Supplementary Information

The Metal-Catalyzed Reaction of N-(2-indolyl)methyl, N-bis(trimethylsilyl)methyl Diazoamides: An Entry into the β-Carboline Ring System Bao Zhang and Andrew G. H. Wee*

Department of Chemistry and Biochemistry, University of Regina, Regina Saskatchewan, S4S 0A2, Canada.

	Pages
General procedures for the preparation of diazoamides and metal-catalyzed reaction	ESI-2 – ESI 3
Experimental data for 3, 3', 5, 7, 9, 11-12, 11c, 15-17, 19-21	ESI-3 – ESI-10
¹ H and ¹³ C NMR specctra for 3 , 3' , 5 , 7 , 9 , 11-12 , 11c , 15-17 , 19-21	ESI-11 – ESI-45
Ortep rendering of X-ray structure of 12d	ESI-46
X-ray crystallographic data for 12d	ESI-47 – ESI-53

General procedure for the preparation of the ester-substituted diazoamides 2, 6, 10a, 10b and 14a.

Amine (1.0 mmol) was dissolved in dry CH_2Cl_2 (3 mL) under Ar. 2,6-Lutidine (2.0 mmol) was added to the solution and the mixture was cooled to 0°C. Ethyl diazomalonyl chloride or methyl diazomalonyl chloride (1.5 mmol) in dry CH_2Cl_2 (5 mL) was then transferred to the reaction mixture via cannula. The reaction was stirred at 0°C for 20 min, then at rt for 1 h. Then the mixture was washed successively with saturated NaHCO₃ (10 mL), H₂O (10 mL) and then brine (10 mL). The organic layer was dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography. The ester-substituted diazoamides were obtained in a 70-83% yield.

General procedure for the preparation of the unsubstituted diazoamides 10c, 10d, 14b, 14c, 18a, 18b.

The 4-(dimethylamino)-pyridine (23.4 mg, 20mol%) and amine (0.959 mmol, 1.0 equiv) were dissolved in dry THF (5 mL) under Ar. The mixture was cooled to 0 °C in an ice-water bath. Diketene (115 μ L, 1.44mmol, 1.5 equiv) in THF (3 mL) was added into the mixture via cannula. The reaction mixture was kept at 0 °C for 10 min, then stirred at rt. After 1.5 h, the mixture was diluted with CH₂Cl₂ (5 mL) and filtered through a short pad of silica gel in the sintered funnel. The filtrate was evaporated under reduced pressure to give the crude amide.

The crude acetoacetamide obtained above was dissolved in dry CH₃CN (4 mL) under Ar at 0 °C in an ice-water bath. MsN₃ (152.5 μ L, 1.85 mmol, 2.0 equiv) in dry CH₃CN (3 mL) was added via cannula. DBU (276.6 μ L, 1.85 mmol, 2.0 equiv) was then added and the reaction mixture was stirred at 0 °C for 1 h, then at rt for 1 h. The reaction mixture was diluted with CH₂Cl₂ (5 mL), washed with 10% NaOH (2x5 mL) and the aqueous layer was extracted with CH₂Cl₂ (2x5 mL). The combined CH₂Cl₂ solution was washed with H₂O, dried over Na₂SO₄, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography to give the acetyl-substituted diazoamide. The acetyl-substituted diazoamide (0.383 mmol) was dissolved in CH₃CN (4 mL) in a 10 mL flask. Aqueous potassium hydroxide (5%, 2 mL) was added to the solution. The mixture was stirred overnight at rt under Ar. Then the mixture was concentrated under reduced pressure. Saturated aqueous solution of NH₄Cl (3mL) was added to the residue and the mixture was extracted with CH₂Cl₂ (3x5 mL). The combined organic layer was washed with water, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The unsubstituted diazoamide was been purified by flash chromatography. The unsubstitute diazoamide of NH₄Cl (3mL) was added to the residue and the mixture was extracted with CH₂Cl₂ (3x5 mL). The combined organic layer was washed with water, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude products were purified by flash chromatography. The unsubstituted diazoamide was been purified by flash chromatography. The unsubstituted diazoamides were prepared in a 63-74% overall yield from the corresponding amines.

General procedure for Rh(II)-catalyzed reaction. The appropriate rhodium(II) catalyst (2mol%) was dried under high vacuum at 80°C for 1 h. The diazo compound was dissolved in the dry CH_2Cl_2 and transferred to the solution of the catalyst in the dry CH_2Cl_2 at room temperature via cannula under Ar. The reaction was monitored by t.l.c.. After the reaction was complete, the solvent was removed under reduced pressure. The crude products were separated and purified by flash chromatography. The $Rh_2(OAc)_4$ -catalyzed reaction of unsubstituted diazoamides **10c**, **10d**, **14b**, **14c** and **18a**, was judged to be completed by the t.l.c. in 10 min at rt. However the $Rh_2(cap)_4$ -catalyzed reaction of unsubstituted diazoamides **18a** and **18b** was complete at rt in 3 h.

The $Rh_2(OAc)_4$ - and $Rh_2(tfa)_4$ -catalyzed reaction of ester-substituted diazoamides **6**, **10a**, **10b** and **14a** was found to be very slow at rt compared to **10c**, **10d**, **14b**, **14c** and **18a**. Reaction times were typically 7–24h. $Rh_2(OAc)_4$ –catalyzed reaction of diazoamide **6**, at rt, was complete in 3 d. For the $Rh_2(OAc)_4$ -catalyzed reaction of diazoamide **2**, after 3 h at rt, there was still a large amount of **2** detected by t.l.c.; the reaction was brought to completion by heating the mixture to reflux for 6 h.

General procedure for Cu(II)-catalyzed reaction. The diazo compound was dissolved in the dry CH_2Cl_2 and transferred to the solution of the copper catalyst (5mol%) in the dry CH_2Cl_2 at rt via cannula under Ar. The reaction was monitored by t.l.c.. After the reaction was complete, the solvent was removed under reduced pressure. The crude products were separated and purified by flash chromatography.

The Cu(hfacac)₂-catalyzed reaction of diazoamide **10a** was complete at rt in 1.5 h. The Cu(acac)₂catalyzed reaction of diazoamide **10a** was sluggish at rt, and after 48 h, substantial amount of **10a** was still present; the reaction was brought to completion by heating the mixture to reflux for 24 h. The Cu(hfacac)₂-catalyzed reaction of diazoamide **10b** was refluxed for 48 h for the reaction to be complete.

MeO₂C N N-E

^{SO₂Ph} Compound **3**: unstable light yellow solid, IR (film) v_{max} : 1733.6, 1694.1 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 7.85-7.94 (m, 2H, SO₂Ph*H*), 7.71 (d, 1H, *J* = 7.7 Hz, Ar*H*), 7.60 (dddd, 1H, *J* = 7.7, 7.7, 1.4, 1.4 Hz, SO₂Ph*H*), 7.45-7.54 (m, 2H, SO2Ph*H*), 7.29-7.39 (m, 2H, Ar*H*), 7.06-7.14 (m, 1H, Ar*H*), 4.82 (d, 1H, *J* = 10.9 Hz, NCH*H*'C), 3.74 (d, 1H, *J* = 10.9 Hz, NC*H*H'C), 3.55 (dq, 1H, *J* = 14.2, 7.3 Hz, NCH*H*'CH₃), 3.15 (s, 1H, C*H*), 3.09 (s, 3H, OC*H₃*), δ 1.18 (t, 3H, *J* = 7.3 Hz, NCH₂CH₃).

