ELECTRONIC SUPPLEMENTARY INFORMATION

Copper-Catalyzed Asymmetric Allylic Substitution with Aryl and Ethyl Grignard Reagents

Khalid B. Selim, Ken-ichi Yamada and Kiyoshi Tomioka*
Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

General.

All reactions were carried out under argon atmosphere and in flame-dried glassware unless otherwise noted. The following Grignard reagents were purchased from Aldrich as solutions in $\mathrm{Et}_{2} \mathrm{O}: \mathrm{EtMgBr}(3 \mathrm{M}), \mathrm{PhMgBr}(3 \mathrm{M}), 4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{MgBr}(2 \mathrm{M})$. Ligands 1a, 1b, 1c, $\mathbf{1 d}$ and $\mathbf{1 e}$ were prepared according to the reported procedures. ${ }^{1} \mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}, \mathrm{CuCN}$, $\mathrm{Cu}(\mathrm{OTf})_{2}$ were purchased from Wako and $(\mathrm{CuOTf})_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ was purchased from Aldrich. $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$ and CuTC were prepared according to the reported procedures. ${ }^{2}$ Column chromatography was performed using silica gel. TLC was performed using precoated silica gel plates $(0.25 \mathrm{~mm}$ thick, 60 F 254$)$ and the product was observed under UV light or with either phosphomolybdic acid or KMnO_{4} reagents. The wave numbers of maximum absorption peaks of IR spectroscopy are presented in cm^{-1}. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} at 500 and 125 MHz , respectively. Chemical shifts and coupling constants are presented in ppm δ relative to tetramethylsilane and Hz , respectively. Data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad and $\mathrm{m}=$ multiplet), coupling constants, assignment. ${ }^{13}$ C peak multiplicity assignments were made based on DEPT data. Mass spectra were recorded on a GCMS-QP5000. Optical rotations were measured on a Jasco P-1030 polarimeter with a 10 cm cell (c given in $\mathrm{g} / 100 \mathrm{~mL}$). Ee's of chiral products were determined by comparison of the GC traces of the corresponding racemic products on a chiral non-racemic stationary phase (CP-Chiralsil-Dex-CB, Betadex 120 or Chiraldex B-DM column) using a Hitachi G-3900 GC. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2} and stored with MS A4 under argon. Absolute configuration of the products was determined by comparison with previously published compounds, transformation to known compounds or analogy. The substrate 2 was purchased from TCI while $5 \mathbf{b}$ and 5c were purchased from Aldrich and used without further purification. The substrates $\mathbf{5 a}, \mathbf{5 d}$, 5e and $5 \mathbf{f}$ were prepared according to literature procedures. ${ }^{3}$

Representative procedure for the asymmetric allylic arylation reaction (Table 2, entry 18): In a test tube, was charged CuTC ($3.8 \mathrm{mg}, 0.020 \mathrm{mmol}$) and chiral ligand 1a

[^0]($15.5 \mathrm{mg}, 0.044 \mathrm{mmol}$) and suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$. The mixture was stirred at rt for 30 min , followed by addition of $5 \mathbf{5 a}(0.191 \mathrm{mg}, 1.0 \mathrm{mmol})$ at rt and stirred for 10 min before cooled to $-78{ }^{\circ} \mathrm{C}$. The $\mathrm{PhMgBr}\left(0.43 \mathrm{~cm}^{3}\right.$ of $3.0 \mathrm{M} \mathrm{Et}_{2} \mathrm{O}$ solution, 1.3 mmol$)$ diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ was added over 4 h using a syringe pump. Once the addition was complete, the reaction mixture was stirred for further 30 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched with aqueous $\mathrm{HCl}\left(10 \%, 2 \mathrm{~cm}^{3}\right)$ and then the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}\left(6 \mathrm{~cm}^{3}\right)$. The aqueous phase was separated and further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3$ $\left.\mathrm{cm}^{3}\right)$. The combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}\left(4 \mathrm{~cm}^{3}\right)$ and brine $\left(6 \mathrm{~cm}^{3}\right)$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Conversion and regioselectivity were determined by achiral GC analysis, DB-1 ($30 \mathrm{~m} \times$ 0.25 mm), initial temp. $35^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} / \mathrm{min}$, final temp. $160^{\circ} \mathrm{C}$. GC analysis was carried out with a part of the etherial extract passed through a short plug of silica gel to remove transition metal residues.

