Electronic Supplementary Information

Phase Transition and Conductive Acceleration of Phosphonium-Cation Based Room-Temperature Ionic Liquid

Shiro Seki,^{*,†} Yasuhiro Umebayashi,[‡] Seiji Tsuzuki,[§] Kikuko Hayamizu,[§] Yo Kobayashi,[†] Yasutaka Ohno,[†] Takeshi Kobayashi,[†] Yuichi Mita,[†] Hajime Miyashiro,[†] Nobuyuki Terada[†] and Shin-ichi Ishiguro[‡]

[†]Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan [‡]Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashi-ku,

Fukuoka 812-8581, Japan

[§]National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Center, Tsukuba, Ibaraki 305-8565, Japan

Figure ESI1: Chemical structure of TEMEP-TFSA.

Figure ESI2: Arrhenius plots of the ionic conductivity (σ) for the TEMEP-TFSA.

Figure ESI3: DSC thermogram of TEMEP-TFSA (Blue: cooling, Red: heating).

Figure ESI4: Calculated relative energies of rotamers at the MP2/6-311G**//HF/6-311G** level (kcal/mol) for the TEMMP-TFSA.

Figure ESI5: Arrhenius plots of the viscosity (η) for the TEMMP-TFSA.

Figure ESI6: The ¹H NMR spectra for (a) ionic liquid (phase (I)), (b) phases (II) and (c) (III). The dependence of spectral patterns on temperature was only a little in the phases (I) and (II), while in the phase (III) the signal intensity decreased with the decrease of temperature and disappeared below -40 °C. The same measuring conditions were used in the phases (II) and (III), and the reduction in the phase (III) suggests partial freeze to solid.