## **Supporting Information**

## Enhanced Carbohydrate Structural Selectivity in Ion Mobility-Mass Spectrometry Analyses by Boronic Acid Derivatization

## Larissa S. Fenn and John A. McLean\*

Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235 Email: john.a.mclean@vanderbilt.edu

**Abstract:** Boronic acid derivatization of carbohydrates and glycans is demonstrated as an ion mobility shift strategy to improve confidence in the identification and characterization of carbohydrate assignments using ion mobility-mass spectrometry.

| Common name<br>or<br>abbreviation | Systematic name                                                                                                                                                                     | Molecular<br>weight<br>( <i>M<sub>r</sub></i> , Da) | $\begin{array}{c} \left[ M+\mathrm{Na}\right] ^{+} \\ \mathrm{(Da)} \end{array}$ | [M+FBA+Na] <sup>+</sup><br>(Da) | [M+PBA+Na] <sup>+</sup><br>(Da) |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|---------------------------------|
| Maltose                           | 4-O-α-D-Glucose-D-glucose                                                                                                                                                           | 342.3                                               | 365.3                                                                            | 559.1                           | 641.5                           |
| Lactose                           | β-D-galactose-(1→4)-α-D-glucose                                                                                                                                                     | 342.3                                               | 365.3                                                                            | 559.1                           | 641.5                           |
| LN                                | $\beta$ -D-Galactose-(1 $\rightarrow$ 4)-D- <i>N</i> -acetylglucosamine                                                                                                             | 383.4                                               | 383.4                                                                            | 600.2                           | 682.5                           |
| Gala3-type1                       | Galactose- $\alpha$ -(1 $\rightarrow$ 3)-galactose- $\beta$ -(1 $\rightarrow$ 3)-N-acetylglucosamine- $\beta$ -azide                                                                | 614.6                                               | 637.6                                                                            | 831.4                           | 913.7                           |
| P1                                | Galactose- $\alpha$ -(1 $\rightarrow$ 4)-galactose- $\beta$ -(1 $\rightarrow$ 4)-N-acetylglucosamine- $\beta$ -azide                                                                | 614.6                                               | 637.6                                                                            | 831.4                           | 913.7                           |
| Lec-Lec                           | Galactose- $\beta$ -(1 $\rightarrow$ 3)-N-acetylglucosamine- $\beta$ -<br>(1 $\rightarrow$ 3)-galactose- $\beta$ -(1 $\rightarrow$ 3)-N-<br>acetylglucosamine- $\beta$ -azide       | 817.8                                               | 840.8                                                                            | 1034.6                          | 1116.9                          |
| LNT                               | Galactose- $\beta$ -(1 $\rightarrow$ 3)-N-acetylglucosamine- $\beta$ -<br>(1 $\rightarrow$ 3)-galactose- $\beta$ (1 $\rightarrow$ 4)-N-<br>acetylglucosamine- $\beta$ -azide        | 817.8                                               | 840.8                                                                            | 1034.6                          | 1116.9                          |
| LNFP1                             | $\alpha$ -L-fucose-(1 $\rightarrow$ 2)-β-D-galactose-(1 $\rightarrow$ 3)-β-D-N-acetylglucosamine-(1 $\rightarrow$ 3)-β-D-galactose-(1 $\rightarrow$ 4)-D-glucose                    | 853.8                                               | 876.8                                                                            | 1070.6                          | 1152.9                          |
| LNFP2                             | $\beta$ -D-Galactose-(1 $\rightarrow$ 3)-(α-L-fucose-[1 $\rightarrow$ 4])- $\beta$ -D-D-N-acetylglucosamine-(1 $\rightarrow$ 3)- $\beta$ -D-galactose-(1 $\rightarrow$ 4)-D-glucose | 853.8                                               | 876.8                                                                            | 1070.6                          | 1152.9                          |

Table S1. Common names, systematic names, average molecular weights, and derivatized mass of the carbohydrates reported in this work.