(-)-(R)-3-Phenyl-1-pentene (6a) ${ }^{4}$ (Table 3, entry 1): The resulting pale yellow oil was purified by column chromatography (pentane, then pentane: $\mathrm{Et}_{2} \mathrm{O} 50: 1$) to afford a $76: 24$ mixture of $\mathbf{6 a}$ and $\mathbf{7 a}(187 \mathrm{mg}, 99 \%)$ as colorless oil; $\mathbf{6 a}: 81 \%$ ee; $[\alpha]^{20}{ }_{\mathrm{D}}$ 20.8 (c 1.52, CHCl_{3}); IR (neat): 3078, 3024, 2924, 1635, 1605, 1458, 1381, 910, $702,{ }^{1} \mathrm{H}$ NMR: $0.86\left(3 \mathrm{H}, \mathrm{t}, J=7.0, \mathrm{CH}_{3}\right), 1.25-1.30\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathbf{C H}_{2} \mathrm{CH}_{2}\right), 1.66-1.72(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 3.23(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.3, \mathrm{CH}), 5.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.01(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.54\left(1 \mathrm{H}, \mathrm{ddd}, J=7.6,10.4,18.0, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.17-7.19(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.27-$ $7.31(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR: $14.0\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 35.4$ $\left(\mathrm{CH}_{2}\right), 49.9(\mathrm{CH}), 113.8\left(\mathrm{CH}_{2}\right), 126.1(\mathrm{CH}), 127.6(\mathrm{CH}), 128.4(\mathrm{CH}), 142.6(\mathrm{CH}), 144.8$ (C); EI-MS m/z: 188 (M ${ }^{+}, 0.3 \%$), 121 (2), 117 (5), 88 (36), 84 (100). Enantioselectivity was determined by chiral GC analysis, CP-Chiralsil-Dex-CB ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$), initial temp. $40^{\circ} \mathrm{C}$ for $20 \mathrm{~min}, 2^{\circ} \mathrm{C} / \mathrm{min}$, final temp. $70^{\circ} \mathrm{C}$, retention times (min): 120 (major) and 123 (minor).

(-)-(R)-3-Phenyl-1-pentene (6b) ${ }^{5}$ (Table 3, entry 2): The resulting pale yellow oil was purified by column chromatography (pentane) to afford an $85: 15$ mixture of $\mathbf{6 b}$ and $\mathbf{7 b}(146 \mathrm{mg}, 100 \%)$ as colorless oil; $\mathbf{6 b}: 67 \%$ ee; $[\alpha]^{22}{ }_{\mathrm{D}}-32.3$ (c 1.41, benzene); IR (neat): 3026, 2960, 2926, 1636, 1601, 1491, 1452, 1377, 912, 698; ${ }^{1} \mathrm{H}$ NMR: 0.87 (3H, $\left.\mathrm{t}, J=7.3, \mathrm{CH}_{3}\right), 1.67-1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.14(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.3, \mathrm{CH}), 5.02(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.95\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.18-7.19(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR: $12.1\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{2}\right), 51.7(\mathrm{CH}), 114.0\left(\mathrm{CH}_{2}\right), 126.1$

[^1]$(\mathrm{CH}), 127.7(\mathrm{CH}), 128.4(\mathrm{CH}), 142.3(\mathrm{CH}), 144.5(\mathrm{C}) ;$ GC-MS m/z: $147(\mathrm{M}+1,1 \%), 146$ ($\mathrm{M}^{+}, 10 \%$), 117 (100), 91 (36), 78 (58), 63 (14). Enantioselectivity was determined by chiral GC analysis, Betadex $120(25 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m})$, temp. $60^{\circ} \mathrm{C}$ constant, retention times (min): 49 (major) and 50 (minor).

