Supporting Information

Kohsuke Aikawa, Yūki Takabayashi, Susumu Kawauchi, and

Koichi Mikami*

[*] Prof. Dr. K. Mikami

Department of Applied Chemistry

Graduate School of Science and Engineering

Tokyo Institute of Technology

Ookayama, Meguro-ku, Tokyo 152-8552 (Japan)

FAX: (+81)3-5734-2776

e-mail: mikami.k.ab@m.titech.ac.jp

General:

¹H, ¹³C, and ³¹P NMR spectra were measured on Bruker AV300M (300 MHz) spectrometer. Chemical shift of ¹H NMR was expressed in parts per million downfield from tetramethylsilane as an internal standard ($\delta = 0$) in CDCl₃. Significant ¹H NMR data were tabulated in the following order: multiplicity (s: singlet; d: doublet; t: triplet; q: quartet; br: broad; m: multiplet) and coupling constants (*J*) are reported (Hz). Chemical shifts of ¹³C NMR were expressed in parts per million downfield from CDCl₃ as an internal standard ($\delta = 77.0$) in CDCl₃. Chemical shifts of ³¹P NMR were expressed in parts per million downfield from 85% H₃PO₄ as an external standard ($\delta = 0$) in CDCl₃.

Analytical thin layer chromatography (TLC) was performed on a glass plates pre-coated with silica-gel (Merck Kieselgal 60 F_{254} , layer thickness 0.25 mm). Visualization was accomplished by UV light (254 nm), anisaldehyde, KMnO₄. Column chromatography was performed on KANTO Silica Gel 60N (spherical, neutral).

Capillary gas chromatographic analysis (GC) was conducted on Shimadzu GC-14B instrument equipped with FID detector and capillary column coated with PEG-20 M by using N_2 as a carrier gas. Peak area was calculated by Shimadzu C-R6A as an automatic integrator. CP-Chirasil-Dex CB (i.d. 0.25 mm x 25 m, CHROMPACK; GL Science) was used as a chiral column.

Optical rotations were measured on a JASCO DIP-370.

IR spectra were measured on a JASCO FT/IR-4200 spectrometer.

Elemental analyses were measured on a LECO CHNS-932 (Center for Advanced Materials Analysis in Tokyo Institute of Technology).

 C_1 -diene (2)

To a mixture of 3,5-dimethylphenylboronic acid (112.5 mg, 0.75 mmol) and trifluoromethanesulfonic acid 8-methoxy-1,8-dimethyl-bicyclo[2.2.2]octa-2,5-dien-2-yl ester¹ (156.2 mg, 0.5 mmol) in THF (8.0 mL) and 2.0M K₂CO₃/H₂O (8.0 mL) was added Pd(PPh₃)₄ (11.6 mg, 0.01 mmol). The reaction mixture was refluxed for 18 h. After cooling to room temperature, THF was evaporated under reduced pressure. The solution was extracted with ether 3 times. The organic layer was washed with brine, and then dried over NaSO₄. After evaporated under reduced pressure, the residue was purified by silica-gel chromatography (hexane/ethyl acetate = 10/1) to give diene **2** (yield 82%).

¹H NMR (300 MHz, CDCl₃) δ 1.320 (s, 3H), 1.324 (d, J = 11.7 Hz, 1H), 1.34 (s, 3H), 1.65 (d, J = 11.7, 1H), 2.32 (s, 6H), 3.24 (s, 3H), 3.64 (td, J = 6.3, 1.2 Hz, 1H), 6.16 (td, J = 6.0, 1.2 Hz, 2H), 6.39 (t, J = 6.9 Hz, 1H), 6.78 (s, 2H), 6.90 (s, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 21.24, 21.71, 24.77, 45.33, 47.59, 49.86, 50.70, 84.09, 126.23, 128.09, 130.85, 134.06, 136.94, 139.49, 141.71, 150.05.

 $[\alpha]_D^{20} = -22.3$ (c = 0.36 in CHCl₃).

 C_2 '-diene (3)²

The titled compound was prepared according to the reported procedure.²

¹H NMR (300 MHz, CDCl₃) δ 1.34 (s, 3H), 1.36 (s, 3H), 1.50 (d, *J* = 12.0 Hz, 1H), 1.63 (d, *J* = 12.0 Hz, 1H), 3.29 (s, 3H), 3.40 (dd, *J* = 6.6, 1.8 Hz, 1H), 3.52 (dd, *J* = 15.9, 1.8 Hz, 1H), 3.77 (d, *J* = 15.9 Hz, 1H), 5.85 (s, 1H), 6.07 (d, *J* = 6.6 Hz, 1H), 7.11-7.14 (m, 2H), 7.20-7.37 (m, 8H).

¹³C NMR (75 MHz, CDCl₃) δ 22.09, 25.13, 41.12, 45.18, 50.40, 50.87, 51.22, 84.07, 126.06, 126.72, 127.88, 128.12, 128.35, 129.32, 131.61, 133.35, 139.67, 147.14, 152.02. Anal. Calcd for $C_{14}H_{26}O$: C, 87.23; H, 7.93%. Found: C, 87.09; H, 8.22%.