^{SO₂Ph Compound **3'** was obtained from rearrangement of compound **3** in CDCl₃ solution: light yellow powder, mp: 177-180°C; IR (film) 1744, 1653 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 8.06-8.11 (m, 1H, indole-*H*), 7.75-7.82 (m, 2H, SO₂Ph*H*), 7.58 (dddd, 1H, *J* = 8.0, 8.0, 2.3, 1.7 Hz, SO₂Ph*H*), 7.45-7.52 (m, 3H, indole-*H*, SO₂Ph*H*), 7.36(ddd, 1H, *J* = 8.6, 8.2,1.3 Hz, indole-*H*), 7.29 (dd, 1H, *J* = 8.2, 1.3 Hz, indole-*H*), 4.98 (dd, 1H, *J* = 18.6, 4.0 Hz, NC*H*H'C), 4.68 (t, 1H, *J* = 4.0 Hz, O=CC*H*C=O), 3.60-3.78 (m, 2H, NC*H*₂CH₃), 3.70 (s, 3H, C*H*₃), 1.29 (t, 3H, *J* = 6.5 Hz, NCH₂CH₃); ¹³C NMR (75 MHz) δ 169.0, 163.0, 138.2, 136.8, 134.6, 130.0, 129.0, 127.8, 127.1, 126.0, 125.0, 119.2, 114.8, 113.9, 53.1, 48.0, 46.5, 43.5, 12.1; HRMS (EI) calcd. for C₂₁H₂₀N₂O₅S 412.1093, found 412.1089.}

^{SO₂Ph Compound **5**: colorless oil, IR (film) 1741, 1696 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 8.12 (d, 1H, *J* = 8.6 Hz, indole-*H*), 7.74-7.83 (m, 2H, SO₂Ph*H*), 7.48-7.57 (m, 1H, SO₂Ph*H*), 7.38-7.46 (m, 3H, indole-*H*, SO₂Ph*H*), 7.18-7.34 (m, 2H, indole-*H*), 6.53 (s, 1H, indole-*H*3), 4.98 (d, 1H, *J* = 16.2 Hz, NCH*H*'), 4.88 (d, 1H, *J* = 16.2 Hz, NC*H*H'), 3.81 (s, 3H, OC*H*₃), 3.66 (ddd, 1H, *J* = 8.2, 8.2, 5.8 Hz, NCH*H*'CH₂), 3.53 (dd, 1H, *J* = 9.2, 7.3 Hz, O=CC*H*C=O), 3.45 (ddd, 1H, *J* = 8.2, 8.2, 5.8 Hz, NC*H*H'CH₂), 2.41-2.54 (m, 1H, NCH₂CH*H*'), 2.25-2.40 (m, 1H, NCH₂C*H*H'); ¹³C NMR (75 MHz) δ 170.8, 170.0, 138.2, 137.2, 135.3, 134.0, 129.3, 126.2, 124.8, 124.0, 120.9, 114.7, 114.6, 110.6, 52.9, 48.0, 46.0, 41.5, 22.5; HRMS(EI) calcd. for C₂₁H₂₀N₂O₅S 412.1093, found 412.1095.}

^H Compound 7: light yellow solid, mp: 209-210°C; IR (film) 3456, 1740, 1614 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 8.06-8.15 (brs, 1H, indole-N*H*), 7.58 (brd, 1H, *J* = 7.7 Hz, indole-*H*), 7.32-7.37 (m, 1H, indole-*H*), 7.22 (ddd, 1H, *J* = 6.9, 6.9, 1.5 Hz, indole-*H*), 7.11-7.17 (m, 1H, indole-*H*), 4.73-4.90 (m, 2H, NC*H*₂), 4.45-4.57 (m, 1H, O=CC*H*C=O), 3.68 (s, 3H, OC*H*₃), 1.75-1.90 (brs, 1H, C*H* (SiMe₃)₂), 0.15-0.25 (brs, 9H, Si(C*H*₃)₃), 0.05-0.15 (brs, 9H, Si(C*H*₃)₃); ¹³C NMR (CDCl₃, 75MHz) δ 170.2, 163.8, 137.2, 127.9, 125.5, 123.1, 120.8, 119.0, 111.1, 106.0, 52.5, 51.2, 49.0, 48.1, 0.0; HRMS (EI) calcd. for C₂₀H₃₀N₂O₃Si₂ 402.1795, found 402.1786.

 $\int_{MeO_2C} \int_{O} Compound \ 9: white foam, IR (film) 1734, 1655 cm^{-1}; {}^{1}H NMR (CD_3CN, 300MHz)$ $\delta 7.58 (brd, 1H,$ *J*= 7.7Hz, indole-*H*), 7.27-7.42 (brs, 1H, indole-*H*), 7.17 (1H,*J*= 7.7, 7.7, 1.3Hz, indole-*H*), 7.12 (ddd, 1H,*J*= 7.7, 7.7, 1.3Hz, indole-*H*), 6.31-6.57 (brs, 1H, indole-*H3*), 5.60-5.81 (brs, 1H, O=CCHC=O), 4.90 (brd,*J*= 16.5 Hz, NCHH'), 4.59 (d,*J* $= 16.5 Hz, NCHH'), 3.92-4.10 (brs, 1H, CH(SiMe_3)_2), 3.71 (s, 3H, OCH_3), -0.05-0.25 (brs, 18H, 2xSi(CH_3)_3); HRMS (EI) calcd. for <math>C_{20}H_{30}N_2O_3Si_2$ 402.1795, found 402.1800.

^he Compound **11a**: light yellow solid, mp: 144-147°C; IR (film) 1735, 1636 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 7.62 (d, 1H, *J* = 7.6Hz, indole-*H*), 7.1-7.34 (m, 2H, indole-*H*), 7.14 (ddd, IH, *J* = 7.6, 7.3, 1.5Hz, indole-*H*), 4.72-4.88(m, 2H, NCH*H*'C, O=CC*H*C=O), 4.48 (brd, 1H, NC*H*H'C), 4.04-4.26 (m, 2H, OC*H*₂CH₃), 3.67 (s, 3H, NC*H*₃), 1.78-1.96 (brs, 1H, *CH*(SiMe₃)₂), 1.23(t, 3H, *J* = 7.6Hz, OCH₂C*H*₃), 04-0.30 (brs, 18H, 2xSi(C*H*₃)₂); ¹³C NMR (CDCl₃, 75MHz) δ 169.9, 163.9, 137.8, 128.6, 124.8, 122.1, 120.0, 119.0, 109.0, 104.6, 61.7, 50.6, 48.9, 48.1, 29.8, 14.1, 0.4; HRMS (EI) calcd. for C₂₂H₃₄N₂O₃Si₂ 430.2108, found 430.2109.

 $\bigcup_{Me} N_{e} Me Compound 12c: light yellow solid, mp: 162–164°C. IR (film) 1664 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) & 7.24 (brd, 1H,$ *J*= 7.6 Hz, Ar*H*), 7.16 (brt, 1H,*J*= 8.1Hz, Ar*H*), 6.83 (brt, 1H,*J*= 7.6Hz, Ar*H*), 6.69 (brd, 1H,*J*= 8.1 Hz, Ar*H*), 3.88 (d, 1H,*J*= 10.8 Hz, NCH*H*'), 3.62(dd, 1H,*J*= 10.8, 1.8 Hz, NC*H*H'), 3.07-3.14 (br s, 1H,*CH*(SiMe₃)₂), 2.88 (s, 3H, NC*H*₃), 2.78-2.81 (brs, 1H,*CH*), 1.16 (t, 1H,*J*= 1.8 Hz, O=CC*H*), 0.16 (s, 9H, Si(*CH*₃)₃), 0.12 (s, 9H, Si(*CH*₃)₃).

Me Compound **11c** was obtained from rearrangement of compound **12c** in CDCl₃ solution: light yellow solid, mp:182-184°C. IR (film) 1626 cm⁻¹; ¹H NMR (Acetone-d6, 300MHz) δ 7.46 (brd, 1H, J = 8.0Hz, indole-H), 7.37 (brd, 1H, J = 8.1Hz, indole-H), 7.18 (ddd, 1H, J = 8.1, 7.2, 0.9Hz, indole-H), 7.06 (ddd, 1H, J = 8.1, 7.2, 0.9Hz, indole-H), 4.78 (t, 2H, J = 3.5Hz, NCH₂C), 3.71(s, 3H, NCH₃), 3.57 (t, 2H, J = 3.5Hz, O=CCH₂), 1.26-1.33 (brs, 1H, CH(SiMe₃)₂), 0.15 (s, 18H, 2xSi(CH₃)₃); ¹³C NMR (CDCl₃, 75MHz) δ 166.2, 137.2, 127.0, 124.8, 123.0, 119.0, 117.8, 108.4, 104.9, 48.0, 29.6, 28.2, 0.0; HRMS (EI) calcd. for C₁₈H₂₇N₂OSi₂ 343.1662, found 343.1661.