(-)-(R)-1-Bromo-2-phenyl-3-butene (6c) (Table 3, entry 3): The resulting pale yellow oil was purified by careful column chromatography (pentane, then pentane: $\mathrm{Et}_{2} \mathrm{O} 50: 1$) to afford $\mathbf{6 c}(188 \mathrm{mg}, 89 \%)$ along with a mixture of 3,4-diphenylbut1 -ene and (E)-1,4-diphenylbut-2-ene ($5: 7,25.7 \mathrm{mg}$) all as colorless oil.

6c (isolated): 80% ee; $[\alpha]^{20}{ }_{\mathrm{D}}-25.0$ (c 1.15, CHCl_{3}); IR (neat): 3028, 2957, 1643, 1601, 1493, 1452, 989, 922, 700; ${ }^{1}$ H NMR: 3.62 ($1 \mathrm{H}, \mathrm{dd}, J=7.6,10.1, \mathrm{BrCH}_{2}$), $3.64(1 \mathrm{H}, \mathrm{dd}$, $\left.J=6.7,10.1, \mathrm{BrCH}_{2}\right), 3.70(1 \mathrm{H}, \mathrm{dt}, J=6.7,7.3, \mathrm{CH}), 5.15(1 \mathrm{H}, \mathrm{ddd}, J=1.2,1.2,17.3$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.21\left(1 \mathrm{H}, \mathrm{ddd}, J=1.2,1.2,10.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.02(1 \mathrm{H}, \mathrm{ddd}, J=7.3,10.4,17.3$, $\left.\mathbf{C H}=\mathrm{CH}_{2}\right), 7.20-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR: $36.3\left(\mathrm{CH}_{2}\right), 51.8(\mathrm{CH}), 117.1\left(\mathrm{CH}_{2}\right)$, $127.2(\mathrm{CH}), 127.7(\mathrm{CH}), 128.7(\mathrm{CH}), 138.5(\mathrm{CH}), 141.3(\mathrm{C}) ;$ GC-MS m/z: $212(\mathrm{M}+2$, 1\%), $210\left(\mathrm{M}^{+}, 1 \%\right), 160$ (1), 129 (10), 117 (36), 83 (16), 77 (8), 40 (100). HRMS (EI) $\mathrm{m} / \mathrm{z}: \mathrm{M}^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Br}, 210.0044$; found, 210.0045. Enantioselectivity was determined by chiral GC analysis, Chiraldex B-DM ($25 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$), constant temp. $100^{\circ} \mathrm{C}$, retention times (min): 23 (major) and 26 (minor).

3,4-Diphenybut-1-ene ${ }^{6}$: ${ }^{1} \mathrm{H}$ NMR: $3.00(1 \mathrm{H}, \mathrm{dd}, J=7.3,13.4$, $\left.\mathrm{PhCH}_{2}\right), 3.04\left(1 \mathrm{H}, \mathrm{dd}, J=7.6,13.4, \mathrm{PhCH}_{2}\right), 3.57(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.95(1 \mathrm{H}, \mathrm{ddd}, J=1.5$, $\left.1.5,17.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.02\left(1 \mathrm{H}, \mathrm{ddd}, J=1.5,1.5,10.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.03(1 \mathrm{H}, \mathrm{ddd}, J=7.3$, $\left.10.4,17.4, \mathbf{C H}=\mathrm{CH}_{2}\right), 7.05-7.31(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR: $42.1\left(\mathrm{CH}_{2}\right), 51.5(\mathrm{CH}), 114.7$ $\left(\mathrm{CH}_{2}\right), 125.9(\mathrm{CH}), 126.3(\mathrm{CH}), 127.8(\mathrm{CH}), 128.1(\mathrm{CH}), 128.4(\mathrm{CH}), 129.2(\mathrm{CH}), 140.1$ (C), $141.4(\mathrm{CH}), 143.7$ (C).

(E)-1,4-Diphenylbut-2-ene ${ }^{7}$: ${ }^{1} \mathrm{H}$ NMR: $3.38(4 \mathrm{H}, \mathrm{dd}, J=1.5$, 3.7, CH_{2}), $5.69(2 \mathrm{H}, \mathrm{tt}, J=1.5,3.7, \mathrm{CH}), 7.13-7.31$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

[^2]
(-)-(R)-1-Bromo-2-(4-fluorophenyl)-3-butene (6d) (Table 3, entry 4): The resulting pale yellow oil was purified by careful column chromatography (pentane, then pentane: $\left.\mathrm{Et}_{2} \mathrm{O} 50: 1\right)$ to afford $\mathbf{6 d}(185 \mathrm{mg}, 81 \%)$ along with a mixture of 3,4 -bis $(4-$ fluoropheny)but-1-ene and (E)-1,4-bis(4-fluorophenyl)but-2-ene (10:9, 46 mg) all as colorless oil.