[Rh(biphep)(cod)](SbF₆) (1a-Rh/cod)

To a mixture of $[Rh(cod)_2]SbF_6$ and BIPHEP **1a** (1.0 eq.) was added dry dichloromethane under argon atmosphere, and stirred for 1 h at room temperature. After evaporation under reduced pressure, the resultant residue was washed with a few ml of Et₂O 3 times and dried *in vacuo* to give the titled compound quantitatively as orange powder.

¹H NMR (300 MHz, CDCl₃)δ2.02 (m, 2H), 2.19 (m, 2H), 2.51 (m, 2H), 2.76 (m, 2H), 4.62

(m, 2H), 4.70 (m, 2H), 6.34 (m, 2H), 6.80-7.20 (m, 8H), 7.44-7.70 (m, 18H). ³¹P NMR (121 MHz, CDCl₃) δ 24.8 (d, J_{Rh-P} = 145.0 Hz).

[Rh(cod)₂](BAr_F)

To a solution of $[Rh(cod)Cl]_2$ (100 mg, 0.2 mmol) in dry dichloromethane (3.0 mL) was added solid NaBAr_F (363 mg, 0.41 mmol). Addition of 1,5-cyclooctadiene (0.075 ml, 0.6 mmol) to the orange reaction mixture resulted in immediate formation of a dark red suspension, which was stirred for 30 min at room temperature, and then filtered through a plug of Celite[®]. Evaporation of the volatiles afforded 387 mg of the complex (81% yield). The dark red solid was recrystallized from dichloromethane/hexane to give 320 mg of dark red needles (67% yield).

¹H NM R (300 MHz, CDCl₃) δ 2.42 (s, 16H), 5.11 (s, 8H), 7.54 (s, 4H), 7.69 (s, 8H). Anal. Calcd for C₄₈H₃₆BF₂₄Rh: C, 48.62; H, 3.07%. Found: C, 48.76; H, 3.07%.

[Rh(biphep)(cod)](BAr_F) (1a-Rh/cod)

The titled compound was prepared from $[Rh(cod)_2]BAr_F$ and BIPHEP 1a according to the procedure as described for $[Rh(biphep)(cod)](SbF_6)$.

¹H NMR (300 MHz, CDCl₃) δ 2.01-2.12 (m, 4H), 2.44-2.70 (m, 4H), 4.45-4.56 (m, 2H), 4.72-4.80 (m, 2H), 6.34-6.40 (m, 2H), 6.98-7.07 (m, 4H), 7.16-7.27 (m, 4H), 7.28-7.39 (m, 6H), 7.42-7.62 (m, 18H), 7.75 (s, 8H).

³¹P NMR (121 MHz, CDCl₃) δ 24.3 (d, $J_{\text{Rh-P}}$ = 145.2 Hz).

Anal. Calcd for C₇₆H₅₂BF₂₄P₂Rh: C, 57.16; H, 3.28%. Found: C, 57.28; H, 3.24%.

$[RhCl(2)]_2$

A mixture of chiral diene **2** (53.6 mg, 0.2 mmol) and [RhCl(ethylene)₂] (42.8 mg, 0.11 mmol) in dry benzene (4.0 mL) was stirred for 24 h at room temperature under argon atmosphere, and then the reaction mixture was filtered through Celite[®]. After the filtrate was evaporated under reduced pressure, the yellow residue was washed with ether twice. Prolonged evacuation of the product at 100 °C gave the solvent free complex (yield 90%).³ ¹H NMR (300 MHz, CDCl₃) δ 0.68 (d, *J* = 13.8 Hz, 1H), 1.04 (s, 3H), 1.13 (d, *J* = 13.8, 1H), 1.65 (br s, 3H), 2.26 (br s, 6H), 3.22 (s, 3H), 3.32 (br s, 1H), 3.64 (br s, 1H), 3.71 (br m, 1H),

4.25 (br t, *J* = 6.0 Hz, 1H), 6.80 (br s, 1H), 7.32 (br s, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 21.40, 21.53, 21.82, 48.22, 49.22, 49.31, 50.23 (d, $J_{Rh-C} = 2.5$ Hz), 51.55 (d, $J_{Rh-C} = 11.0$ Hz), 57.00 (d, $J_{Rh-C} = 10.9$ Hz), 71.26 (br s), 77.19, 80.90 (d, $J_{Rh-C} = 2.5$ Hz), 128.77, 128.85, 136.14, 137.37.

Anal. Calcd for $C_{38}H_{48}Cl_2O_2Rh_2$: C, 56.10; H, 5.95%. Found: C, 55.41; H, 5.95%. [α]_D²⁸ = -13.8 (c = 1.36 in CHCl₃).

[RhCl(3)]₂

The titled compound was prepared from chiral diene **3** and $[RhCl(ethylene)_2]$ according to the procedure as described for $[RhCl(2)]_2$ (yield 88%). The product was diastereomer mixture (2.5 : 1 ratio).