^{SO₂Ph Compound **12b**: colorless oil, IR (film) 1734, 1680 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 7.85-7.93 (m, 2H, SO₂Ph*H*), 7.67 (brd, 1H, *J* = 8.2 Hz, Ar*H*), 7.60 (dddd, 1H, *J* = 6.3, 6.3, 1.3, 1.3Hz, SO₂Ph*H*), 7.45-7.54 (m, 2H, SO₂Ph*H*), 7.36 (dd, 1H, *J* = 6.9, 1.1Hz, Ar*H*), 7.30 (ddd, 1H, *J* = 6.9, 6.9, 1.1Hz, Ar*H*), 7.10 (ddd, 1H, *J* = 6.9, 6.9, 1.1Hz, Ar*H*), 4.85 (d, 1H, *J* = 11.3 Hz, NCH*H*'), 3.69 (d, 1H, *J* = 11.3 Hz, NC*H*H'), 3.52 (dq, 1H, *J* = 11.2, 7.4 Hz, OCH*H*'CH₃), 3.39 (dq, 1H, *J* = 11.2, 7.4 Hz, OC*H*H'CH₃), 3.09 (s, 1H, *CH*), 1.25 (brs, 1H,*CH*(SiMe₃)₂), 0.72 (t, 3H, *J* = 7.4 Hz, OCH₂C*H*₃), 0.21 (s, 9H, Si(C*H*₃)₃), 0.17 (s, 9H, Si(C*H*₃)₃); ¹³C NMR (75 MHz) δ 166.2, 163.5, 144.2, 139.2, 133.8, 129.1, 128.2, 127.2, 126.5, 126.1, 124.0, 114.0, 61.0, 56.5, 38.0, 31.9, 29.9, 13.0, 0.1, 0.0; HRMS (EI) calcd. for C₂₆H₃₃N₂O₃SSi₂ 469.1437, found 469.1430.}

Compound **12d**: colorless solid, mp: 179-181°C. IR (film) 1672cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 7.87 (brd, 1H, *J* = 8.3 Hz, Ar*H*_{*x*}), 7.64-7.71 (m, 2H, SO₂Ph*H*), 7.53-7.61 (m, 1H, SO₂Ph*H*), 7.36-7.46 (m, 2H, SO₂Ph*H*), 7.20-7.34 (m, 2H, Ar*H*), 7.08 (ddd, 1H, *J* = 7.0, 7.0, 1.1 Hz, Ar*H*), 4.74 (d, 1H, *J* = 11.2 Hz, NCH*H*'), 3.76 (dd, 1H, *J* = 11.2, 1.8 Hz, NC*H*H'), 2.85-3.25 (brs, 1H, C*H*(SiMe₃)₂), 2.58 (d, 1H, *J* = 1.8 Hz, C*H*), 0.64 (t, 1H, *J* = 1.8 Hz, O=CC*H*), 0.23 (s, 9H, Si(C*H*₃)₃), 0.14 (s, 9H, Si(C*H*₃)₃); ¹³C NMR (75 MHz) δ 168.9, 143.7, 136.0, 134.2, 130.6, 129.6, 128.4, 128.0, 125.5, 124.8, 117.1, 52.1, 50.0, 36.9, 32.1, 23.8, 0.0; HRMS (EI) calcd. for C₂₃H₂₉N₂O₃SSi₂ 469.1437, found 469.1430. A comparison of the characteristics ¹H signals of compounds **12c** and **12d**.

Ha, Hd O
N BTMSM
$$R$$
 Hc H_b
12 c, R = Me; 12d, R = PhSO₂

A comparison of the chemical shifts of $H_{a,d}$ in compounds **12c**,**d** was informative. In **12c**, H_a was observed as a broad singlet at δ 2.79 and H_d resonated as a pseudotriplet at δ 1.16. In **12d**, however, these hydrogens resonated at lower chemical shifts with H_d being strongly shielded; H_a at δ 2.58 and H_d at δ 0.64. More importantly, the X-ray structure of **12d** revealed that the *N*-PhSO₂ group had adopted a conformation wherein the benzene unit resides above H_d , which explained the strong shielding experienced by H_d . This shileding effect extended as far to H_a in **12d**.

^bSO₂Ph Compound **15a**: thick oil, IR (film) 1730, 1679cm⁻¹; ¹H NMR (CDCN, 300MHz) δ 7.83-7.92 (m, 2H, SO₂Ph*H*), 7.65-7.73 (m, 1H, SO₂Ph*H*), 7.46 (brt, 2H, *J* = 7.8 Hz, Ar*H*), 7.46 (brd, 2H, *J* = 8.0 Hz, SO₂Ph*H*), 7.21-7.30 (m, 1H, Ar*H*), 7.15 (brt, 1H, *J* = 7.8 Hz, Ar*H*), 4.81 (d, 1H, *J* = 12.1 Hz, NCH*H*'), 3.69 (d, 1H, *J* = 12.1 Hz, NC*H*H'), 3.56-3.68 (m, 2H, OC*H*₂CH₃), 2.82-2.94 (brs, 1H, C*H*(SiMe₃)₂), 1.46 (s, 3H, C*H*₃), 0.78 (t, 3H, *J* = 7.2 Hz, OCH₂CH₃), 0.17 (s, 18H, 2xSi(C*H*₃)₃); ¹³C NMR (CD₃CN, 75 MHz) δ 165.9, 163.8, 141.9, 139.8, 134.2, 132.8, 129.9, 128.1, 127.2, 125.7, 124.5, 114.9, 60.9, 60.0, 48.1, 39.2, 39.1, 38.6, 13.1, 11.2, 0.0; HRMS (EI) calcd for C₂₈H₃₈N₂O₅SSi₂ 570.2040, found 570.2031.

Compounds **15b** and **16b** were obtained as an inseparable

mixture in 72% combined yield. The ratio of two components was calculated based on the integration of NCH*H*' in the γ -lactam **15b** and H4 in the β -lactam **16b**.

IR (film) 1737, 1668cm⁻¹; ¹H NMR (CDCl₃, 300MHz) (major component: γ-lactam) δ 7.19-7.62 (m, 5H, extensive aromatic hydrogens), 7.84 (d, 1H, J = 11.4 Hz, Ar H_x), 7.68-7.72 (m, 2H, SO₂PhH), 7.10 (ddd, 1H, J = 8.0, 8.0, 0.6 Hz, ArH), 4.81 (d, 1H, J = 11.1 Hz, NCHH'), 3.65 (dd, 1H, J = 11.1, 1.9 Hz, NCHH'), 2.85-2.95 (brs, 1H, CH(SiMe₃)₂), 1.41 (s, 3H, C H_3), 0.85 (d, 1H, J = 1.9Hz, O=CCH), 0.30 (s, 9H, Si(C H_3)₃), 0.27 (s, 9H, Si(C H_3)₃) /(minor component: β-lactam) δ 8.21 (d, J = 11.4 Hz, indole-

H_y), discernible signals for β-lactam 7.19-7.62 (m, 8H, extensive overlap signals of aromatic hydrogens), 5.61 (dd, 1H, *J* = 5.6, 2.8 Hz, NCHCH₂), 3.27 (dd, 1H, *J* = 13.9, 5.6Hz, O=CCHH'), 3.01 (dd, 1H, *J* = 13.9, 2.8 Hz, O=CCHH'), 2.30 (s, 3H, CH₃), 2.13 (s, 1H, CH(SiMe₃)₂), 0.20 (s, 9H, Si(CH₃)₃), 0.10 (s, 9H, Si(CH₃)₃); ¹³C NMR (75 MHz) (major component: γ-lactam) δ 168.2, 142.2, 135.9, 135.0, 134.0, 129.2, 128.1, 127.8, 124.9, 124.1, 116.9, 53.8, 49.8, 38.1, 34.7, 26.9, 11.0, 0.9, 0.6. /(minor component: β-lactam) δ 167.1, 137.3, 133.8, 132.1, 131.7, 129.1, 127.8, 126.1, 125.7, 124.1, 118.8, 116.8, 115.9, 43.4, 39.8, 30.3, 10.0, 0.3.

Me Compound **15c**: white solid, mp: 148-150°C; IR (film) 1664 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 7.28 (d, 1H, J = 7.5 Hz, ArH), 7.16 (ddd, 1H, J = 7.5, 7.5, 0.9Hz, ArH), 6.86 (ddd, 1H, J = 7.5, 7.5, 0.9Hz, ArH), 6.70 (brd, 1H, J = 7.5 Hz, ArH), 3.80 (d, 1H, J = 11.3 Hz, NCHH'), 3.55(dd, 1H, J = 11.3, 1.8 Hz, NCHH'), 3.08-3.18 (brs, 1H, CH (SiMe₃)₂), 2.86 (s, 3H, NCH₃), 1.54 (s, 3H, CH₃), 1.21 (d, 1H, J = 1.8 Hz, O=CCH), 0.18 (s, 9H, Si(CH₃)₃), 0.16 (s, 9H, Si(CH₃)₃); ¹³C NMR (75 MHz), δ 169.2, 149.5, 134.2, 128.0, 124.0, 120.2, 111.0, 56.2, 47.8, 37.2, 33.8, 34.1, 24.0, 10.8, 1.2; HRMS (EI) calcd. for C₂₀H₃₂N₂OSi₂ 372.2053, found 372.2928.