6d (isolated): 72% ee; $[\alpha]^{20}{ }_{\mathrm{D}}-19$ (c $0.51, \mathrm{CHCl}_{3}$); IR (neat): $3082,2959,1637,1603$, $1508,1220,1159,924,833,{ }^{1} \mathrm{H}$ NMR: $3.57\left(1 \mathrm{H}, \mathrm{dd}, J=7.3,10.1, \mathrm{BrCH}_{2}\right), 3.62(1 \mathrm{H}, \mathrm{dd}$, $\left.J=7.3,10.1, \mathrm{BrCH}_{2}\right), 3.70(1 \mathrm{H}, \mathrm{dt}, J=7.3,7.3, \mathrm{CH}), 5.13(1 \mathrm{H}, \mathrm{ddd}, J=1.2,1.2,17.1$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.21\left(1 \mathrm{H}\right.$, ddd, $\left.J=1.2,1.2,10.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.99(1 \mathrm{H}, \mathrm{ddd}, J=7.3,10.4,17.1$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 7.01-7.05(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.16-7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR: $36.2\left(\mathrm{CH}_{2}\right)$, $50.9(\mathrm{CH}), 115.6(\mathrm{~d}, J=21, \mathrm{CH}), 117.2\left(\mathrm{CH}_{2}\right), 129.2(\mathrm{~d}, J=8, \mathrm{CH}), 129.3(\mathrm{CH}), 136.9(\mathrm{~d}$, $J=3, \mathrm{C}), 138.3(\mathrm{CH}), 162.0(\mathrm{~d}, J=245, \mathrm{C}), 162.9(\mathrm{C}) ;$ GC-MS m/z: $230(\mathrm{M}+2,1 \%), 228$ $\left(\mathrm{M}^{+}, 1 \%\right), 160(1), 135$ (29), 109 (11), 83 (13), 40 (100). HRMS (EI) m/z: M^{+}calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrF}, 227.9950$; found, 227.9940 . Enantioselectivity was determined by chiral GC analysis, Betadex $120(25 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m})$, initial temp. $100{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}, 1$ ${ }^{\circ} \mathrm{C} / \mathrm{min}$, final temp. $130^{\circ} \mathrm{C}$, retention times (min): 33 (major) and 34 (minor).

3,4-Bis(4-fluoropheny)but-1-ene: ${ }^{1} \mathrm{H}$ NMR: $2.90(1 \mathrm{H}, \mathrm{dd}, J=7.9$, $\left.13.4, \mathrm{ArCH}_{2}\right), 3.01\left(1 \mathrm{H}, \mathrm{dd}, J=7.3,13.4, \mathrm{ArCH}_{2}\right), 3.50(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.97(1 \mathrm{H}$, ddd, $J=$ $\left.1.3,1.3,17.1, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.05\left(1 \mathrm{H}, \mathrm{ddd}, J=1.3,1.3,10.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.99(1 \mathrm{H}$, ddd,$J=$ $\left.7.0,10.4,17.1, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.87-7.14(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

(E)-1,4-Bis(4-fluorophenyl)but-2-ene: ${ }^{1} \mathrm{H}$ NMR: $3.33\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.62(2 \mathrm{H}, \mathrm{tt}, J=1.6,3.7, \mathrm{CH}), 6.87-7.14(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