¹H NMR (300 MHz, CDCl₃) major diastereomer δ 0.89 (d, J = 13.8 Hz, 1H), 1.09 (d, J = 13.8 Hz, 1H), 1.14 (s, 3H), 1.78 (s, 3H), 2.91 (d, J = 15.9 Hz, 1H), 3.00 (d, J = 15.9 Hz, 1H), 3.07 (s, 3H), 3.30 (s, 1H), 3.40-3.42 (m, 1H), 4.06 (d, J = 5.4 Hz, 1H), 7.22-7.39 (m, 6H), 7.95-8.00 (m, 4H).

¹H NMR (300 MHz, CDCl₃) *minor diastereomer* δ 0.85 (d, J = 14.1 Hz, 1H), 1.03 (d, J = 14.1 Hz, 1H), 1.14 (s, 3H), 1.63 (s, 3H), 3.05 (s, 3H), 3.21-3.30 (m, 3H), 3.36 (s, 1H), 4.12 (d, J = 6.3 Hz, 1H), 7.22-7.39 (m, 4H), 7.52-7.47 (m, 2H), 7.79-7.81 (m, 2H), 7.95-8.00 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) *major diastereomer* δ 21.80, 41.21, 46.22 (d, $J_{Rh-C} = 10.9$ Hz), 47.68, 49.56, 49.76 (d, $J_{Rh-C} = 3.6$ Hz), 53.13 (d, $J_{Rh-C} = 2.9$ Hz), 55.85 (d, $J_{Rh-C} = 10.8$ Hz), 70.84 (d, $J_{Rh-C} = 12.1$ Hz), 71.46 (d, $J_{Rh-C} = 11.2$ Hz), 77.24, 81.10, 126.22, 127.12, 128.15, 130.41, 130.85, 131.12, 137.66, 138.39.

¹³C NMR (75 MHz, CDCl₃) mainor diastereomer δ 21.90, 41.31, 44.90 (d, $J_{Rh-C} = 11.6$ Hz), 47.58, 49.46, 54.12, 55.01 (d, $J_{Rh-C} = 10.1$ Hz), 71.74 (d, $J_{Rh-C} = 11.2$ Hz), 81.03, 120.33, 127.20, 130.92, 137.72, 138.49.

Anal. Calcd for $C_{48}H_{52}Cl_2O_2Rh_2 \cdot 2H_2O$: C, 57.10; H, 5.99; Cl, 6.82%. Found: C, 57.10; H, 5.99; Cl, 7.02%.

 $[\alpha]_D^{27} = -76.2$ (c = 1.22 in CHCl₃).

FT-IR (KBr pellet, cm⁻¹) 2964, 2824, 1599, 1448, 1260, 1071, 800, 700.

Preparation of BIPEHPs-Rh/diene Complexes

1) Thermodynamic Chirality Control

To a mixture of BIPHEP-Rh/cod(SbF₆) (**1a-Rh**/cod) (9.7 mg, 0.01 mmol) and chiral diene **2** (2.8 mg, 0.0105 mmol) was added dry (CH₂Cl)₂ (1.0 mL) under argon atmosphere, and stirred for 24 or 48 h at 80 °C. After removing solvent under reduced pressure, the desired complex was washed with Et₂O, and then dried in *vacuo*. Diastereomer ratio and undesired by-product were confirmed by ³¹P NMR analysis.

2) Kinetic Chirality Control⁴

To a mixture of $[RhCl(2)]_2$ or $[RhCl(3)]_2$ (0.01 mmol) and silver salt (0.019 mmol) was added dry dichloromethane (1.0 mL) under argon atmosphere, and stirred for 6 h or 24 h at room temperature. Then, a solution of BIPHEP **1a** or DM-BIPHEP **1b** (0.019 mmol) in dry dichloromethane (1.0 mL), previously prepared in another Schlenk tube, was added to the reaction mixture *via* cannula. After stirring for 2 h, the AgCl precipitate was removed by filtration under argon atmosphere through a bed of Celite[®]. The complexes **1a-Rh/2** or

1b-Rh/3 were isolated by concentrating the mixture in *vacuo*, addition of a few ml of Et_2O , removal supernatant liquid via syringe, washing with Et_2O , and drying in *vacuo*. The diastereomer ratio and undesired by-product were confirmed by ³¹P NMR analysis.

The diastereomer mixture (59:41) of 1a-Rh/2 was heated in dry CDCl₃ at 50 °C for 62 h (Figure S1).

[Rh(biphep)(2)](OTf) (1a-Rh/2)

¹H NMR (300 MHz, CDCl₃) (*S*)-1a-Rh/2 δ 0.72 (d, *J* = 13.2 Hz, 1H), 0.99 (s, 3H), 1.04 (d, *J* = 13.2 Hz, 1H), 1.54 (s, 3H), 1.85 (s, 6H), 3.21 (s, 3H), 3.46 (m, 1H), 3.60 (m, 1H), 4.55 (m, 1H), 4.82 (m, 1H), 6.05-6.08 (m, 2H), 6.80-7.78 (m, 29H).