Me Compound **17**: colorless oil, IR (film) 1630 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 7.16 (ddd, 1H, J = 5.1, 5.1, 0.6 Hz, ArH), 7.02-7.07 (m, 1H, ArH), 6.77 (t, 1H, J = 5.1 Hz, ArH), 6.56 (d, 1H, J = 5.1 Hz, ArH), 5.22-5.32 (brs, 1H, C=CH), 2.95 (s, 3H, NCH₃), 2.70-2.90 (m, 2H, O=CCH₂), 2.15-2.45 (brs, 1H, CH(SiMe₃)₂), 1.34 (s, 3H, CH₃), 0.16 (s, 9H, Si(CH₃)₃), 0.13 (s, 9H, Si(CH₃)₃); ¹³C NMR (75 MHz) δ 164.8, 148.9, 142.2, 135.7, 128.6, 122.3, 119.5, 106.5, 43.5, 42.0, 30.1, 24.0, 0.1; HRMS (EI) calcd. for C₂₀H₃₂N₂OSi₂ 372.2053, found 372.2054.

MeO₂S

^{MeO₂S} Compound **19a**: white solid, mp: 146-147°C. IR (film) 1678 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 7.55 (brd, 1H, *J* = 8.3 Hz, Ar*H*), 7.36-7.41 (m, 1H, Ar*H*), 7.26 (ddd, 1H, *J* = 7.6, 7.6, 1.5 Hz, Ar*H*), 7.12 (ddd, 1H, *J* = 7.6, 7.6, 0.8 Hz, Ar*H*), 4.90 (dd, 1H, *J* = 5.5, 3.0 Hz, NC*H*), 4.58 (s, 2H, MOC*H*₂), 3.88 (dd, 1H, *J* = 11.3, 5.5 Hz, MOMOCH*H*'), 3.70 (dd, 1H, *J* = 11.3, 5.5 Hz,

MOMOC*H*H[']), 2.96 (brd, 1H, J = 1.7 Hz, C*H*), 3.26 (s, 3H, OC*H*₃), 2.81 (s, 3H, SO₂C*H*₃), 2.38 (s, 1H, C*H*(SiMe₃)₂), 1.68 (d, 1H, J = 1.7 Hz, O=CC*H*), 0.18 (s, 9H, Si(C*H*₃)₃), 0.13 (s, 9H, Si(C*H*₃)₃); ¹³C NMR (75 MHz) δ 169.4, 143.4, 129.6, 128.5, 125.6, 125.0, 115.7, 96.6, 67.1, 61.4, 55.5, 52.9, 37.7, 36.2, 30.4, 23.3, 0.8, 0.5; HRMS (EI) calcd. for C₂₂H₃₆N₂O₅SSi₂ 496.1884, found 496.1879.

MOMO MeO₂Ś BTMSM

^{MeO₂S⁶ BTMSM Compound **20a** was obtained in about 1: 1 ratio based on the separated yield. **Stereoisomer 1**: colorless oil, IR (film) 1677 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 7.94-8.00 (m, 1H, indole-*H*), 7.55-7.62 (m, 1H, indole-*H*), 7.28-7.42 (m, 2H, indole-*H*), 6.71(s, 1H, indole-*H*3), 5.83 (d, 1H, *J* = 8.5 Hz, NC*H*), 4.68 (q, 1H, *J* = 8.5 Hz, MOMOC*H*), 4.61 (d, 1H, *J* = 6.8 Hz, MOCH*H*[']), 4.52 (d, 1H, *J* = 6.8 Hz, MOC*H*H[']), 3.28 (s, 3H, OC*H*₃), 3.19 (s, 3H, SO₂C*H*₃), 2.71 (dd, 1H, *J* = 16.3, 8.5 Hz, O=CCH*H*[']), 2.64 (dd, 1H, *J* = 16.3, 7.9 Hz, O=CC*H*H[']), 2.20 (s, 1H, C*H*(SiMe₃)₂), 0.10 (s, 9H, Si(C*H*₃)₃), 0.20 (s, 9H, Si(C*H*₃)₃); ¹³C NMR (75 MHz) δ 170.9, 137.2, 129.0, 125.0, 124.0, 121.8, 114.0, 110.5, 96.0, 72.2, 61.8, 56.0, 40.5, 38.5, 36.0, 2.0, 0.1; HRMS (EI) calcd. for C₂₂H₃₆N₂O₅SSi₂ 496.1884, found 496.1880.}

Stereoisomer 2: colorless oil, IR (film) 1683 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 8.02 (brd, 1H, *J* =7.2 Hz, indole-*H*), 7.53-7.59 (m, 1H, indole-*H*), 7.29-7.42 (m, 2H, indole-*H*), 6.66(s, 2H, indole-*H3*), 5.55-5.59 (brs, 1H, NC*H*), 4.89 (d, 1H, *J* =7.2 Hz, MOCH*H'*), 4.66 (d, 1H, *J* =7.2 Hz, MOC*H*H'), 4.24 (brd, 1H, *J* =5.8 Hz, MOMOC*H*), 3.40 (s, 3H, OC*H*₃), 3.18 (s, 3H, SO₂C*H*₃), 2.84 (dd, 1H, *J* =17.3, 5.8 Hz, O=CCH*H'*), 2.39 (brd, 1H, *J* =17.3Hz, O=CC*H*H'), 2.16 (s, 1H, *CH*(SiMe₃)₂), 0.20 (s, 9H, Si(*CH*₃)₃), 0.15 (s, 9H, Si(*CH*₃)₃); ¹³C NMR (75 MHz) δ 172.0, 137.2, 128.6, 125.6, 124.2, 121.2, 114.2, 110.0, 95.0, 75.9, 61.8, 56.0, 41.0, 38.5, 36.0, 2.0, 0.1; HRMS (EI) calcd. for C₂₂H₃₆N₂O₅SSi₂ 496.1884, found 496.1880.

^{MOM} Compound **19b**: colorless oil, IR (film) 1674 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 7.29 (brd, 1H, J = 7.4 Hz, ArH), 7.15 (ddd, 1H, J = 8.0, 8.0, 1.1 Hz, ArH), 6.78-6.88 (m, 2H, ArH), 4.75 (d, 1H, J = 11.0 Hz, NCHH'OM), 4.75 (d, 1H, J = 11.0 Hz, NCHH'OM), 4.58 (s, 2H, MOCH₂), 4.32 (dd, 1H, J = 6.5, 2.9 Hz, NCH), 3.84 (dd, 1H, J = 11.0, 2.9 Hz, MOMOCHH'), 3.59 (dd, 1H, J = 11.0, 6.5 Hz, MOMOCHH'), 3.37 (s, 3H, OCH₃), 3.30 (s, 3H, OCH₃), 2.83-2.87 (brs, 1H, CH), 2.48 (s, 1H, CH(SiMe₃)₂), 1.18 (d, 1H, J = 1.3 Hz, O=CCH), 0.18 (s, 9H, Si(CH₃)₃), 0.14 (s, 9H, Si(CH₃)₃); ¹³C NMR (75 MHz) δ 171.8, 148.8, 128.1, 127.5, 125.2, 120.0, 109.5, 96.6, 79.3, 68.9, 60.0, 56.0, 55.3, 52.9, 37.5, 29.8, 2.08, 0.7, 0.6; HRMS (EI) calcd. for C₂₃H₃₈N₂O₄SSi₂ 462.2370, found 462.2379.

