SUPPORTING INFORMATION

A New Synthesis of Symmetric Boraindacene (BODIPY) Dyes

Liangxing Wu and Kevin Burgess^{*}

Texas A & M University, Chemistry Department, Box 30012, College Station, Texas 77842, USA

Email: burgess@tamu.edu

TABLE OF CONTENTS

General Experimental Methods	S2
Preparation of Compounds 1a-h	S 3-S6
Preparation of Compounds 2a-h	S7-S10
NMR and MS Study of the Self-condensation Reaction	S11-S13
References	S14
Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S15-S33

General Experimental Methods

All reactions were carried out under an atmosphere of dry nitrogen. Glassware was ovendried prior to use. Unless otherwise indicated, common reagents or materials were obtained from commercial source and used without further purification. All the solvents were used after appropriate distillation or purification.

Flash column chromatography was performed using silica gel 60 (230-400 mesh). Analytical thin layer chromatography (TLC) was carried out on Merck silica gel plates with QF-254 indicator and visualized by UV. Fluorescence spectra were obtained on a Varian Cary Eclipse fluorescence spectrophotometer at room temperature. Absorbance spectra were obtained on a Varian 100 Bio UV-Vis spectrophotometer at room temperature.

¹H and ¹³C spectra were recorded on a Varian 300 (300 MHz ¹H; 75 MHz ¹³C) or Varian 500 (500 MHz ¹H; 125 MHz ¹³C) spectrometer at room temperature. Chemical shifts were reported in ppm relative to the residual CDCl₃ (δ 7.24 ppm ¹H; δ 77.0 ppm ¹³C). ¹⁹F NMR were acquired on a Varian 300 (300 MHz ¹H; 282 MHz ¹⁹F) spectrometer. CFCl₃ was used as an external reference for the ¹⁹F NMR spectra. H₃PO₄ was used as an external reference for the ¹⁹F NMR spectra. (*J*) were reported in Hertz.

Photophysical Properties and Determination of Quantum Yields

Steady-state fluorescence spectroscopic studies were performed on a Cary Eclipse fluorometer. The slit width was 5 nm for both excitation and emission. The relative quantum yields of the samples were obtained by comparing the area under the corrected emission spectrum of the test sample with that of a standard. The quantum efficiencies of fluorescence were obtained from multiple measurements (N=3) with the following equation:

$$\Phi_{\mathrm{x}} = \Phi_{\mathrm{st}} \left(\mathbf{I}_{\mathrm{x}} / \mathbf{I}_{\mathrm{st}} \right) \left(\mathbf{A}_{\mathrm{st}} / \mathbf{A}_{\mathrm{x}} \right) \left(\eta_{\mathrm{x}}^{2} / \eta_{\mathrm{st}}^{2} \right)$$

Where Φ_{st} is the reported quantum yield of the standard, **I** is the area under the emission spectra, **A** is the absorbance at the excitation wavelength and η is the refractive index of the solvent used, measured on a pocket refractometer from ATAGO. **X** subscript denotes test sample, and **st** denotes standard.

Typical Procedure for the Synthesis of Pyrrole-2-carboxaldehyde¹

POCl₃ (5.9 mL, 63.0 mmol) was added dropwise to DMF (4.9 mL, 63.0 mmol) at 0 °C. The mixture was warmed to room temperature and stirred for 15 min. The ice bath was replaced to cool the mixture back to 0 °C, then 30 mL of 1,2-dichloroethane was added to the mixture. A solution of 2,4-dimethyl pyrrole (5.0 g, 52.5 mmol) in 50 mL of 1,2-dichloroethane was added dropwise over 20 min at 0°C. After the addition was complete, the reaction mixture was refluxed for 30 min and then cooled to room temperature. A solution of NaOAc (23.7 g, 289 mmol) in 100 mL of water was added. The reaction mixture was again refluxed for 30 min. The cooled mixture was washed with water (1 x 100 mL), saturated Na₂CO₃ solution (2 x 50 mL) and brine (1 x 50 mL). The organic layer was dried over Na₂SO₄ and the solvents were removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, 20 % EtOAc/Hexanes) to afford the pure product as a light yellow solid (5.8 g, 89 %). ¹H NMR (300 MHz, CDCl₃) δ 9.96 (br, 1H), 9.44 (s, 1H), 5.84 (d, 1H, *J* = 2.6 Hz), 2.30 (s, 3H), 2.28 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 175.9, 138.4, 134.7, 128.7, 112.0, 13.2, 10.6.