¹H NMR (300 MHz, CDCl₃) (*R*)-**1a-Rh/2** δ 0.76 (d, *J* = 13.2 Hz, 1H), 1.03 (s, 3H), 1.23 (d, *J* = 13.2 Hz, 1H), 1.57 (s, 3H), 2.33 (s, 6H), 3.23 (s, 3H), 4.24 (m, 1H), 4.78 (m, 2H), 4.97 (m, 1H), 6.29-6.32 (m, 2H), 6.80-7.78 (m, 29H).

³¹P NMR (121 MHz, CDCl₃) (*S*)-1a-Rh/2 δ 28.7 (dd, *J*_{Rh-P}, *J*_{P-P} = 157.1, 43.5 Hz), 25.2 (dd, *J*_{Rh-P}, *J*_{P-P} = 161.8, 43.5 Hz); (*R*)-1a-Rh/2 δ 25.4 (dd, *J*_{Rh-P}, *J*_{P-P} = 158.3, 40.0 Hz), 24.0 (dd, *J*_{Rh-P}, *J*_{P-P} = 160.4, 40.0 Hz).

$[Rh(biphep)(2)](SbF_6)(1a-Rh/2)^4$

¹H NMR (300 MHz, CDCl₃) (*S*)-1a-Rh/2 δ 0.73 (d, *J* = 13.2 Hz, 1H), 0.99 (s, 3H), 1.02 (d, *J* = 13.2 Hz, 1H), 1.54 (s, 3H), 1.86 (s, 6H), 3.21 (s, 3H), 3.42 (br s, 1H), 3.75 (m, 1H), 4.56 (br s, 1H), 4.80 (br s, 1H), 6.05-6.08 (m, 2H), 6.80-7.78 (m, 29H).

³¹P NMR (121 MHz, CDCl₃) (S)-1a-Rh/2 δ 28.8 (dd, J_{Rh-P} , J_{P-P} = 157.3, 43.9 Hz), 25.1 (dd, J_{Rh-P} , J_{P-P} = 162.0, 43.9 Hz).

 $[Rh{(S)-dm-biphep}(3)](X)((S)-1b-Rh/3)$

 $X = BF_4$, CIO_4 , PF_6 , OTf, SbF_6

$X = BF_4$

¹H NMR (300 MHz, CDCl₃) δ 0.60 (d, J = 13.2 Hz, 1H), 0.66 (d, J = 13.2 Hz, 1H), 0.91 (s, 3H), 1.69 (s, 3H), 2.17 (s, 6H), 2.20 (s, 3H), 2.31 (s, 6H), 2.34 (s, 6H), 2.46 (s, 6H), 2.82 (d, J = 14.1 Hz, 1H), 3.52 (d, J = 15.9 Hz, 1H), 3.71 (d, J = 15.9 Hz, 1H), 4.28 (m, 1H), 4.62 (d, J = 6.3 Hz, 1H), 5.86-5.89 (m, 1H), 6.00-6.03 (m, 1H), 6.66-7.55 (m, 27H), 7.87-7.93 (m, 1H). ³¹P NMR (121 MHz, CDCl₃) δ 21.7 (dd, J_{Rh-P} , $J_{P-P} = 157.9$, 46.0 Hz), 27.4 (dd, J_{Rh-P} , $J_{P-P} = 161.8$, 46.0 Hz).

Anal. Calcd for $C_{68}H_{70}BF_4OP_2Rh\cdot 2CH_2Cl_2$: C, 63.46; H, 5.63%. Found: C, 63.71; H, 5.58%. [α]_D²⁷ = +34.0 (c = 0.08 in CHCl₃).

FT-IR (KBr pellet, cm⁻¹) 2972, 1420, 1260, 1032, 759, 476.

$X = ClO_4$

¹H NMR (300 MHz, CDCl₃) δ 0.63 (d, J = 13.2 Hz, 1H), 0.69 (d, J = 13.2 Hz, 1H), 0.92 (s, 3H), 1.68 (s, 3H), 2.16 (s, 6H), 2.17 (s, 3H), 2.30 (s, 6H), 2.35 (s, 6H), 2.46 (s, 6H), 2.80 (d, J = 14.1 Hz, 1H), 3.49 (d, J = 14.1 Hz, 1H), 3.56 (d, J = 14.1 Hz, 1H), 4.33 (m, 1H), 4.74 (d, J = 6.0 Hz, 1H), 5.85-5.88 (m, 1H), 6.00-6.04 (m, 1H), 6.73-7.57 (m, 27H), 7.89-7.95 (m, 1H). ³¹P NMR (121 MHz, CDCl₃) δ 21.5 (dd, $J_{\text{Rh-P}}$, $J_{\text{P-P}}$ = 157.7, 46.0 Hz), 27.4 (dd, $J_{\text{Rh-P}}$, $J_{\text{P-P}}$ = 161.5, 46.0 Hz).

Anal. Calcd for $C_{68}H_{70}ClO_5P_2Rh \cdot 3/2CH_2Cl_2$: C, 64.46; H, 5.68%. Found: C, 64.65; H, 5.42%. [α]_D²⁸ = +23.5 (c = 0.18 in CHCl₃).