^N-BTMSM OMOM Compound **21**: white solid, mp: 217-219°C; IR (film) 1674 cm⁻¹; ¹H NMR (CDCl₃, 300MHz) δ 8.89 (s, 1H, indole-N*H*), 7.38 (brd, 1H, *J* = 7.9 Hz, indole-*H*), 7.26 (brd, 1H, *J* = 7.9 Hz, indole-*H*), 7.10 (ddd, 1H, *J* = 7.3, 7.3, 1.1 Hz, indole-*H*), 6.98-7.02 (m, 1H, indole-*H*), 4.58-4.67 (brs, 3H, MOC*H*₂, NC*H*), 3.88 (dd, 1H, *J* =9.4, 4.2 Hz, MOMOCH*H'*), 3.68 (dd, 1H, *J* =20.7, 2.1 Hz, O=CCH*H'*), 3.47-3.58 (m, 2H, O=CC*H*H', MOMOC*H*H'), 3.25 (s, 3H, OC*H*₃), 2.11 (s, 1H, C*H*(SiMe₃)₂), 0.21 (s, 9H, Si(C*H*₃)₃), 0.11 (s, 9H, Si(C*H*₃)₃); ¹³C NMR (75 MHz) δ 168.0, 137.2, 129.9, 125.8, 122.4, 119.9, 118.2, 110.2, 106.4, 96.9, 70.0, 60.0, 55.8, 46.0, 29.6, 1.5, 0.5; HRMS (EI) calcd. for C₂₃H₃₈N₂O₄SSi₂ 418.2108, found 418.2110.

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is \circledcirc The Royal Society of Chemistry 2008

3' SO₂Ph

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\textcircled{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is \circledcirc The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is \circledcirc The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

MeO₂C

°O

N-BTMSM

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

.

Supplementary Material (ESI) for Chemical Communications This journal is \circledcirc The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\textcircled{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is \circledcirc The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

N-BTMSM Me

Supplementary Material (ESI) for Chemical Communications This journal is \circledcirc The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\textcircled{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

₹

ò

Ne

-

0

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\textcircled{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is \circledcirc The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\textcircled{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is \circledcirc The Royal Society of Chemistry 2008

.....

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

MeO₂S 19a Z MOMO ^N-BTMSM Ô

Supplementary Material (ESI) for Chemical Communications This journal is \circledcirc The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\textcircled{O}}$ The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is \circledcirc The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\textcircled{O}}$ The Royal Society of Chemistry 2008

ORTEP Drawing of compound **12d**

Data was collected at -100°C on a Nonius Kappa CCD diffractometer, using the COLLECT program (Nonius, 1998). Cell refinement and data reductions used the programs DENZO and SCALEPACK (Otwinowski & Minor, 1997). SIR97 (Altomare et al., 1999) was used to solve the structure and SHELXL97 (Sheldrick, 1997) was used to refine the structure. ORTEP-3 for Windows (Farrugia, 1997) was used for molecular graphics and PLATON (Spek, 2001) was used to prepare material for publication. H atoms were placed in calculated positions with U_{iso} constrained to be 1.5 times U_{eq} of the carrier atom for methyl protons and 1.2 times U_{eq} of the carrier atom for all other hydrogen atoms.

The phenyl group of the benzene sulfonate moiety was found to be disordered. The phenyl group was modelled as rigid phenyl groups in two different positions. The occupancies were approximately 48 and 52%. The ORTEP diagram was drawn using only the higher occupancy phenyl position.

References:

A, Altomare, M. C. Burla, M. Camalli, G. Cascarano, C, Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, and R. Spagna, R. J. Appl. Cryst., 1999, **32**, 115.

Bruker-AXS (2000). SHELXTL 6.10. Bruker-AXS, Madison, USA

L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565. (one page only)

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands

Z. Otwinowski and W. Minor, *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C.W. Carter and R.M. Sweet, pp. 307-326. London: Academic Press, 1997.

Sheldrick, G.M. (1997). SHELXL-97. University of Göttingen. Germany.

Spek, A.L. (2001). PLATON. University of Utrecht, The Netherlands.

Table 1. Crystal data and structure refinement for 384.

Identification code	384		
Empirical formula	mula C24 H32 N2 O3 S Si2		
Formula weight	484.76		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/c$		
Unit cell dimensions	a = 16.8073(4) Å	α=90°.	
	b = 9.1044(2) Å	β=131.7160(10)°.	
	c = 23.0328(5) Å	$\gamma = 90^{\circ}$.	
Volume	2630.86(10) Å ³		
Z	4		
Density (calculated)	1.224 Mg/m ³		
Absorption coefficient	0.241 mm ⁻¹		
F(000)	1032		
Crystal size	0.20 x 0.20 x 0.10 mm ³		
Theta range for data collection	2.37 to 25.68°.		
Index ranges	-20<=h<=20, -11<=k<=11, -28	<=l<=27	
Reflections collected	40367		
Independent reflections	4992 [R(int) = 0.0543]		
Completeness to theta = 25.68°	99.9 %		
Absorption correction	Psi-scan		
Max. and min. transmission	0.976 and 0.917		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4992 / 170 / 326		
Goodness-of-fit on F ²	1.053		
Final R indices [I>2sigma(I)]	[I] R1 = 0.0403, wR2 = 0.0938		
R indices (all data)	R1 = 0.0543, wR2 = 0.1019		
Largest diff. peak and hole	0.197 and -0.453 e.Å ⁻³		

	X	У	Z	U(eq)
<u>S(1)</u>	3305(1)	2224(1)	-437(1)	39(1)
Si(1)	8071(1)	2919(1)	2022(1)	46(1)
Si(2)	8183(1)	5367(1)	3116(1)	45(1)
O(1)	6610(1)	2854(1)	2737(1)	41(1)
O(2)	2224(1)	2153(2)	-1149(1)	63(1)
O(3)	4145(1)	2285(2)	-446(1)	44(1)
N(1)	6299(1)	4083(2)	1736(1)	32(1)
N(2)	3417(1)	3745(2)	18(1)	34(1)
C(1)	5997(1)	3353(2)	2070(1)	33(1)
C(2)	4810(1)	3272(2)	1515(1)	32(1)
C(3)	4451(1)	4042(2)	793(1)	30(1)
C(4)	5422(1)	4480(2)	918(1)	34(1)
C(5)	4259(1)	4759(2)	1275(1)	34(1)
C(6)	3081(1)	4750(2)	766(1)	38(1)
C(7)	2457(2)	5336(2)	901(1)	50(1)
C(8)	1355(2)	5274(3)	306(2)	65(1)
C(9)	899(2)	4652(3)	-402(2)	65(1)
C(10)	1512(2)	4078(3)	-550(1)	54(1)
C(11)	2612(2)	4135(2)	49(1)	39(1)
C(12)	7414(1)	4466(2)	2124(1)	35(1)
C(13)	7327(2)	2606(3)	973(1)	61(1)
C(14)	8065(2)	1181(3)	2444(2)	70(1)
C(15)	9457(2)	3482(4)	2507(2)	81(1)
C(16)	8986(2)	4058(3)	3950(1)	63(1)
C(17)	9125(2)	6711(3)	3232(2)	75(1)
C(18)	7228(2)	6440(3)	3108(1)	61(1)
C(19A)	3451(11)	736(11)	106(7)	43(2)
C(20A)	2639(13)	318(9)	80(10)	56(2)
C(21A)	2824(19)	-729(11)	591(13)	85(3)
C(22A)	3820(20)	-1358(12)	1128(11)	83(4)
C(23A)	4632(16)	-940(12)	1153(8)	67(3)
C(24A)	4447(12)	107(13)	642(7)	48(2)
C(19B)	3676(11)	809(10)	221(7)	36(2)
C(20B)	2961(12)	328(9)	286(8)	62(2)
C(21B)	3280(15)	-666(9)	859(8)	71(3)
C(22B)	4315(16)	-1179(10)	1366(7)	75(3)
C(23B)	5031(14)	-697(11)	1300(7)	63(2)
C(24B)	4711(12)	296(12)	727(7)	42(2)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 384. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3. Bond lengths [Å] and angles [°] for 384.