1b-1h were prepared using similar method as described for **1a**.

4,5-Dihydro-1H-benzo[g]indole-2-carbaldehyde (1b)

Yellow solid (910 mg, 85 %). ¹H NMR (300 MHz, CDCl₃) δ 10.74 (br, 1H), 9.48 (s, 1H), 7.71 (d, 1H, *J* = 7.4 Hz), 7.32-7.19 (m, 3H), 6.84 (d, 1H, *J* = 2.0 Hz), 2.96 (t, 2H, *J* = 7.5 Hz), 2.78 (t, 2H, *J* = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 178.4, 137.2, 136.7, 132.5, 128.5, 128.0, 127.4, 127.0, 122.7, 121.7, 120.6, 29.6, 21.3. MS (ESI) m/z calcd for (M+H)⁺ C₁₃H₁₂NO 198.09; found 198.09.

7-Methoxy-4,5-dihydro-1H-benzo[g]indole-2-carbaldehyde (1c)

Light green solid (345 mg, 100 %). ¹H NMR (300 MHz, CDCl₃) δ 10.59 (br, 1H), 9.39 (s, 1H), 7.61 (d, 1H, *J* = 8.2 Hz), 6.82-6.78 (m, 3H), 3.81 (s, 3H), 2.91 (t, 2H, *J* = 7.5 Hz), 2.74 (t, 2H, *J* = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 177.8, 159.6, 139.3, 137.1, 132.0, 123.1, 121.4, 120.9, 120.5, 114.5, 112.0, 55.3, 30.0, 21.3. MS (ESI) m/z calcd for (M+H)⁺ C₁₄H₁₄NO₂ 228.10; found 228.10.

3,5-Diphenyl-1H-pyrrole-2-carbaldehyde (1d)

White solid (290 mg, 86 %). ¹H NMR (300 MHz, CDCl₃) δ 10.04 (br, 1H), 9.63 (s, 1H), 7.70-7.67 (m, 2H), 7.55-7.52 (m, 2H), 7.48-7.33 (m, 6H), 6.72 (d, 1H, J = 2.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 179.4, 139.1, 138.5, 133.5, 130.4, 129.2, 129.1, 129.0, 128.8, 128.7, 127.9, 125.3, 109.0. MS (ESI) m/z calcd for (M+H)⁺ C₁₇H₁₄NO 248.11; found 248.11.

4-Ethyl-3,5-dimethyl-1H-pyrrole-2-carbaldehyde (1e)

Brown solid (1.1 g, 85 %). ¹H NMR (300 MHz, CDCl₃) δ 10.08 (br, 1H), 9.42 (s, 1H), 2.36 (q, 2H, *J* = 7.5 Hz), 2.25 (s, 3H), 2.24 (s, 3H), 1.03 (t, 3H, *J* = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 175.5, 135.9, 132.2, 127.8, 124.8, 16.9, 15.0, 11.4, 8.7. MS (ESI) m/z calcd for (M+H)⁺ C₉H₁₄NO 152.11; found 152.10.

5-Ethyl-1H-pyrrole-2-carbaldehyde (1f)

Red solid (1.0 g, 78 %). ¹H NMR (300 MHz, CDCl₃) δ 10.58 (br, 1H), 9.34 (s, 1H), 6.92-6.90 (m, 1H), 6.09-6.07 (m, 1H), 2.72 (q, 2H, *J* = 7.5 Hz), 1.26 (t, 3H, *J* =7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 178.2, 145.4, 131.8, 123.4, 108.8, 21.0, 13.1. MS (ESI) m/z calcd for (M+H)⁺ C₇H₁₀NO 124.08; found 124.07.