FT-IR (KBr pellet, cm⁻¹) 2920, 1602, 1458, 1428, 1095, 758, 623.

$\mathbf{X} = \mathbf{PF}_{\mathbf{6}}$

¹H NMR (300 MHz, CDCl₃) δ 0.63 (d, J = 13.2 Hz, 1H), 0.69 (d, J = 13.2 Hz, 1H), 0.92 (s, 3H), 1.67 (s, 3H), 2.17 (s, 6H), 2.23 (s, 3H), 2.30 (s, 6H), 2.33 (s, 6H), 2.46 (s, 6H), 2.82 (d, J = 14.1 Hz, 1H), 3.52 (d, J = 16.2 Hz, 1H), 3.71 (d, J = 16.2 Hz, 1H), 4.35 (m, 1H), 4.67 (d, J = 6.3 Hz, 1H), 5.85-5.89 (m, 1H), 6.02-6.06 (m, 1H), 6.66-7.55 (m, 27H), 7.90-7.96 (m, 1H). ³¹P NMR (121 MHz, CDCl₃) δ 21.3 (dd, J_{Rh-P} , $J_{P-P} = 157.4$, 45.7 Hz), 27.6 (dd, J_{Rh-P} , $J_{P-P} = 161.5$, 45.7 Hz).

Anal. Calcd for $C_{68}H_{70}F_6OP_3Rh\cdot 3/2CH_2Cl_2$: C, 62.27; H, 5.49%. Found: C, 62.58; H, 5.37%. [α]_D²⁵ = +35.3 (c = 0.09 in CHCl₃).

FT-IR (KBr pellet, cm⁻¹) 2963, 1600, 1262, 1070, 840, 801, 695.

X = OTf

¹H NMR (300 MHz, CDCl₃) δ 0.66 (br s, 2H), 0.90 (s, 3H), 1.69 (s, 3H), 2.15 (s, 6H), 2.20 (s, 3H), 2.29 (s, 6H), 2.34 (s, 6H), 2.47 (s, 6H), 2.86 (d, *J* = 14.1 Hz, 1H), 3.34 (d, *J* = 15.0 Hz, 1H), 3.70 (d, *J* = 15.0 Hz, 1H), 4.20 (m, 1H), 4.40 (d, *J* = 6.3 Hz, 1H), 5.88-5.91 (m, 1H), 6.00-6.03 (m, 1H), 6.67-7.58 (m, 27H), 7.82-7.88 (m, 1H).

³¹P NMR (121 MHz, CDCl₃) δ 21.4 (dd, J_{Rh-P} , J_{P-P} = 157.4, 46.1 Hz), 27.1 (dd, J_{Rh-P} , J_{P-P} = 161.3, 46.1 Hz).

Anal. Calcd for C₆₉H₇₀F₃O₄P₂RhS·4CH₂Cl₂: C, 56.31; H, 5.05; S, 2.06%. Found: C, 56.46; H, 4.76; S, 2.11%.

 $[\alpha]_D^{27} = +14.2$ (c = 0.05 in CHCl₃).

FT-IR (KBr pellet, cm⁻¹) 2962, 1602, 1261, 1029, 799.

X = **SbF**₆ ³¹P NMR (121 MHz, CDCl₃) δ 21.4 (dd, $J_{\text{Rh-P}}$, $J_{\text{P-P}}$ = 157.7, 45.7 Hz), 27.6 (dd, $J_{\text{Rh-P}}$, $J_{\text{P-P}}$ = 161.5, 45.7 Hz). [α]_D²⁶ = +12.5 (c = 0.13 in CHCl₃). FT-IR (KBr pellet, cm⁻¹) 2921, 1602, 1459, 1125, 850, 660.

Typical Experiment Procedure of Asymmetric Hydrogenation by (S)-1b-Rh/3

To a mixture of (*S*)-1b-Rh/3 (11.5 mg, 0.01 mmol) prepared by kinetic chirality control described above and 2-acetamidoacrylic acid methyl ester **5** (7.2 mg, 0.05 mmol) in 10 mL Schlenk tube was added dry dichloromethane (0.5 mL) under argon atmosphere. A mixture was charged with hydrogen gas using balloon (1 atm), then stirred for 24 h at 0 °C. The solvent was concentrated under reduced pressure. The product **6** was isolated by flash chromatography using dichloromethane/MeOH (19:1). *Ee* values was determined by chiral GC analysis; GC (column: CP Chirasil Dex CB, i.d. 0.32 mm x 25 m, CHROMPACK; carrier gas: nitrogen 75 kPa; column temperature: 100 °C; injection and detection temperature: 130 °C), t_R (*S* isomer) = 10.9 min, t_R of (*R* isomer) = 11.7 min.

It was confirmed by ³¹P NMR analysis after the reaction that racemization of DM–BIPHEP moiety and decomposition of complex didn't occur during the course of reaction (Figure S2).