S(1)-O(2)	1.4248(15)	C(5)-C(6)	1.484(2)	C(17)-H(17C)	0.9800
S(1)-O(3)	1.4255(14)	C(5)-H(5)	1.0000	C(18)-H(18A)	0.9800
S(1)-N(2)	1.6702(16)	C(6)-C(7)	1.386(3)	C(18)-H(18B)	0.9800
S(1)-C(19A)	1.746(3)	C(6)-C(11)	1.388(3)	C(18)-H(18C)	0.9800
S(1)-C(19B)	1.756(2)	C(7)-C(8)	1.391(3)	C(19A)-C(20A)	1.3799
Si(1)-C(14)	1.860(3)	C(7)-H(7)	0.9500	C(19A)-C(24A)	1.3799
Si(1)-C(13)	1.861(2)	C(8)-C(9)	1.379(3)	C(20A)-C(21A)	1.3800
Si(1)-C(15)	1.864(3)	C(8)-H(8)	0.9500	C(20A)-H(20A)	0.9500
Si(1)-C(12)	1.8984(19)	C(9) - C(10)	1.386(3)	C(21A)-C(22A)	1.3799
Si(2)-C(16)	1.866(2)	C(9)-H(9)	0.9500	C(21A)-H(21A)	0.9500
Si(2)-C(18)	1.868(2)	C(10)-C(11)	1.389(3)	C(22A)-C(23A)	1.3799
Si(2)-C(17)	1.874(3)	C(10)-H(10)	0.9500	C(22A)-H(22A)	0.9500
Si(2)-C(12)	1.9057(19)	C(12)-H(12)	1.0000	C(23A)-C(24A)	1.3800
O(1)-C(1)	1.233(2)	C(13)-H(13A)	0.9800	C(23A)-H(23A)	0.9500
N(1)-C(1)	1.348(2)	C(13)-H(13B)	0.9800	C(24A)-H(24A)	0.9500
N(1)-C(4)	1.469(2)	C(13)-H(13C)	0.9800	C(19B)-C(20B)	1.3799
N(1)-C(12)	1.483(2)	C(14)-H(14A)	0.9800	C(19B)-C(24B)	1.3799
N(2)-C(11)	1.446(2)	C(14)-H(14B)	0.9800	C(20B)-C(21B)	1.3800
N(2)-C(3)	1.467(2)	C(14)-H(14C)	0.9800	C(20B)-H(20B)	0.9500
C(1)-C(2)	1.491(2)	C(15)-H(15A)	0.9800	C(21B)-C(22B)	1.3799
C(2)-C(3)	1.512(2)	C(15)-H(15B)	0.9800	C(21B)-H(21B)	0.9500
C(2)-C(5)	1.521(2)	C(15)-H(15C)	0.9800	C(22B)-C(23B)	1.3799
C(2)-H(2)	1.0000	C(16)-H(16A)	0.9800	C(22B)-H(22B)	0.9500
C(3)-C(5)	1.496(3)	C(16)-H(16B)	0.9800	C(23B)-C(24B)	1.3800
C(3)-C(4)	1.510(2)	C(16)-H(16C)	0.9800	C(23B)-H(23B)	0.9500
C(4)-H(4A)	0.9900	C(17)-H(17A)	0.9800	C(24B)-H(24B)	0.9500
C(4)-H(4B)	0.9900	C(17)-H(17B)	0.9800		
O(2)-S(1)-O(3)	120.17(10)	N(1)-C(1)-C(2)	109.41(15)	C(6)-C(7)-H(7)	120.8
O(2)-S(1)-N(2)	106.50(9)	C(1)-C(2)-C(3)	104.32(14)	C(8)-C(7)-H(7)	120.8
O(3)-S(1)-N(2)	106.08(8)	C(1)-C(2)-C(5)	114.28(15)	C(9)-C(8)-C(7)	120.6(2)
O(2)-S(1)-C(19A)	104.6(5)	C(3)-C(2)-C(5)	59.09(12)	C(9)-C(8)-H(8)	119.7
O(3)-S(1)-C(19A)	111.9(5)	C(1)-C(2)-H(2)	120.8	C(7)-C(8)-H(8)	119.7
N(2)-S(1)-C(19A)	106.9(5)	C(3)-C(2)-H(2)	120.8	C(8)-C(9)-C(10)	121.8(2)
O(2)-S(1)-C(19B)	114.1(5)	C(5)-C(2)-H(2)	120.8	С(8)-С(9)-Н(9)	119.1
O(3)-S(1)-C(19B)	104.8(4)	N(2)-C(3)-C(5)	108.50(14)	C(10)-C(9)-H(9)	119.1
N(2)-S(1)-C(19B)	103.9(4)	N(2)-C(3)-C(4)	122.36(15)	C(9)-C(10)-C(11)	117.2(2)
C(14)-Si(1)-C(13)	108.37(13)	C(5)-C(3)-C(4)	118.87(15)	C(9)-C(10)-H(10)	121.4
C(14)-Si(1)-C(15)	111.14(14)	N(2)-C(3)-C(2)	122.39(15)	С(11)-С(10)-Н(10)	121.4
C(13)-Si(1)-C(15)	108.13(13)	C(5)-C(3)-C(2)	60.76(12)	C(6)-C(11)-C(10)	121.60(19)
C(14)-Si(1)-C(12)	111.15(11)	C(4)-C(3)-C(2)	108.89(14)	C(6)-C(11)-N(2)	110.31(16)
C(13)-Si(1)-C(12)	109.29(10)	N(1)-C(4)-C(3)	102.36(14)	C(10)-C(11)-N(2)	127.79(19)
C(15)-Si(1)-C(12)	108.70(11)	N(1)-C(4)-H(4A)	111.3	N(1)-C(12)-Si(1)	110.87(12)
C(16)-Si(2)-C(18)	111.79(12)	C(3)-C(4)-H(4A)	111.3	N(1)-C(12)-Si(2)	113.64(13)
C(16)-Si(2)-C(17)	107.83(12)	N(1)-C(4)-H(4B)	111.3	$S_1(1)-C(12)-S_1(2)$	118.76(9)
C(18)-Si(2)-C(17)	107.40(13)	C(3)-C(4)-H(4B)	111.3	N(1)-C(12)-H(12)	103.9
C(16)-Si(2)-C(12)	114.07(10)	H(4A)-C(4)-H(4B)	109.2	$S_1(1)-C(12)-H(12)$	103.9
C(18)-Si(2)-C(12)	108.72(10)	C(6)-C(5)-C(3)	104.14(15)	$S_1(2)-C(12)-H(12)$	103.9
C(17)-Si(2)-C(12)	106.69(11)	C(6)-C(5)-C(2)	116.82(15)	Si(1)-C(13)-H(13A)	109.5
C(1)-N(1)-C(4)	114.59(14)	C(3)-C(5)-C(2)	60.15(11)	SI(1)-C(13)-H(13B)	109.5
C(1)-N(1)-C(12)	125.24(15)	C(0)-C(0)-H(0)	119.9	H(13A)-U(13)-H(13B)	109.5
C(4)-IN(1)-C(12) C(11) N(2) C(2)	120.13(14) 106.54(14)	C(3)-C(3)-H(3)	119.9	SI(1)-C(13)-H(13C) H(12A)-C(12)-H(13C)	109.5
C(11) - N(2) - C(3) C(11) - N(2) - C(3)	100.34(14) 121.09(12)	C(2)- $C(3)$ - $H(3)$	119.9	$\Pi(13A)-U(13)-H(13U)$ $\Pi(12D)-U(12)-H(12U)$	109.5
C(11)-IN(2)-S(1) C(2) N(2) S(1)	121.08(12) 117.66(12)	C(7) - C(0) - C(11)	120.43(18)	$\Pi(13D)-U(13)-\Pi(13U)$	109.5
C(3) - IN(2) - S(1) O(1) C(1) N(1)	117.00(12) 124.06(17)	C(11) C(0) - C(3)	127.10(10) 110.22(17)	$S_{1}(1) - C_{1}(14) - H_{1}(14A)$ $S_{1}(1) - C_{1}(14) - H_{1}(14B)$	109.3
O(1) - O(1) - N(1) O(1) - O(1) - O(2)	124.90(17) 125.61(17)	C(11) - C(0) - C(3) C(6) - C(7) - C(8)	110.23(17) 118.3(7)	$H(14A)_C(14)_H(14B)$	109.5
$\cup_{1} \cup_{1} \cup_{1$	122.01(1/)		110.3(2)	11(17/1)-C(17)-11(14D	, 109.3

