, app dt, *J* = 9.0, 4.5 Hz), 3.43 (1H, d, *J* = 14.0 Hz), 3.37 (1H, d, *J* = 14.0 Hz), 3.01 (1H, dd, *J* = 13.5, 4.5 Hz), 2.77 (1H, dd, *J* = 13.5, 9.5 Hz); ¹³C NMR [(CD₃)₂SO, 75 MHz] δ 173.10, 169.80, 137.98, 136.31, 129.18, 128.94, 128.00 (two signals overlapped), 126.15 (two signals overlapped), 53.76, 42.12, 37.73; IR (KBr) υ 3380, 3297, 1637 cm⁻¹; HRMS (EI) *m/z* calcd. for C₁₇H₁₈N₂O₂ (M⁺) 282.1368, found 282.1364. [app = apparent]

Deuterated 20

20 isolated as a white solid: m.p. = 178-180 °C (CD₃OD); ¹H NMR [(CD₃)₂SO, 500 MHz] δ 8.78 (0.45H, br s), 7.98 (2H, d, *J* = 7.5 Hz), 7.80 (0.45H, br s), 7.65 – 7.15 (8.45H, m), 5.72 (0.01H, m); ¹³C NMR (CD₃OD, 75 MHz) δ 171.87, 166.10, 138.77, 134.00, 131.53, 128.34 (two signals overlapped), 127.69 (two signals overlapped), 127.57, 56.61 (t, *J* = 20 Hz).

The deuterium incorporation at the α -position was calculated by integrating the ¹H NMR signal at δ 5.72 versus the aromatic signals. The deuterium incorporation of the amide protons were calculated by integrating the ¹H NMR signal at δ 8.78 or 7.80 versus the aromatic signals

2-Amino-2-phenylacetic acid [2-Phenylglycine] (3)⁶

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

A solution of 2a (254 mg, 1.00 mmol) in concentrated, aqueous HCl (1 mL) was refluxed for 12 h. The reaction mixture was cooled to room temperature and poured into a column containing Dowex 50W-X8 (15 mL, acid form, 50-100 mesh). The column first washed with 50% aqueous isopropanol (50 mL), and the water (50 mL). The amino acid was then eluted with aqueous ammonia (1 M). The eluent was collected and all volatiles were removed *in vacuo* to afford **3** (130 mg, 94%) as a white solid.

3: m.p. = 285-290 °C (H₂O); ¹H NMR [DCl/D₂O/(CD₃)₂SO, 300 MHz] δ 8.10 (3H, s), 7.25 – 7.07 (5H, m), 4.80 (1H, s); ¹³C NMR [DCl/D₂O/(CD₃)₂SO, 75 MHz] δ 171.83, 133.97, 132.89, 132.13, 130.92, 58.55.

References

- 1. H. Shimizu and M. Murakami, Chem. Commun., 2007, 2855.
- 2. J. M. Domagala, Tetrahedron Lett., 1980, 21, 4997.
- 3. W. R. Roderick and P. L. Bhatia, J. Org. Chem., 1963, 28, 2018.
- 4. R. Pascal, A. Rousset and A. Commeyras, New. J. Chem., 1989, 13, 205.
- 5. H. Yanagawa, Y. Makino, K. Sato, M. Nishizawa and F. Egami, *Origins of Life*, 1984, 14, 163.
- 6. M. Kitamura, D. Lee, S. Hayashi, S. Tanaka and M. Yoshimura, J. Org. Chem., 2002, 67, 8685.

 ^1H and ^{13}C NMR Spectra of 2 and 3

