Electronic Supplementary Information

From dioxime oxalates to dihydropyrroles and phenanthridines via iminyl radicals

F. Portela-Cubillo, E. M. Scanlan, J. S. Scott and J. C. Walton
University of St. Andrews, School of Chemistry, St. Andrews, Fife, KY16 9ST, UK

Acetone $\boldsymbol{O}, \boldsymbol{O}^{\boldsymbol{\prime}}$-oxalyldioxime (1a). ${ }^{1}$ To a stirred solution of oxalyl chloride ($1.27 \mathrm{~g} ; 10 \mathrm{mmol}$) in ether $\left(10 \mathrm{~cm}^{3}\right)$ at $-40^{\circ} \mathrm{C}$ was added a solution of acetone oxime ($1.46 \mathrm{~g} ; 20 \mathrm{mmol}$). The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 20 min and then at rt for 1 hr . After this time the solvent was removed to give the dioxime oxalate as a colourless solid ($1.62 \mathrm{~g} ; 81 \%$).. The product was recrystallised from $\mathrm{DCM} /$ pentane at $-20^{\circ} \mathrm{C}$ to give the dioxime oxalate as colourless prisms, mp $58-62{ }^{\circ} \mathrm{C}\left(\mathrm{lit}^{1}=66-67{ }^{\circ} \mathrm{C}\right) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1716(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{NMR},\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.10$, $2.09\left(2 \mathrm{x} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 17.4,21.3\left(\mathrm{CH}_{3}\right), 156.6,166.5(\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{N})$.

Benzophenone dioxime oxalate (1b). ${ }^{1}$ Benzophenone oxime ($3.9 \mathrm{~g}, 20 \mathrm{mmol}$) was dissolved in dry ether ($30 \mathrm{~cm}^{3}$), and added dropwise to a stirred solution of oxalyl chloride ($1.2 \mathrm{~g}, 10 \mathrm{mmol}$) in dry ether $\left(20 \mathrm{~cm}^{3}\right)$ at $-40^{\circ} \mathrm{C}$. Once the addition was complete the reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 20 min , and then warmed to room temperature. The reaction was then stirred at room temperature for 2 h . The solvent was removed at reduced pressure and the resultant white residue was recrystallised from dichloromethane and pentane at $-20{ }^{\circ} \mathrm{C}$ to yield the title compound ($2.8 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta_{\mathrm{H}} 7.2-7.4(20 \mathrm{H}, \mathrm{m}, \mathrm{PhH}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta_{\mathrm{C}} 129.9(\mathrm{ArCH}), 129.6(\mathrm{ArCH}), 130.7(\mathrm{ArCH}), 131.9(\mathrm{ArCH})[\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{O}$ not obs].

1-(2,4-dimethoxyphenyl)pent-4-en-1-one (2b) A solution of 1-(1-4-

 dimethoxyphenyl)ethanone ($2 \mathrm{~g}, 11 \mathrm{mmol}$) in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise over 10 min to a suspension of potassium hydride $(0.53 \mathrm{~g}, 13 \mathrm{mmol})$ in dry THF $\left(25 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under N_{2}. The yellow suspension was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min and $\mathrm{BEt}_{3}\left(1 \mathrm{M}\right.$ solution in THF, $13 \mathrm{~cm}^{3}, 13$ mmol) was added dropwise at $15{ }^{\circ} \mathrm{C}$ over 15 min . After stirring the solution at $23{ }^{\circ} \mathrm{C}$ for 15 min , allyl bromide ($1.99 \mathrm{~g}, 16.5 \mathrm{mmol}$) was added dropwise over 10 min and the resulting suspensionwas stirred for 4 h at $23{ }^{\circ} \mathrm{C}$ and quenched with a $1: 1$ mixture of $30 \% \mathrm{NaOH}$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(15$ cm^{3}) at $0{ }^{\circ} \mathrm{C}$ over 15 min . The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$, the layers were separated and the organic layer diluted with $\mathrm{Et}_{2} \mathrm{O}\left(75 \mathrm{~cm}^{3}\right)$ and washed with water (2×30 $\left.\mathrm{cm}^{3}\right)$. The combined water layers were extracted with DCM ($2 \times 30 \mathrm{~cm}^{3}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The isolated product was purified by column chromatography ($\mathrm{AcOEt} /$ hexane 5%) to afford $\mathbf{2 b}$ as a colourless oil 77%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{H} 2.35\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.97$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.84(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 6.37(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{CH}), 6.44(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, \mathrm{CH}), 7.73(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, $\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{C} 28.7,43.0\left(\mathrm{CH}_{2}\right), 55.7\left(\mathrm{CH}_{3}\right) \mathrm{x} 2,98.5,105.2(\mathrm{CH}), 114.7\left(\mathrm{CH}_{2}\right), 121.4(\mathrm{C})$, $133.0(\mathrm{CH}), 138.3(\mathrm{CH}), 160.8,164.4,199.6(\mathrm{C})$; IR 2942, $1664,1575 \mathrm{~cm}^{-1}$.