Si(1)-C(14)-H(14C)	109.5	Si(2)-C(18)-H(18A) 1	109.5	C(19A)-C(24A)-C(23A)	120.0
H(14A)-C(14)-H(14C)	109.5	Si(2)-C(18)-H(18B) 1	109.5	C(19A)-C(24A)-H(24A)	120.0
H(14B)-C(14)-H(14C)	109.5	H(18A)-C(18)-H(18B) 1	109.5	C(23A)-C(24A)-H(24A)	120.0
Si(1)-C(15)-H(15A)	109.5	Si(2)-C(18)-H(18C) 1	109.5	C(20B)-C(19B)-C(24B)	120.0
Si(1)-C(15)-H(15B)	109.5	H(18A)-C(18)-H(18C) 1	109.5	C(20B)-C(19B)-S(1)	119.5(5)
H(15A)-C(15)-H(15B)	109.5	H(18B)-C(18)-H(18C) 1	109.5	C(24B)-C(19B)-S(1)	120.1(5)
Si(1)-C(15)-H(15C)	109.5	C(20A)-C(19A)-C(24A) 1	120.0	C(19B)-C(20B)-C(21B)	120.0
H(15A)-C(15)-H(15C)	109.5	C(20A)-C(19A)-S(1) 121	.4(6)	C(19B)-C(20B)-H(20B)	120.0
H(15B)-C(15)-H(15C)	109.5	C(24A)-C(19A)-S(1) 118	3.1(6)	C(21B)-C(20B)-H(20B)	120.0
Si(2)-C(16)-H(16A)	109.5	C(19A)-C(20A)-C(21A) 1	120.0	C(22B)-C(21B)-C(20B)	120.0
Si(2)-C(16)-H(16B)	109.5	C(19A)-C(20A)-H(20A) 1	120.0	C(22B)-C(21B)-H(21B)	120.0
H(16A)-C(16)-H(16B)	109.5	C(21A)-C(20A)-H(20A) 1	120.0	C(20B)-C(21B)-H(21B)	120.0
Si(2)-C(16)-H(16C)	109.5	C(22A)-C(21A)-C(20A) 1	120.0	C(21B)-C(22B)-C(23B)	120.0
H(16A)-C(16)-H(16C)	109.5	C(22A)-C(21A)-H(21A) 1	120.0	C(21B)-C(22B)-H(22B)	120.0
H(16B)-C(16)-H(16C)	109.5	C(20A)-C(21A)-H(21A) 1	120.0	C(23B)-C(22B)-H(22B)	120.0
Si(2)-C(17)-H(17A)	109.5	C(23A)-C(22A)-C(21A) 1	120.0	C(22B)-C(23B)-C(24B)	120.0
Si(2)-C(17)-H(17B)	109.5	C(23A)-C(22A)-H(22A) 1	120.0	C(22B)-C(23B)-H(23B)	120.0
H(17A)-C(17)-H(17B)	109.5	C(21A)-C(22A)-H(22A) 1	120.0	C(24B)-C(23B)-H(23B)	120.0
Si(2)-C(17)-H(17C)	109.5	C(22A)-C(23A)-C(24A) 1	120.0	C(19B)-C(24B)-C(23B)	120.0
H(17A)-C(17)-H(17C)	109.5	C(22A)-C(23A)-H(23A) 1	120.0	C(19B)-C(24B)-H(24B)	120.0
H(17B)-C(17)-H(17C)	109.5	C(24A)-C(23A)-H(23A) 1	120.0	C(23B)-C(24B)-H(24B)	120.0

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	44(1)	42(1)	36(1)	-8(1)	28(1)	-8(1)
Si(1)	41(1)	50(1)	44(1)	-1(1)	27(1)	7(1)
Si(2)	46(1)	41(1)	34(1)	-6(1)	21(1)	-7(1)
O(1)	49(1)	41(1)	29(1)	9(1)	25(1)	8(1)
O(2)	44(1)	83(1)	42(1)	-27(1)	21(1)	-11(1)
O(3)	55(1)	45(1)	48(1)	0(1)	41(1)	-4(1)
N(1)	31(1)	33(1)	25(1)	5(1)	16(1)	2(1)
N(2)	31(1)	34(1)	30(1)	-3(1)	18(1)	-2(1)
C(1)	42(1)	27(1)	31(1)	1(1)	24(1)	4(1)
C(2)	40(1)	28(1)	33(1)	1(1)	26(1)	0(1)
C(3)	31(1)	28(1)	27(1)	1(1)	18(1)	-1(1)
C(4)	31(1)	38(1)	28(1)	7(1)	17(1)	1(1)
C(5)	34(1)	28(1)	36(1)	-4(1)	22(1)	-2(1)
C(6)	37(1)	28(1)	45(1)	-8(1)	26(1)	-4(1)
C(7)	45(1)	44(1)	63(1)	-19(1)	37(1)	-6(1)
C(8)	45(1)	65(2)	84(2)	-29(1)	43(1)	-9(1)
C(9)	34(1)	69(2)	74(2)	-24(1)	29(1)	-8(1)
C(10)	37(1)	60(1)	51(1)	-16(1)	24(1)	-7(1)
C(11)	36(1)	35(1)	44(1)	-6(1)	25(1)	-3(1)
C(12)	31(1)	37(1)	31(1)	2(1)	18(1)	0(1)
C(13)	70(2)	61(2)	60(2)	-12(1)	47(1)	0(1)
C(14)	85(2)	52(1)	76(2)	13(1)	54(2)	27(1)
C(15)	47(1)	107(2)	83(2)	-11(2)	41(1)	7(2)
C(16)	53(1)	70(2)	31(1)	-1(1)	14(1)	-3(1)
C(17)	70(2)	68(2)	68(2)	-17(1)	37(2)	-29(1)
C(18)	83(2)	43(1)	57(1)	-7(1)	47(1)	3(1)
C(19A)	56(4)	34(4)	58(4)	-17(3)	46(4)	-17(3)
C(20A)	78(5)	39(3)	100(6)	-36(3)	79(5)	-34(3)
C(21A)	144(8)	41(4)	166(9)	-40(5)	143(8)	-43(5)
C(22A)	173(11)	34(5)	140(7)	-3(5)	145(8)	-7(5)
C(23A)	115(7)	30(3)	96(6)	11(3)	87(6)	2(4)
C(24A)	73(5)	33(4)	59(4)	-8(3)	53(4)	-16(3)
C(19B)	63(5)	21(3)	50(4)	-17(2)	49(4)	-21(3)
C(20B)	80(5)	53(4)	86(5)	-35(3)	69(5)	-34(3)
C(21B)	132(7)	44(4)	113(6)	-32(4)	114(6)	-46(4)
C(22B)	157(9)	19(3)	122(6)	-1(3)	124(6)	-12(4)
C(23B)	115(6)	27(3)	96(5)	10(3)	91(5)	10(4)
C(24B)	71(5)	17(3)	68(4)	4(3)	60(4)	0(3)

Table 4. Anisotropic displacement parameters (Ųx 10³) for 384. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	X	У	Z	U(eq)
	4442	2364	1475	38
H(4A)	5464	2004	560	38 41
H(4R)	5404	5546	833	41
H(5)	J422 1671	5653	1587	41
H(7)	2773	5769	1388	41 60
H(8)	011	5664	388	00 77
H(0)	144	4616	-798	78
H(10)	1103	3664	-1041	64
H(10)	7335	5269	1703	42
H(12) H(12A)	7555	1802	021	42
H(13R)	7762	3535	730	92
H(13C)	6615	2226	730	92
H(14A)	8380	396	2370	105
H(14R)	7320	915	2183	105
H(14C)	8474	1317	3001	105
H(15A)	0702	2715	2/33	105
H(15R)	9870	3625	3064	121
H(15C)	9438	4403	2277	121
$H(16\Delta)$	9275	4571	4430	94
H(16R)	9573	3670	4000	94
H(16C)	8530	3246	3858	94
$H(17\Delta)$	9495	7263	3716	113
H(17R)	8725	7203	2791	113
H(17C)	9648	6180	3250	113
$H(18\Delta)$	7621	6957	3605	91
H(18R)	6710	5770	3034	91
H(18C)	6853	7155	2683	91
H(20A)	1953	751	-289	67
H(21A)	2265	-1017	574	102
H(22A)	3947	-2079	1479	100
H(23A)	5317	-1372	1522	80
H(24A)	5006	396	659	57
H(20R)	2248	681	-62	74
H(21B)	2240	_997	904	85
H(22B)	4535	-1863	1760	89
H(23B)	5743	-1050	1649	75
	5775	(20	107)	75

Table 5.	Hydrogen coordinates (x 10 ⁴) and isotropic	displacement parameters (Å ² x 10 ³)
for 384.		

Table 6. Torsion angles [°] for 384.