(+)-(S)-4-Benzyloxy-3-phenyl-1-butene (6e) (Table 3, entry 5): The resulting pale yellow oil was purified by column chromatography (pentane, then
pentane: $\left.\mathrm{Et}_{2} \mathrm{O} 50: 1 \sim 20: 1\right)$ to afford a $66: 34$ mixture of $\mathbf{6 e}$ and $7 \mathbf{7 e}(238 \mathrm{mg}, 100 \%)$ as colorless oil; 6e (isolated): 34% ee; $[\alpha]^{20}{ }_{\text {D }}+13$ (c 0.97, CHCl_{3}); IR (neat): 3034, 2856, 1639, 1601, 1497, 1454, 1101, 916, 698; ${ }^{1} \mathrm{H}$ NMR: $3.64-3.75$ (3H, m, OCH ${ }_{2} \mathrm{CH}$), 4.52 $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.11\left(1 \mathrm{H}, \mathrm{ddd}, J=1.2,1.2,17.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.14(1 \mathrm{H}, \mathrm{d}, J=1.2,1.2$, $\left.10.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.05\left(1 \mathrm{H}, \mathrm{ddd}, J=7.0,10.4,17.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.21-7.33(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR: $49.7(\mathrm{CH}), 73.0\left(\mathrm{CH}_{2}\right), 73.6\left(\mathrm{CH}_{2}\right), 116.0\left(\mathrm{CH}_{2}\right), 126.6(\mathrm{CH}), 127.5(\mathrm{CH})$, $127.6(\mathrm{CH}), 128.1(\mathrm{CH}), 128.4(\mathrm{CH}), 128.5(\mathrm{CH}), 138.4(\mathrm{C}), 139.1(\mathrm{CH}), 141.5(\mathrm{C}) ; \mathrm{GC}-$ MS $m / z: 238\left(\mathrm{M}^{+}, 0.5 \%\right), 208$ (1), 132 (12), 117 (99), 104 (16), 91 (100). HRMS (EI) $\mathrm{m} / \mathrm{z}: \mathrm{M}^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}, 238.1358$; found, 238.1360. Enantioselectivity was determined by chiral GC analysis after debenzylation (vide infra).

Determination of the enantioselectivity of $\mathbf{6 e}$.

(+)-(S)-2-Phenylbut-3-en-1-ol: ${ }^{8}$ To a solution of $\mathbf{6 e}(35.7 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{BCl}_{3}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.3 \mathrm{~cm}^{3}, 0.3$ mmol) dropwise. Upon complete addition the solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$, stirred for 1 h , treated with methanol $\left(0.5 \mathrm{~cm}^{3}\right)$, diluted with saturated $\mathrm{NaHCO}_{3}\left(2 \mathrm{~cm}^{3}\right)$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 4 \mathrm{~cm}^{3}\right)$. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The resulting pale yellow oil was purified by column chromatography (pentane: $\mathrm{Et}_{2} \mathrm{O} 2: 1$) to afford the corresponding alcohol (21.3 mg , 96%) as colorless oil; 34% ee; $[\alpha]^{26}{ }_{\mathrm{D}}+19\left(c 0.81, \mathrm{CHCl}_{3}\right.$); IR (neat): 3369 (br), 3028, 2928, 1637, 1601, 1493, 1452, 1055, 1030, 918, 756, 700; ${ }^{1}$ H NMR: 1.45 ($1 \mathrm{H}, \mathrm{t}, J=6.1$, $\mathrm{OH}), 3.54(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}) 3.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.20\left(1 \mathrm{H}, \mathrm{ddd}, J=1.2,1.6,17.1, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.22\left(1 \mathrm{H}, \mathrm{ddd}, J=1.2,1.6,10.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.02\left(1 \mathrm{H}, \mathrm{ddd}, J=7.6,10.4,17.1, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 7.24-7.27 (3H, m, ArH), 7.33-7.36 (2H, m, ArH); ${ }^{13} \mathrm{C}$ NMR: $52.5(\mathrm{CH}), 66.0\left(\mathrm{CH}_{2}\right)$, $117.1\left(\mathrm{CH}_{2}\right)$, $127.0(\mathrm{CH}), 128.0(\mathrm{CH}), 128.8(\mathrm{CH}), 138.3(\mathrm{CH}), 140.7(\mathrm{C})$. Enantioselectivity was determined by chiral GC analysis, Betadex $120(25 \mathrm{~m} \times 0.25 \mathrm{~mm}$ $\times 0.25 \mu \mathrm{~m}$), initial temp. $100^{\circ} \mathrm{C}, 10 \mathrm{~min}, 1^{\circ} \mathrm{C} / \mathrm{min}$, final temp. $130^{\circ} \mathrm{C}$, retention times (min): 33 (major) and 32 (minor).