1-(2,4-dimethoxyphenyl)pent-4-en-1-one oxime (3b). A suspension of 1-(2,4-dimethoxyphenyl)pent-4-en-1-one ($1 \mathrm{~g}, 4.5 \mathrm{mmol}$), hydroxylamine hydrochloride $(0.62 \mathrm{~g}, 9$ $\mathrm{mmol})$ and sodium acetate $(0.73,9 \mathrm{mmol})$ in $\mathrm{EtOH}\left(25 \mathrm{~cm}^{3}\right)$ was heated under reflux conditions for 4 h , and the progress of the reaction was followed by TLC (EtOAc/hexane 1:2). Upon completion, the reaction mixture was poured into water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with DCM ($3 \times$ $15 \mathrm{~cm}^{3} \mathrm{~L}$). The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc/hexane 10%) to afford the desired product in 71% yield. Two isomers $7: 3 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta_{H} 2.14(2 \mathrm{H}, \mathrm{m}$, CH_{2}), 2.52/2.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.72$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.35-6.46(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.98 / 7.10(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{C} 28.2 / 30.9$, $30.3 / 34.9\left(\mathrm{CH}_{2}\right), 55.8 / 56.0\left(\mathrm{CH}_{3}\right) \times 2$, $99.2 / 99.3,104.6 / 104.8(\mathrm{CH}), 115.1 / 115.6\left(\mathrm{CH}_{2}\right), 118.9(\mathrm{C})$, 130.2/131.2, 138.0/138.6 (CH), 157.5/158.9, 160.1, 161.7/161.9 (C); IR 3228, 1596, $925 \mathrm{~cm}^{-1}$.

1-(2,4-dimethoxyphenyl)pent-4-en-1-one dioxime oxalate (4b). Mixture of 3 isomers; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ_{H} 2.06-2.70 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.71-3.81 ($12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}$), $4.97(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 5.77(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.43(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.51(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 8.16(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR δ_{C} $27.8 / 29.6 / 30.1\left(\mathrm{CH}_{2}\right) \times 2,34.4 / 34.5 / 37.0\left(\mathrm{CH}_{2}\right) \times 2$, $55.8\left(\mathrm{CH}_{3}\right) \times 4,98.6 / 98.7 / 99.8(\mathrm{CH}) \times 2$, 103.7/104.6/105.2 $(\mathrm{CH} \times 2)$, $115.7\left(\mathrm{CH}_{2}\right) \times 2$, $120.7 / 129.6 / 130.5(\mathrm{CH}) \times 2$, $121.4(\mathrm{C}) \times 2,149.1$ $(\mathrm{C}) \times 2,156.3(\mathrm{C}) \times 2,161.9(\mathrm{C}) \times 2,169.9 / 174.6(\mathrm{C}) \times 2$; IR; 2934, 1768, 1705, 1605, $1512 \mathrm{~cm}^{-1}$.

[^0]Photolysis of 2,2-dimethyl-1-phenylpent-4-en-1-one dioxime oxalate (4c). Compound 4c ($24.3 \mathrm{mg}, 0.053 \mathrm{mmol}$) and MAP (1 eq) were dissolved in cyclohexane $\left(2 \mathrm{~cm}^{3}\right)$ and the mixture was photolysed for 8 h at $85^{\circ} \mathrm{C}$. Chromatography yielded 3,4-dihydro-2,4,4-trimethyl-5-phenyl$2 H$-pyrrole $7 \mathrm{c}(35 \%),{ }^{1} \mathrm{H}$ NMR, $\delta_{\mathrm{H}} 7.64-7.7(2 \mathrm{H}, \mathrm{m}), 7.14-7.4(3 \mathrm{H}, \mathrm{m}), 4.10(1 \mathrm{H}, \mathrm{dp}, J 6.7$, 8.4), 2.11 ($2 \mathrm{H}, \mathrm{dd}, J 6.7,12.5$), $1.39(3 \mathrm{H}, \mathrm{d}, J 6.9), 1.35(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR, $\delta_{\mathrm{C}} 129.8(\mathrm{C}), 128.5$ $(\mathrm{CH}), 128.3(\mathrm{CH}), 63.7(\mathrm{CH}), 50.4(\mathrm{C}), 27.9\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right) ; m / z(\%)$ 187 (100), 131 (60), 84 (80); HRMS; $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}\left(\mathrm{MH}^{+}\right)$requires 188.1439; found 188.1432. Similar photolysis in toluene gave 7 c in 47% yield.