$\overline{O(2)}$ -S(1)-N(2)-C(11)	43.19(17)	C(9)-C(10)-C(11)-N(2)	-173.6(2)
O(3)-S(1)-N(2)-C(11)	172.30(14)	C(3)-N(2)-C(11)-C(6)	4.6(2)
C(19A)-S(1)-N(2)-C(11)	-68.2(5)	S(1)-N(2)-C(11)-C(6)	142.66(14)
C(19B)-S(1)-N(2)-C(11)	-77.6(5)	C(3)-N(2)-C(11)-C(10)	178.3(2)
O(2)-S(1)-N(2)-C(3)	176.91(14)	S(1)-N(2)-C(11)-C(10)	-43.6(3)
O(3)-S(1)-N(2)-C(3)	-53.98(15)	C(1)-N(1)-C(12)-Si(1)	87.89(19)
C(19A)-S(1)-N(2)-C(3)	65.5(5)	C(4)-N(1)-C(12)-Si(1)	-91 11(17)
C(19B)-S(1)-N(2)-C(3)	56 2(5)	C(1)-N(1)-C(12)-Si(2)	-48.9(2)
C(4)-N(1)-C(1)-O(1)	176.08(17)	C(4)-N(1)-C(12)-Si(2)	132.08(15)
C(12)-N(1)-C(1)-O(1)	-3 0(3)	C(14)-Si(1)-C(12)-N(1)	-58 33(16)
C(4)-N(1)-C(1)-C(2)	-5.0(2)	C(13)-Si(1)-C(12)-N(1)	61 23(16)
C(12)-N(1)-C(1)-C(2)	17594(15)	C(15)-Si(1)-C(12)-N(1)	179.05(15)
O(1)-C(1)-C(2)-C(3)	179.83(17)	C(14)-Si(1)-C(12)-Si(2)	76 00(14)
N(1)-C(1)-C(2)-C(3)	0.94(19)	C(13)-Si(1)-C(12)-Si(2)	-164 43(12)
O(1)-C(1)-C(2)-C(5)	117.6(2)	C(15) - Si(1) - C(12) - Si(2)	-46.62(16)
N(1)-C(1)-C(2)-C(5)	-61 3(2)	C(16) - Si(2) - C(12) - N(1)	9443(15)
C(11)-N(2)-C(3)-C(5)	-5 47(18)	C(18)-Si(2)-C(12)-N(1)	-31.07(16)
S(1)-N(2)-C(3)-C(5)	-145 25(13)	C(17)-Si(2)-C(12)-N(1)	-146.61(15)
C(11)-N(2)-C(3)-C(4)	-150.04(16)	C(16)-Si(2)-C(12)-Si(1)	-38.71(15)
S(1)-N(2)-C(3)-C(4)	70 18(19)	C(10)-Si(2)-C(12)-Si(1) C(18)-Si(2)-C(12)-Si(1)	-36.71(13) -164.22(12)
C(11)-N(2)-C(3)-C(2)	61 1(2)	C(17)-Si(2)-C(12)-Si(1)	-104.22(12) 80.24(15)
S(1)-N(2)-C(3)-C(2)	-78.68(19)	O(2)-S(1)-C(12)-S(1)	-36.9(8)
S(1)-N(2)-C(3)-C(2) C(1) C(2) C(3) N(2)	-78.08(19) 155.68(15)	O(2) - S(1) - C(19A) - C(20A) O(3) - S(1) - C(19A) - C(20A)	-30.9(8)
C(1)-C(2)-C(3)-N(2) C(5) C(2) C(3) N(2)	04 22(18)	N(2) S(1) C(19A) C(20A)	-108.3(0)
C(3)-C(2)-C(3)-N(2)	-94.55(18) 100.08(15)	$\Gamma(2)$ - $S(1)$ - $C(10A)$ - $C(20A)$	140(6)
C(1) - C(2) - C(3) - C(3)	-109.98(13) 3 18(10)	O(2) S(1) C(19A) C(20A)	149(0) 151 7(5)
C(1)-C(2)-C(3)-C(4)	5.10(19)	O(2) - S(1) - C(19A) - C(24A) O(2) - S(1) - C(19A) - C(24A)	131.7(3) 20.1(7)
C(3)-C(2)-C(3)-C(4)	6.7(2)	N(2) S(1) C(19A) C(24A)	20.1(7)
C(1)-N(1)-C(4)-C(5) C(12) N(1) C(4) C(2)	0.7(2) 174 10(15)	N(2)-S(1)-C(19A)-C(24A) C(10B) S(1) C(10A) C(24A)	-93.0(0)
V(12) - N(1) - V(4) - V(3)	-1/4.19(13) 158 20(15)	C(19D)-S(1)-C(19A)-C(24A) C(24A)-C(10A)-C(20A)-C(21A)	-23(3)
N(2)-C(3)-C(4)-N(1)	-138.20(13)	C(24A)- $C(19A)$ - $C(20A)$ - $C(21A)$	0.0 171.2(10)
C(3)-C(3)-C(4)-N(1) C(2)-C(3)-C(4)-N(1)	5 60(19)	S(1)-C(19A)-C(20A)-C(21A) C(10A)-C(20A)-C(21A)-C(22A)	-1/1.3(10)
C(2)-C(3)-C(4)-N(1)	-3.09(19)	C(19A) - C(20A) - C(21A) - C(22A)	0.0
N(2)-C(3)-C(3)-C(6)	4.31(18) 150.22(15)	C(20A)-C(21A)-C(22A)-C(23A)	0.0
C(4)-C(3)-C(5)-C(6)	150.52(15) 112.07(16)	C(21A)-C(22A)-C(23A)-C(24A)	0.0
V(2) - C(3) - C(3) - C(6)	-115.0/(10) 117.20(15)	C(20A)-C(19A)-C(24A)-C(23A)	0.0 171 5(10)
N(2)-C(3)-C(5)-C(2)	117.39(13)	S(1)-C(19A)-C(24A)-C(25A)	1/1.5(10)
C(4)- $C(3)$ - $C(5)$ - $C(2)$	-90.01(17)	C(22A)-C(23A)-C(24A)-C(19A)	0.0
C(1)-C(2)-C(5)-C(6)	-1/5.89(10)	O(2)-S(1)-C(19B)-C(20B)	-3/.9(7)
C(3)-C(2)-C(3)-C(6)	91.46(18)	V(3)-S(1)-C(19B)-C(20B)	-1/1.3(3)
C(1)-C(2)-C(3)-C(3)	92.65(16)	N(2)-S(1)-C(19B)-C(20B)	//.6(6)
C(3)-C(5)-C(6)-C(7)	-1/0.8(2)	C(19A)-S(1)-C(19B)-C(20B)	-32(5)
C(2)-C(5)-C(6)-C(7)	119.8(2)	O(2)-S(1)-C(19B)-C(24B)	149.2(4)
C(3)-C(5)-C(6)-C(11)	-1.5(2)	O(3)-S(1)-C(19B)-C(24B)	15.8(6)
C(2)-C(5)-C(6)-C(11)	-65.0(2)	N(2)-S(1)-C(19B)-C(24B)	-95.3(5)
C(11)-C(6)-C(7)-C(8)	0.8(3)	C(19A)-S(1)-C(19B)-C(24B)	155(6)
C(5)-C(6)-C(7)-C(8)	1/5.6(2)	C(24B)-C(19B)-C(20B)-C(21B)	0.0
C(6)-C(7)-C(8)-C(9)	-0.4(4)	S(1)-C(19B)-C(20B)-C(21B)	-172.9(9)
C(7)- $C(8)$ - $C(9)$ - $C(10)$	-0.5(4)	C(19B)-C(20B)-C(21B)-C(22B)	0.0
C(8)-C(9)-C(10)-C(11)	0.9(4)	C(20B)-C(21B)-C(22B)-C(23B)	0.0
C(7)-C(6)-C(11)-C(10)	-0.4(3)	C(21B)-C(22B)-C(23B)-C(24B)	0.0
C(5)-C(6)-C(11)-C(10)	-176.05(19)	C(20B)-C(19B)-C(24B)-C(23B)	0.0
C(7)- $C(6)$ - $C(11)$ - $N(2)$	173.84(18)	S(1)-C(19B)-C(24B)-C(23B)	172.8(9)
C(5)-C(6)-C(11)-N(2)	-1.9(2)	C(22B)-C(23B)-C(24B)-C(19B)	0.0
C(9)-C(10)-C(11)-C(6)	-0.5(3)		