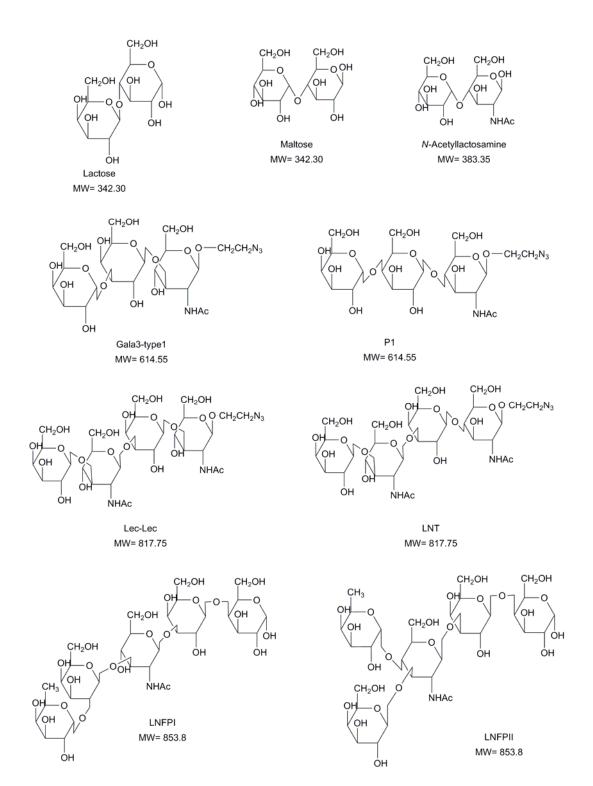



Figure S1 Structures of the underivatized carbohydrates studied.

**Table S2** Collision cross sections determined for protonated and/or sodium coordinated carbohydrates prior to and following boronic acid derivatization.

|              | Collision cross section $(\text{\AA}^2)^a$ |                         |                         |  |  |
|--------------|--------------------------------------------|-------------------------|-------------------------|--|--|
| Carbohydrate | $[M+Na]^+$                                 | [M+FBA+Na] <sup>+</sup> | [M+PBA+Na] <sup>+</sup> |  |  |
| Maltose      | 103.1 ± 4.1 (21)                           | 140.3 ± 7.7 (5)         | 156.3 ± 5.7 (16)        |  |  |
| Lactose      | 106.8 ± 5.1 (35)                           | 151.5 ± 8.4 (16)        | 163.7 ± 3.4 (30)        |  |  |
| LN           | 117.4 ± 1.8 (23)                           | 156.7 ± 3.4 (15)        | 195.0 ± 1.5 (30)        |  |  |
| Gala3-type1  | 160.2 ± 2.1 (26)                           | 197.9 ± 4.4 (31)        | 229.8 ± 7.3 (18)        |  |  |
| P1           | 166.9 ± 1.2 (70)                           | 200.5 ± 2.8 (39)        | 255.4 ± 2.3 (40)        |  |  |
| Lec-Lec      | 183.2 ± 1.6 (51)                           | 220.0 ± 2.6 (15)        | 252.2 ± 2.1 (21)        |  |  |
| LNT          | 195.9 ± 1.4 (42)                           | 217.9 ± 2.8 (19)        | 254.8 ± 8.3 (19)        |  |  |
| LNFP1        | 204.3 ± 1.4 (147)                          | 222.5 ± 3.4 (9)         | 230.2 ± 6.1 (26)        |  |  |
| LNFP2        | 201.4 ± 1.0 (166)                          | 226.1 ± 2.3 (11)        | 233.7 ± 3.1 (21)        |  |  |

*a*. Error represents  $\pm 1\sigma$  for *n* measurements indicated in parenthesis. The protonated form of PBA derivatized carbohydrates is not included as the relative abundance for [M+PBA+H]+ species was <2% of the base peak ([M+PBA+Na]<sup>+</sup>) in the spectra.