4,5,6,7-Tetrahydro-1H-indole-2-carbaldehyde (1g)

Yellow solid (960 mg, 78 %). ¹H NMR (300 MHz, CDCl₃) δ 10.21 (br, 1H), 9.29 (s, 1H), 6.69 (d, 1H, J = 2.4 Hz), 2.67 (t, 2H, J = 6.1 Hz), 2.51 (t, 2H, J = 6.0 Hz), 1.84-1.69 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 177.9, 138.9, 131.2, 121.2, 121.1, 23.3, 23.0, 22.6 (2C: 22.61, 22.59). MS (ESI) m/z calcd for (M+H)⁺ C₉H₁₂NO 150.09; found 150.09.

4-Acetyl-3,5-dimethyl-1H-pyrrole-2-carbaldehyde (1h)

Light yellow solid (481 mg, 40 %). ¹H NMR (300 MHz, CDCl₃) δ 10.20 (br, 1H), 9.62 (s, 1H), 2.58 (s, 3H), 2.56 (s, 3H), 2.45 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 194.9, 177.6, 143.1, 134.6, 128.2, 123.7, 31.3, 15.2, 11.4. MS (ESI) m/z calcd for (M+H)⁺ C₉H₁₂NO₂ 166.09; found 166.09.

Typical Procedure for the Synthesis of Symmetric BODIPYs

3,5-Dimethyl-1H-pyrrole-2-carbaldehyde 1a (246 mg, 2 mmol) was dissolved in 10 mL CH₂Cl₂ and POCl₃ (0.22 mL, 2.4 mmol) was added dropwise over 1 min at 0 °C. The solution was warmed to room temperature slowly and stirred for 12 h. The mixture was cooled to 0 °C and Et₃N (1.4 mL, 10 mmol) was added dropwise over 5 min. After stirring for 15 min, BF₃OEt₂ (2.0 mL, 16 mmol) was added dropwise to the solution over 5 min. The reaction mixture was warmed to room temperature and stirred for 12 h. The mixture was passed through a short pad of silica gel eluting with CH₂Cl₂ to remove the polar impurities. The solvents were removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and water was added, and the mixture was stirred at room temperature overnight. (to decompose excess BF_3OEt_2 and other impurities). The organic layer was washed with water, brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (5 % EtOAc/hexanes) to give the pure product **2a** (229 mg, 92 %) as a red solid. ¹H NMR (CDCl₃, 500 MHz) & 7.01 (s, 1H), 6.02 (s, 2H), 2.51 (s, 6H), 2.22 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) & 156.7, 141.2, 133.4, 120.0, 119.0, 14.6, 11.2; ¹⁹F NMR (CDCl₃, 282 MHz) δ 30.68 (q, J = 33.5 Hz). HRMS (ESI) m/z calcd for (M+H)⁺ C₁₃H₁₆BF₂N₂ 249.1375; found 249.1373.

2b-2h were prepared using similar methods as described for **2a**.

BODIPY 2b

Green solid (360 mg, 91 %). ¹H NMR (300 MHz, CDCl₃) δ 8.73 (d, 2H, *J* = 8.0 Hz), 7.45-7.39 (m, 2H), 7.33-7.23 (m, 4H), 6.98 (s, 1H), 6.76 (s, 2H), 2.90 (t, 4H, *J* = 7.0 Hz), 2.72 (t, 4H, *J* = 7.0 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 152.6, 140.5, 136.3, 133.1, 129.7, 128.3, 128.2, 128.1, 127.5, 124.8, 124.1, 30.5, 22.3; ¹⁹F NMR (CDCl₃, 282 MHz) δ 39.67 (q, *J* = 33.6 Hz). MS (MALDI) m/z calcd for M⁺ C₂₅H₁₉BF₂N₂ 396.16; found 395.88.

BODIPY 2c

Blue solid (194 mg, 85 %). ¹H NMR (300 MHz, CDCl₃) δ 8.69 (d, 2H, *J* = 9.0 Hz), 6.95 (d, 2H, *J* = 9.0, 2.8 Hz), 6.86 (s, 1H), 6.78 (d, 2H, *J* = 2.8 Hz), 6.69 (s, 2H), 3.85 (s, 6H), 2.87 (t, 4H, *J* = 6.9 Hz), 2.70 (t, 4H, *J* = 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 160.6, 151.9, 142.8, 135.9, 131.9, 129.9 (t, *J* = 11.1 Hz), 124.2, 122.2, 121.4, 114.3, 112.4, 55.3, 30.8, 22.3; ¹⁹F NMR (CDCl₃, 282 MHz) δ 39.15 (q, *J* = 33.6 Hz). MS (MALDI) m/z calcd for M⁺ C₂₇H₂₃BF₂N₂O₂ 456.18; found 455.88.