5-(4-Methoxyphenyl)-2-methyl-3,4-dihydro-2H-pyrrole (7a). From photolysis of 4a and MAP in toluene for 4 h at rt . Red oil; 61%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{H} 1.28(3 \mathrm{H}, \mathrm{d}, J=6.8$, $\left.\mathrm{CH}_{3}\right), 1.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 4.20(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}), 7.71(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{C} 22.2\left(\mathrm{CH}_{3}\right), 30.7,35.2\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{CH}_{3}\right), 68.2(\mathrm{CH}), 113.8(\mathrm{CH} \times 2), 127.4(\mathrm{C}), 129.3(\mathrm{CH} \times 2)$, 161.2, 171.1 (C); IR 3268, 2923, $1684 \mathrm{~cm}^{-1}$ HRMS (CI); $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}$ requires 190.1232; found 190.1238 .

5-(2,4-Dimethoxyphenyl)-2-methyl-3,4-dihydro-2H-pyrrole (7b). A solution dioxime oxalate 4b ($400 \mathrm{mg}, 0.57 \mathrm{mmol}$) and MAP ($171 \mathrm{mg}, 1.14 \mathrm{mmol}$) in toluene $\left(25 \mathrm{~cm}^{3}\right)$ was photolysed for 4 h at rt by light from a 400 W UV lamp. After this time the toluene was evaporated to dryness to give a yellow oil. The oil was purified by column chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hexane}$) to give $\mathbf{7 b}$ as a red oil 67%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{H} 1.28\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.44$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.78$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.12(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.43(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.68(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{C} 21.9$ $\left(\mathrm{CH}_{3}\right), 30.1,38.1\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{3} \times 2\right)$, $66.4(\mathrm{CH}), 98.6,105.1(\mathrm{CH}), 116.6(\mathrm{C}), 131.7(\mathrm{CH})$, 159.0, 165.8, 172.3 (C); IR 3018, 2964, $1609 \mathrm{~cm}^{-1}$ HRMS (CI); $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}$ requires 220.1338; found: 220.1337 .

2,2-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrole (7d). ${ }^{2}$ A solution dioxime oxalate 4d (250 mg , 0.57 mmol) and MAP (1 equiv.) in toluene ($15 \mathrm{~cm}^{3}$) was photolysed for 4 h at rt by light from a 400 W UV lamp. After this time the toluene was evaporated to dryness to give a yellow oil.

[^1]Chromatography failed to give pure $\mathbf{7 d}$ but it was clearly visible in the total product mixture (38% from NMR integral); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{H} 1.35\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 1.9-3.0(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, 7.3-7.6 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Benzylidene-3,4-dihydro(2H)pyrrole (9). From photolysis (5 h, rt) of 8 ($500 \mathrm{mg} ; 3.6 \mathrm{mmol}$) and MAP ($540 \mathrm{mg} ; 3.6 \mathrm{mmol}$) in toluene ($400 \mathrm{~cm}^{3}$); yellow oil (84%). ${ }^{1} \mathrm{H}$ NMR and GC-MS showed this to be a mixture of two isomers; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.45-2.75(4 \mathrm{H}, \mathrm{m}, 2$ x CH ${ }_{2}$), $5.57(1 / 2 \mathrm{H}, \mathrm{dt}, J 13.2, J 6.5, \mathrm{C}=\mathrm{CHPh}), 6.11(1 / 2 \mathrm{H}, \mathrm{dt}, J 15.9, J 4.9, \mathrm{C}=\mathrm{CHPh}), 6.44$ ($1 / 2 \mathrm{H}, \mathrm{d}, J 15.9$), $6.52(1 / 2 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{HC}=\mathrm{N})$, $7.25-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{PhH}) ; \delta_{\mathrm{C}} 18.0\left(2 \mathrm{xCH}_{2}\right)$, $24.8\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 125.9,126.7,127.6,127.9,128.1,128.8,129.0(\mathrm{ArCH}), 132.6(\mathrm{HC}=\mathrm{N})$, $133.4(\mathrm{HC=}=\mathrm{C})$ [note that several CHs overlapped]. The product was analyzed by GC/MS; peak no. 471, E - or $Z-9$ (54 \%), m / z (relative intensity); 157 (${ }^{+}, 22$), 117 (100), 102 (6), 91 (27); peak no. 502, E- or Z-9 (42 \%), m/z (relative intensity) 157 (${ }^{+}, 100$), 129 (7), 117 (73); HRMS $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}\left(\mathrm{MH}^{+}\right)$requires 158.0970; found; 158.0975 .