(+)-(R)-1-Chloro-4-(1-phenylallyl)benzene (6f) (Table 3, entry 6):
The resulting pale yellow oil was purified by column chromatography (pentane: $\mathrm{Et}_{2} \mathrm{O}$ 20:1) to afford an $18: 82$ mixture of $\mathbf{6 f}$ and $7 \mathrm{f}(229 \mathrm{mg}, 100 \%)$ as colorless oil; $\mathbf{6 f}$ (isolated): 71% ee; $[\alpha]^{21}{ }_{\mathrm{D}}+5.6$ (c $0.50, \mathrm{CHCl}_{3}$); IR (neat): 3026, 2918, 1636, 1601, 1489, 1090, 1015, 914, 739, 700; ${ }^{1}$ H NMR: 4.70 (1 H, brd, $J=7.0, \mathrm{CH}$), 4.98 (1 H , ddd, $J=1.2$, $1.2,17.1, \mathrm{CH}=\mathrm{CH}_{2}$), $5.24\left(1 \mathrm{H}, \mathrm{ddd}, J=1.2,1.2,10.1, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.26(1 \mathrm{H}, \mathrm{ddd}, J=7.0$,

[^3]10.1, 17.1, CH=CH2 $), 7.11(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{ArH}), 7.16(2 \mathrm{H}, \mathrm{d}, J=7.0, \mathrm{ArH}), 7.21-7.32$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR: $54.3(\mathrm{CH}), 116.8\left(\mathrm{CH}_{2}\right), 126.6(\mathrm{CH}), 128.5(\mathrm{CH} \times 6), 130.0$ $(\mathrm{CH} \times 2), 132.2(\mathrm{C}), 140.2(\mathrm{CH}), 141.8(\mathrm{C}), 142.8(\mathrm{C}) ;$ GC-MS m/z: $230(\mathrm{M}+2,6 \%), 229$ $(\mathrm{M}+1,5), 228\left(\mathrm{M}^{+}, 21\right), 193$ (50), 178 (26), 165 (29), 115 (100). HRMS (EI) m/z: M ${ }^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}, 228.0706$; found, 228.0699. Enantioselectivity was determined by chiral GC analysis, Chiraldex B-DM ($25 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$), initial temp. $60^{\circ} \mathrm{C}$, $0.5^{\circ} \mathrm{C} / \mathrm{min}$, final temp. $130^{\circ} \mathrm{C}$, retention times (min): 153 (major) and 154 (minor).

(+)-(R)-1-(1-Phenylprop-2-enyl)-4-(trifluoromethyl)benzene
($6 \mathbf{g}$) (Table 3, entry 7): The resulting pale yellow oil was purified by column chromatography (pentane, then pentane: $\mathrm{Et}_{2} \mathrm{O} 50: 1$) to afford a $16: 84$ mixture of $\mathbf{6 g}$ and $\mathbf{7 g}$ ($243 \mathrm{mg}, 93 \%$) as colorless oil; $\mathbf{6 g}$ (isolated): 77% ee; $[\alpha]^{21}{ }_{\mathrm{D}}+5.6$ (c $0.50, \mathrm{CHCl}_{3}$); IR (neat): $3030,2926,1636,1616,1601,1416,1325,1165,1124,1068,921,739,700 ;{ }^{1} \mathrm{H}$ NMR: $4.78(1 \mathrm{H}, \mathrm{d}, J=7.3, \mathrm{CH}), 4.99\left(1 \mathrm{H}, \mathrm{d}, J=17.1, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.26(1 \mathrm{H}, \mathrm{d}, J=10.1$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.28\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.3,10.1,17.1, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.17(2 \mathrm{H}, \mathrm{d}, J=7.1, \mathrm{ArH})$, 7.22-7.56 (7H, m, ArH); ${ }^{13} \mathrm{C}$ NMR: $54.7(\mathrm{CH}), 117.2\left(\mathrm{CH}_{2}\right), 124.3\left(\mathrm{q}, J=271, \mathrm{CF}_{3}\right)$, $125.4(\mathrm{q}, J=3, \mathrm{CH}), 126.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.7(\mathrm{q}, J=32, \mathrm{C}), 128.7(\mathrm{CH}), 129.0$ (CH), 139.8 (CH), 142.4 (C), 147.4 (C); EI-MS m/z: 263 (M+1, 3\%), $262\left(\mathrm{M}^{+}, 21\right), 193$ (30), 178 (13), 165 (19), 115 (44), 84 (100). HRMS (EI) $\mathrm{m} / \mathrm{z}: \mathrm{M}^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3}$, 262.0969; found, 262.0970. Enantioselectivity was determined by chiral GC analysis, Chiraldex B-DM ($25 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$), initial temp. $60^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C} / \mathrm{min}$, final temp. $120^{\circ} \mathrm{C}$, retention times (min): 70 (major) and 71 (minor).