BODIPY 2d

Green solid (52 mg, 21 %). ¹H NMR (300 MHz, CDCl₃) δ 7.98-7.95 (m, 4H), 7.54-7.42 (m, 17H), 6.73 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 157.8, 145.7, 134.4, 133.3, 132.3, 129.7, 129.4 (t, *J* = 3.5 Hz), 129.1, 128.7 (2C), 128.2, 127.7, 119.0; ¹⁹F NMR (CDCl₃, 282 MHz) δ 45.58 (q, *J* = 33.5 Hz). MS (MALDI) m/z calcd for M⁺ C₃₃H₂₃BF₂N₂ 496.19; found 495.93.

BODIPY 2e

Organge solid (227 mg, 75 %). ¹H NMR (300 MHz, CDCl₃) δ 6.92 (s, 1H), 2.47 (s, 6H), 2.36 (q, 4H, J = 7.5 Hz), 2.14 (s, 6H), 1.04 (t, 6H, J = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 154.6, 136.6, 132.4, 131.6, 118.5, 17.3, 14.6, 12.5, 9.4; ¹⁹F NMR (CDCl₃, 282 MHz) δ 30.93 (q, J = 33.6 Hz). MS (MALDI) m/z calcd for M⁺ C₁₇H₂₃BF₂N₂ 304.19; found 303.96.

BODIPY 2f

Orange solid (70 mg, 28 %). ¹H NMR (300 MHz, CDCl₃) δ 7.05 (s, 1H), 6.94 (d, 2H, J = 4.2 Hz), 6.32 (d, 2H, J = 4.2 Hz), 3.02 (q, 4H, J = 7.5 Hz), 1.31 (t, 6H, J = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 164.1, 134.4, 130.1, 127.1, 117.4, 22.0, 12.6; ¹⁹F NMR (CDCl₃, 282 MHz) δ 31.94 (q, J = 33.4 Hz). MS (MALDI) m/z calcd for M⁺ C₁₃H₁₅BF₂N₂ 248.13; found 247.85.

BODIPY 2g

Red solid (65 mg, 22 %). ¹H NMR (300 MHz, CDCl₃) δ 6.89 (s, 1H), 6.59 (s, 2H), 3.01 (t, 4H, J = 6.2 Hz), 2.52 (t, 4H, J = 6.2 Hz), 1.86-1.78 (m, 4H), 1.76-1.68 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 158.0, 134.0, 129.3, 125.9, 125.3, 24.7, 23.1, 22.8, 22.3; ¹⁹F NMR (CDCl₃, 282 MHz) δ 27.29 (q, J = 33.5 Hz). MS (MALDI) m/z calcd for M⁺ C₁₇H₁₉BF₂N₂ 300.16; found 299.91.

BODIPY 2h

Messy reaction, obtained complex mixtures.

NMR and MS Study of the Self-condensation Reaction:

Compound **1a** (25 mg, 0.2 mmol) was dissolved in 1 mL of CDCl₃ and then POCl₃ (50 μ L) was added. The reaction was monitored by ¹H, ¹³C and ³¹P over 10 min intervals at room temperature.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

References:

1. R. Silverstein, E. Ryskiewicz and C. Willard, *Org. Synth.*, 1963, 4, 831-833.

S18

and stranger in the owner of the produced to

40

42

didate Ar way to play

38

upot de la la

36

when the second of the part of the second decare is a part of the second decare is a part of the second decare is a second decare in the second decare in the second decare is a second decare in the second decare is a second decare in the second decare is a second decare in the second decare in the second decare is a second decare in the second decare is a second decare in the second decare in the second decare is a second decare in the second decare is a second decare in the second dc

ppm

34

where we have a strategy and a strat

46

44

product where a spirit production and server

48

50

S24

S25

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

¹⁹F NMR (CDCI₃)