2-Acetamidoacrylic acid methyl ester (5)

The titled compound is commercially available.

¹H NM R (300 MHz, CDCl₃) δ 2.13 (s, 3H), 3.85 (s, 3H), 5.88 (s, 1H), 6.60 (s, 1H), 7.74 (br s, 1H).

2-Acetamidopropionic acid methyl ester (6)⁵

¹H NMR (300 MHz, CDCl₃) δ 1.39 (d, J = 6.9 Hz, 2H), 2.00 (s, 3H), 3.74 (s, 3H), 4.59 (qd, J

MeO_____* NHAc

= 6.9, 6.9 Hz, 1H), 6.16 (br s, 1H).

GC (column, CP Chirasil Dex CB, i.d. 0.32 mm x 25 m, CHROMPACK, GL Sciences Inc.; carrier gas, nitrogen 75 kPa; column, 100 °C; injection and detection temp, 130 °C), t_R of minor-isomer 10.9 min(*S*), t_R of major-isomer 11.7 min(*R*).

B3LYP optimized geometry and energy Basis sets used are SDD on Rh and 6-31G(d) on H, C, and P atoms.

(*S*)-1a-Rh/3' Favored

E(B3LYP) = -2994.10114956 au Zero-point vibrational energy = 555.11265 (Kcal/Mol)

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Ý	Ź	
1	45	0	-0.324132	-0.497442	-0.099982	
2	15	0	1.837964	-0.285820	0.874328	
3	15	0	-0.370716	1.796560	-0.680737	
4	6	0	2.120581	1.312833	1.783391	
5	6	0	2.187893	1.331401	3.185663	
6	6	0	2.374549	2.517852	3.895300	
7	6	0	2.509849	3.719114	3.205936	
8	6	0	2.466861	3.714459	1.813626	
9	6	0	2.268766	2.533812	1.078925	
10	6	0	1.247402	2.468437	-1.302723	
11	6	0	1.422662	2.767565	-2.663180	
12	6	0	2.639125	3.236778	-3.159089	
13	6	0	3.710182	3.426399	-2.291059	
14	6	0	3.544083	3.158177	-0.934280	
15	6	0	2.331886	2.676399	-0.413933	
16	6	0	-1.556650	2.073047	-2.077042	
17	6	0	-2.647894	2.948873	-1.982870	
18	6	0	-3.553101	3.074860	-3.042035	
19	6	0	-3.379885	2.335083	-4.210600	
20	6	0	-2.301451	1.450848	-4.313791	
21	6	0	-1.407974	1.311878	-3.252961	
22	6	0	-0.507811	-2.742493	-0.798886	
23	6	0	-0.746198	-2.611882	0.567531	
24	6	0	-2.203264	-2.358206	0 938064	
25	ő	Ő	-2.541572	-1.044036	0.243411	
26	6	Ő	-2.253740	-1 095789	-1 112991	
27	6	0	-1.774212	-2.453451	-1.605000	

28	1	0	2.113324	0.406052	3.742419
29	1	0	2.424094	2.492984	4.980118
30	1	0	2.658758	4.652227	3.741365
31	1	0	2.580981	4.647275	1.269710
32	1	0	0.595700	2.656040	-3.352511
33	1	0	2 737423	3 460439	-4 217456
34	1	Ő	4 664238	3 792050	-2 659295
35	1	0	4 371916	3 317353	-0 250020
36	1	Ő	-2.800506	3.539516	-1.086885
37	1	0	-4 391706	3 758934	-2 948262
38	1	Ő	-4 079816	2 440607	-5 034351
39	1	Ő	-2 160467	0.864830	-5 217784
40	1	Ő	-0 591699	0 598323	-3 333628
41	1	Ő	-2 341899	-2.298694	2 020340
42	1	0 0	-1 602752	-2 451160	-2 680792
43	1	0 0	-0.058957	-2 983106	1 316608
43	1	0	-2 639913	-0 364511	-1 812887
45	6	0	3 334299	-0.399147	-0.192142
46	6	0 0	4 603720	-0.070116	0.315848
47	6	0 0	3 218768	-0.814603	-1 523924
48	6	0	5 732960	-0 167529	-0 495348
40 40	1	0	4 709305	0.266579	1 343409
4) 50	6	0	4 351553	-0.907195	-2 336105
51	1	0	2 243555	-1.066049	-1 925931
52	6	0	5 608258	-0 585826	-1 823867
52 53	1	0	6 709603	0.086017	-0.002536
55 54	1	0	4 247839	-1 232231	-3 367239
55	1	0	6 489319	-0.657743	-2 455395
56	6	0	-0.858202	3 038895	0 589047
50 57	6	0	0.808106	1 11/3/10	0.301555
58	6	0	-0.808190	7 624271	1 862050
50	0	0	-1.200232	2.024271	1.802939
59 60	0	0	-1.182430	J.J49333 1 755216	0.674464
00 61	1	0	-0.4/3920	4.733240	-0.0/4404
62	0	0	-1.055446	5.502504	2.629032
02 (2	l (0	-1.2/30/0	1.303324	2.101190
63	0	0	-1.599640	4.924413	2.530410
64 (5	1	0	-1.14539/	6.409457	1.030978
65	1	0	-1.945811	3.228417	3.815/34
66	l	0	-1.888899	5.654/0/	3.280/43
67	6	0	-3.453955	-0.026408	0.893460
68	1	0	-3.430807	0.902334	0.312878
69 - 0	l	0	-3.088615	0.20/800	1.899061
70	6	0	-4.888179	-0.534618	0.996410
71	6	0	-5.727391	-0.529599	-0.126856
72	6	0	-5.389761	-1.025211	2.208514
73	6	0	-7.034937	-1.008103	-0.040944
74	1	0	-5.357874	-0.138108	-1.072256
75	6	0	-6.697952	-1.507088	2.297294