Methyl 3-(2,4-dimethyl-3,4-dihydro-2H-pyrrol-5-yl)propanoate (12c). From benzophenone dioxime oxalate 11c: yellow oil $61 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta_{H} 1.03 / 1.09(3 \mathrm{H}, \mathrm{d}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.10 / 1.19\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.61\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.22-2.84(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}, \mathrm{CH}_{2}\right), 3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.77 / 4.01(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{C} 16.4 / 17.1,20.7 / 21.9\left(\mathrm{CH}_{3}\right)$, 24.9/25.1, 28.7/29.4, 38.5/39.2 $\left(\mathrm{CH}_{2}\right), 43.4 / 44.5(\mathrm{CH}), 50.6\left(\mathrm{CH}_{3}\right), 64.3 / 64.7(\mathrm{CH}), 172.8,177.2$ (C); IR 1764, $1646 \mathrm{~cm}^{-1}$. Photolyses of dioxime oxalates 11a and $\mathbf{1 1 b}$ gave the product in yields of 41% and 58% (Note that 12a, 12b and 12c are the same dihydropyrrole).

Phenanthridine (18a). Yellow crystals; 67%; mp $105-107{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}^{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta_{H}$ 7.62-4.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 7.71-7.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), $8.08(1 \mathrm{H}, \mathrm{d}, J=8.1, \mathrm{CH}), 8.22(1 \mathrm{H}, \mathrm{d}, J=8.2$ $\mathrm{Hz}, \mathrm{CH}), 8.61(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, \mathrm{CH}), 8.65(1 \mathrm{H}, \mathrm{d}, J=8.3, \mathrm{CH}), 9.32(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{C} 121.7,122.1(\mathrm{CH}), 123.9,126.9(\mathrm{C}), 127.3,128.4,128.6,130.0,130.8(\mathrm{CH}), 132.3$, 144.3 (C), 153.4 (CH).

6-Methylphenanthridine (18b). Yellow crystals; 73%; mp $81-83{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{2}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta_{H} 3.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.57-7.76(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.79-7.85(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 8.11(1 \mathrm{H}, \mathrm{dd}, J=$ $8.1,1.1 \mathrm{~Hz}, \mathrm{CH}), 8.19(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{CH}), 8.51(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{CH}), 8.59(1 \mathrm{H}, \mathrm{d}, J=8.1$

[^2]$\mathrm{Hz}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{C} 23.3\left(\mathrm{CH}_{3}\right), 122.0,122.3(\mathrm{CH}), 123.8,125.9(\mathrm{C}), 126.3,126.5,127.3$, 128.6, 129.4, 130.5 (CH), 132.5, 143.7, 158.9 (C).

6-Phenylphenanthridine (18c). Yellow crystals; $59 \% ; \mathrm{mp} 104-106{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}^{2}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta_{H} 7.50-7.80(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.88(1 \mathrm{H}, \mathrm{ddd}, J=8.3,7.0,1.3 \mathrm{~Hz}, \mathrm{CH}), 8.11(1 \mathrm{H}, \mathrm{dd}, J=$ $8.3,1.3 \mathrm{~Hz}, \mathrm{CH}), 8.26(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, \mathrm{CH}), 8.64(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}), 8.72(1 \mathrm{H}, \mathrm{d}, J$ $=8.3 \mathrm{~Hz}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{C} 121.9,122.2(\mathrm{CH}), 123.7,125.2(\mathrm{C}), 126.9,127.1$ 128.4, 128.7, $128.8,128.9(\mathrm{CH}), 129.7(\mathrm{CH}) \times 2,130.2(\mathrm{CH}), 130.5(\mathrm{CH}) \times 2,133.4,139.8,143.8,161.4(\mathrm{C})$.
[1,3]Dioxolo[4,5-j]phenanthridine (trisphaeridine, 18d). Yellow solid; 59%; mp 144-146 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}_{\mathrm{NMR}}{ }^{4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta_{H} 6.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.33(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.62(1 \mathrm{H}, \mathrm{td}, J=7.5,1.5$, $\mathrm{CH}), 7.62(1 \mathrm{H}, \mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, \mathrm{CH}), 7.91(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.13(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, \mathrm{CH})$, $8.37(1 \mathrm{H}, \mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, \mathrm{CH}), 9.08(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{C} 99.9(\mathrm{CH}), 101.9\left(\mathrm{CH}_{2}\right)$, 105.5, 122.0 (CH), 123.0, 124.3 (C), 126.7, 128.0, 130.0 (CH), 130.3, 144.0, 148.2, 151.5 (C), $151.7(\mathrm{CH})$; IR; 1620, 1580, 1498, $1464 \mathrm{~cm}^{-1}$; HRMS (CI^{+}) $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NO}_{2}$ requires 224.0712; found: 224.0712.