Determination of absolute configuration of 6 c and $\mathbf{6 e}$.

(-)-(R)-3-Phenyl-1-butene (8): In a flask containing Mg turnings ($17 \mathrm{mg}, 0.60$ mmol) suspended in dry THF $\left(1 \mathrm{~cm}^{3}\right)$, $\mathbf{6 c}(63 \mathrm{mg}, 0.30 \mathrm{mmol})$ in dry THF $\left(1.5 \mathrm{~cm}^{3}\right)$ was added dropwise over 15 min at $80^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature
for 1 h , then transferred by canula to aqueous $10 \% \mathrm{HCl}\left(2 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}\left(6 \mathrm{~cm}^{3}\right)$. The aqueous phase was separated and further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 4$ $\left.\mathrm{cm}^{3}\right)$. The combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}\left(2 \mathrm{~cm}^{3}\right)$ and brine $\left(3 \mathrm{~cm}^{3}\right)$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The resulting residue was purified by careful column chromatography (pentane) to afford 8 $(7.0 \mathrm{mg}, 18 \%)$ as colorless oil; 8: 77% ee; $[\alpha]^{22}{ }_{\mathrm{D}}-3.6\left(c 0.69, \mathrm{CHCl}_{3}\right)$, lit. $[\alpha]^{22}{ }_{\mathrm{D}}-2.2$ (c $\left.0.74, \mathrm{CHCl}_{3}\right) ;{ }^{9}$ IR (neat): $3026,2924,1637,1601,1493,1452,912,760,700 ;{ }^{1} \mathrm{H}$ NMR: $1.36\left(3 \mathrm{H}, \mathrm{d}, J=7.0, \mathrm{CH}_{3}\right), 3.47(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}) 5.02-5.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.01(1 \mathrm{H}, \mathrm{ddd}$, $\left.J=6.4,10.4,16.8, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.18-7.23(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.28-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. Enantioselectivity was determined by chiral GC analysis, Betadex $120(25 \mathrm{~m} \times 0.25 \mathrm{~mm})$, initial temp. $100^{\circ} \mathrm{C}, 10 \mathrm{~min}, 1^{\circ} \mathrm{C} / \mathrm{min}$, final temp. $130^{\circ} \mathrm{C}$, retention times (min): 47 (major) and 49 (minor).