76	1	0	-4.756745	-1.021719	3.093479
77	6	0	-7.523119	-1.501606	1.171795
78	1	0	-7.675306	-0.990233	-0.918567
79	1	0	-7.072527	-1.879847	3.246591
80	1	0	-8.541903	-1.872075	1.239776
81	6	0	0.659755	-3.414888	-1.413869
82	6	0	0.912829	-3.313098	-2.795854
83	6	0	1.523140	-4.219709	-0.644537
84	6	0	1.987361	-3.979211	-3.382710
85	1	0	0.272005	-2.701268	-3.422594
86	6	0	2.598484	-4.882801	-1.231086
87	1	0	1.341707	-4.347106	0.417169
88	6	0	2.836566	-4.766469	-2.602613
89	1	0	2.156406	-3.888673	-4.452090
90	1	0	3.243535	-5.505118	-0.617401
91	1	0	3.668878	-5.293250	-3.060155
92	6	0	-3.067088	-3.505682	0.313703
93	6	0	-2.843271	-3.530533	-1.217718
94	1	0	-2.761755	-4.452160	0.773201
95	1	0	-4.119625	-3.344241	0.561169
96	1	0	-2.503596	-4.514576	-1.557935
97	1	0	-3.770097	-3.301529	-1.754337
98	6	0	2.096652	-1.582438	2.172294
99	6	0	3.205909	-2.440051	2.175924
100	6	0	1.118465	-1.746076	3.172006
101	6	0	3.340270	-3.423879	3.161015
102	1	0	3.969313	-2.348514	1.412109
103	6	0	1.259908	-2.719077	4.160446
104	1	0	0.237132	-1.109145	3.172350
105	6	0	2.374311	-3.563571	4.156601
106	1	0	4.207569	-4.077990	3.147425
107	1	0	0.499745	-2.821178	4.929985
108	1	0	2.484419	-4.324966	4.923298

(*R*)-1a-Rh/3' Disfavored

E(B3LYP) = -2994.09331395 au Zero-point vibrational energy = 555.04815 (Kcal/Mol)

Standard orientation:							
Center Number	Atomic Number	Atomic Type	Coorc X	linates (Angstr Y	oms) Z		
1	45	0	0.384089	-0.485295	0.015721		

2	15	0	-1.726862	-0.460001	-0.983741
3	6	0	-2.893876	0.058668	0.347372
4	15	0	0.131344	1.865898	0.536573
5	6	0	0.993272	-2.584467	-0.362343
6	6	0	0.593194	-2.556415	0.980990
7	6	0	-1.881912	0.655613	-2.445545
8	6	0	-2.435714	-1.982734	-1.771493
9	6	0	-3 429919	-0.960186	1 157191
10	6	0	-3.112342	1.408477	0.715058
11	6	0	-1 224892	2 947153	-0 162688
12	6	0	1 678030	2 800552	0 150751
13	6	Ő	-0 128900	2 121311	2 347895
14	6	Ő	2 480458	-2 333732	-0.577786
15	6	Ő	1 747935	-2.118833	1 887004
16	6	0 0	-0 591454	-3 251404	1 540260
17	6	Ő	-3 132336	1 059955	-2 935391
18	6	0	-0 727977	0.961127	-3 180553
19	6	0	-1 607262	-2 668651	-2 676977
20	6	0	-3 771240	-2 392511	-1 643998
20	6	0	_1 217624	-0.671309	2 260176
$\frac{21}{22}$	6	0	-3.01686/	1 67/36/	1 838150
22	6	0	2 50/5/5	2 608853	0.015613
23 24	6	0	-0.901476	2.008855	-0.013013
2 4 25	6	0	2 552840	3 240175	1 155611
25 26	6	0	2.332840	2 007572	1.155011
20	0	0	2.042462	2.99/3/2	-1.194302
27	0	0	-0.294019	1.024655	2.870492
20 20	0	0	-0.193230	0.022754	0.022272
29	0	0	2.701340	-0.932734	-0.023372
50 21	0	0	5.265595	-3.300073	0.20/000
31 22	0	0	2.232843	-0.813083	1.281/82
32 22	0	0	2.8/0803	-3.19/33/	1.//2010
22 24	0	0	-1.288192	-4.219004	0./88000
34 25	6	0	-1.020203	-3.014303	2.860592
35	6	0	-3.221065	1.//6812	-4.12/603
36	6	0	-0.819580	1.6/1690	-4.3/9906
37	6	0	-2.086164	-3.760566	-3.400575
38	6	0	-4.248807	-3.48/9/2	-2.36//84
39	6	0	-4.472594	0.655945	2.60/163
40	6	0	-3.566285	3.504278	-0.491957
41	6	0	-1.883273	5.039952	-1.247859
42	6	0	3.757971	3.866833	0.823078
43	6	0	3.235904	3.638883	-1.522428
44	6	0	-0.496868	3.603708	4.237013
45	6	0	-0.400708	1.214198	4.585555
46	6	0	3.623220	0.030417	-0.735432
47	6	0	-2.371361	-4.908025	1.330673
48	6	0	-2.099531	-3.707302	3.405341
49	6	0	-2.065983	2.083487	-4.852541