[^3]EPR Spectra. EPR spectra were obtained with a Bruker EMX 10/12 spectrometer operating at 9.5 GHz with 100 kHz modulation. Solutions of freshly prepared dioxime oxalate (ca. 0.1-0.2 M) and 4-methoxyacetophenone (MAP, usually 2 mol equiv.) in t-butylbenzene were placed in 0.4 mm o.d. quartz tubes and deaerated by bubbling nitrogen gas for 20 min . Samples were irradiated in the resonant cavity by unfiltered light from a 500 W super pressure Hg arc. In all cases where spectra were obtained, hfs were checked with the aid of computer simulations using the Bruker SimFonia software package. Microwave power 1.0 mW ; modulation amplitude 1.0 G_{pp},

Spectra of dimethyl- and diphenyl-iminyls from 1a,b

Upper spectrum (a): Dimethyliminyl radical $\left(\mathrm{Me}_{2} \mathrm{C}=\mathrm{N} \bullet\right)$ obtained from photolysis of dioxime oxalate 1a with MAP in PhBu- t at $320 \mathrm{~K} . g=2.0034, a(\mathrm{~N})=9.8, a(6 \mathrm{H})=1.4 \mathrm{G}$. Gain 1.4×10^{6}

Lower spectrum (b): Photolysis of $\mathbf{1 b}$ at 290 K gave spectrum b containing diphenyliminyl $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N} \cdot[g=2.003, a(\mathrm{~N})=10.0 \mathrm{G}$, denoted by: $=\mathrm{N} \bullet]$ together with diphenyliminoxyl
$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{NO} \cdot[g=2.006, a(\mathrm{~N})=31.3, a(2 \mathrm{H})=1.4 \mathrm{G}$, denoted by: $=\mathrm{NO} \bullet]$. Gain 5.0×10^{5}. Note the much higher signal/noise ratio of (b) as compared to (a).

Spectra of biphenyliminyls from 15b and 15c

Upper Spectrum (a): Photolysis of 15c at 240 K gave $\operatorname{BiPhC}(\mathrm{Ph})=\mathrm{N} \cdot[g=2.003, a(\mathrm{~N})=10.1$ $\mathrm{G}]$ and $\operatorname{BiPhC}(\mathrm{Ph})=\mathrm{NO} \cdot[g=2.006, a(\mathrm{~N})=31.6, a(2 \mathrm{H})=1.5 \mathrm{G}]$

Lower Spectrum (b): Photolysis of 15b at 240 K gave $\operatorname{BiPhC}(\mathrm{Me})=\mathrm{N} \cdot[g=2.003, a(\mathrm{~N})=10.0$, $a(3 \mathrm{H}) \sim 1.3 \mathrm{G}]$ and $\operatorname{BiPhC}(\mathrm{Me})=\mathrm{NO} \cdot[g=2.006, a(\mathrm{~N})=31.8, a(3 \mathrm{H})=1.5 \mathrm{G}]$.

For literature data on these and related iminyl and iminoxyl radicals see: A. R. Forrester and F. A. Neugebauer, in Landolt-Bornstein, Magnetic Properties of Free Radicals, Vol. II9c1, eds. H. Fischer and K.-H. Hellwege, Springer-Verlag, Berlin, 1979, p. 115.

NMR Spectra of Dihydropyrroles

NMR spectra of 7a

NMR Spectra of 7b

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathbf{H}$ NMR spectrum of 9

2-Benzylidiene-3,4-Dihydro-2H-Pyrole

NMR Spectra of 12a (=12b = 12c)

[^0]: 1 J. C. Jochims, S. Hehl and S. Herzberger, Synthesis, 1990, 1128-1132.

[^1]: 2 J. Yamamoto, M. Akazome, T. Kondo and T. Mitsudo. J. Org. Chem. 1995, 60, 8328.

[^2]: 3 M. Lysen, J. L. Kristensen, P. Vedsø and M. Begtrup, Org. Lett. 2002, 4, 257-259.

[^3]: 4 R. Sanz, Y. Fernandez, M. P. Castroviejo, A. Perez and F. J. Fananas, Eur. J. Org. Chem. 2007, 62-69.