(+)-(S)-2-Phenylbutan-1-ol (9): To a solution of $\mathbf{6 e}(23.8 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ in $\mathrm{EtOH}\left(1 \mathrm{~cm}^{3}\right)$ was added $5 \% \mathrm{Pd}-\mathrm{C}(22 \mathrm{mg}, 0.010 \mathrm{mmol})$ at room temperature, and the reaction mixture was stirred under hydrogen atmosphere at the same temperature for 2 h . The catalyst was removed by passing the reaction mixture through a short silica gel pad, which was successively washed with $\mathrm{Et}_{2} \mathrm{O}$. The solvent was removed under vacuum to afford $9(15 \mathrm{mg}, 100 \%)$ as pure colourless oil; 9: $31 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}^{23}+5.2(c 0.68$, CHCl_{3}), lit. $[\alpha]_{\mathrm{D}}^{23}-15.0 \pm 2.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for (R)-isomer; ${ }^{10}$ IR (neat): 3307 (br), 3026, 2960, 1601, 1493, 1452, 1377, 1038, 760, 700; ${ }^{1} \mathrm{H}$ NMR: $0.84\left(3 \mathrm{H}, \mathrm{t}, J=6.4, \mathrm{CH}_{3}\right), 1.30$ $(1 \mathrm{H}$, brs, OH$), 1.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.69(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.72$ $\left(1 \mathrm{H}, \mathrm{dd}, J=7.9,10.9, \mathrm{CH}_{2} \mathrm{OH}\right), 3.78\left(1 \mathrm{H}, \mathrm{dd}, J=5.8,10.9, \mathrm{CH}_{2} \mathrm{OH}\right), 7.12-7.35(5 \mathrm{H}, \mathrm{m}$, ArH); ${ }^{13} \mathrm{C}$ NMR: $11.9\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{2}\right), 50.5(\mathrm{CH}), 67.3\left(\mathrm{CH}_{2}\right), 126.7(\mathrm{CH}), 128.1(\mathrm{CH})$, $128.7(\mathrm{CH}), 142.3(\mathrm{C})$. Enantioselectivity was determined by chiral GC analysis, Betadex $120(25 \mathrm{~m} \times 0.25 \mathrm{~mm})$, initial temp. $100^{\circ} \mathrm{C}, 10 \mathrm{~min}, 1{ }^{\circ} \mathrm{C} / \mathrm{min}$, final temp. $130{ }^{\circ} \mathrm{C}$, retention times (min): 32 (minor) and 33 (major).

[^4]
[^0]: 1 For 1a and 1b: (a) M. Kanai, Y. Nakagawa and K. Tomioka, Tetrahedron, 1999, 55, 3843; for 1c and 1d: (b) M. Kuriyama, T. Soeta, X. Hao, Q. Chen and K. Tomioka, J. Am. Chem. Soc., 2004, 126, 8128; for 1e: (c) T. Soeta, K. Nagai, H. Fujihara, M. Kuriyama and K. Tomioka, J. Org. Chem., 2003, 68, 9723.
 2 For $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$: (a) A. Hetherington, W. Levason and M. D. Spicer, Polyhedron, 1990, 9, 1609; for CuTC: (b) G. D. Allred and L. S. Liebeskind, J. Am. Chem. Soc., 1996, 118, 2748.

 3 For 5a: (a) K. A. Tallman, B. Roschek, Jr., and N. A. Porter, J. Am. Chem. Soc., 2004, 126, 9240; for 5d: (b) G. Kottirsch, G. Koch, R. Feifel, and U. Neumann, J. Med. Chem., 2002, 45, 2289; for 5e and 5f: (c) A. W. van Zijl, L. A. Arnold, A. J. Minnaard and B. L. Feringa, Adv. Synth. Catal., 2004, 346, 413.

[^1]: 4 (a) R. Y. Mixer and W. G. Young, J. Am. Chem. Soc., 1956, 78, 3379; (b) F. Dübner and P. Knochel, Tetrahedron Lett., 2000, 41, 9233.
 5 (a) T. Hayashi, T. Hagihara, Y. Katsuro and M. Kumada, Bull. Chem. Soc. Jpn., 1983, 56, 363; (b) C. A. LuchacoCullis, H. Mizutani, K. E. Murphy and A. H. Hoveyda, Angew. Chem. Int. Ed., 2001, 40, 1456.

[^2]: 6 B. G. James and G. Pattenden, J. Chem. Soc., Perkin Trans. 1, 1974, 1204.
 7 B. B. Snider and A. C. Jackson, J. Org. Chem., 1983, 48, 1471.

[^3]: 8 T. Miura, Y. Takahashi and M. Murakami, Chem. Commun., 2007, 595.

[^4]: 9 (a) T. Hayashi, M. Konishi, M. Fukushima, K. Kanehira, T. Hioki, M. Kumada, J. Org. Chem., 1983, 48, 2195; (b) M. Kawatsura, Y. Uozumi, M. Ogasawara, T. Hayashi, Tetrahedron, 2000, 56, 2247.

 10 S. Matsubara, H. Yamamoto and K. Oshima, Angew. Chem. Int. Ed., 2002, 41, 2837.