50	6	0	-3.408227	-4.181146	-3.238910
51	6	0	-3.226338	4.704138	-1.111255
52	6	0	4.100723	4.072046	-0.513285
53	6	0	-0.547845	2.503109	5.097829
54	6	0	5.037207	-0.527971	-0.851294
55	6	0	-2.782173	-4.657198	2.642481
56	6	0	5.893645	-0.524168	0.259268
57	6	0	5.505825	-1.059492	-2.059163
58	6	0	7.184922	-1.043685	0.165365
59	6	0	6.798201	-1.580993	-2.156630
60	6	0	7.640116	-1.576565	-1.043715
61	1	0	0.423597	-3.111637	-1.116709
62	1	0	-3.225398	-1.998619	0.924438
63	1	0	2.757476	-2.401464	-1.632269
64	1	0	1.445262	-1.989122	2.925592
65	1	0	-4.038384	0.813659	-2.388925
66	1	0	0.241840	0.631270	-2.814424
67	1	0	-0.588572	-2.328990	-2.841699
68	1	0	-4.451707	-1.860102	-0.989436
69	1	0	-4.620584	-1.484192	2.865587
70	1	0	-4.087862	2.710229	2.114981
71	1	0	0 134111	4 469366	-0 868076
72	1	Õ	2.298302	3.102186	2.200880
73	1	0	1.384878	2.659267	-1.990526
74	1	0	-0 267822	4 278307	2 210618
75	1	Ő	-0.101037	0.023010	2.809649
76	1	Ő	4.355263	-3.197102	0.147190
77	1	0	3.053732	-4.368187	-0.075991
78	1	0	2 524203	0.027822	1 913721
79	1	0	3 726789	-2.870032	2 380993
80	1	Ő	2 517167	-4 140813	2.196822
81	1	Ő	-0 972283	-4 451081	-0 222084
82	1	Ő	-0 513563	-2.275854	3 472638
83	1	Ő	-4 193768	2.090809	-4 495523
84	1	Ő	0.080557	1 898065	-4 945042
85	1	Ő	-1 429674	-4 275676	-4 096308
86	1	Ő	-5 285626	-3 791668	-2 253310
87	1	Ő	-5.086917	0 900408	3 468825
88	1	Ő	-4 613021	3 239105	-0 373992
89	1	Ő	-1 590377	5 976615	-1 713224
90	1	0	4 423071	4 201055	1 614346
91	1	0	3 494538	3 794601	-2 566037
92	1	ů 0	-0.618812	4 609132	4 629874
93	1	0 0	-0.453119	0.355223	5 248994
94	1	0	3 644076	0.981846	-0.200142
95	1	0	3 234765	0 230234	-1 741155
96	1	0	-2.885238	-5 653293	0 730560
97	1	Ő	-2.403763	-3 508243	4 429034
11	-	0		2.200412	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

98	1	0	-2.140083	2.635352	-5.785177	
99	1	0	-3.783744	-5.031701	-3.800354	
100	1	0	-4.004787	5.369348	-1.473411	
101	1	0	5.033930	4.565227	-0.768906	
102	1	0	-0.708330	2.652242	6.161777	
103	1	0	-3.617212	-5.205479	3.069085	
104	1	0	5.549168	-0.103790	1.201841	
105	1	0	4.860026	-1.055618	-2.934841	
106	1	0	7.838192	-1.027564	1.033464	
107	1	0	7.147237	-1.984630	-3.103046	
108	1	0	8.646305	-1.978825	-1.118343	

References for Supporting Information

- 1) C. Fischer, C. Defieber, T. Suzuki, E. M. Carreira, J. Am. Chem. Soc. 2004, 126, 1628.
- 2) J. Paquin, C. Defieber, C. R. J. Stephenson, E. M. Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 10850.
- 3) A. Kina, K. Ueyama, T. Hayashi, Org. Lett. 2005, 7, 5889.
- 4) J. W. Faller, J. C. Wilt, J. Organomet. Chem. 2006, 691, 2207.
- 5) A. Zanotti-Gerosa, C. Malan, D. Herzberg, Org. Lett. 2001, 3, 3687.