Supporting Information

Self-assembly and multicolor emission of core/shell structured $CaWO_4$: Na^+/Ln^{3+} spheres

Yiguo Su, Liping Li and Guangshe Li* State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter and Graduate School of Chinese Academy of Sciences, Fuzhou 350002, P.R. China. Fax: +86-591-83714946; Tel: +86-591-83702122; E-mail: guanshe@fjirsm.ac.cn

Table S1 Initial molar ratios and those measured by ICP technique for the as-prepared

samples CaWO₄:Na⁺/Ln³⁺

Ln ³⁺	Initial molar ratios	ICP results*	Formula
	Ca:Ln:W	Na:Ca:Ln:W	
Dy ³⁺	0.925 : 0.075 : 1	0.128 : 0.858 : 0.071 : 1	Ca _{0.858} (Dy,Na) _{0.142} WO ₄
Tb ³⁺	0.85 : 0.15 : 1	0.131 : 0.744 : 0.128 : 1	Ca _{0.744} (Tb,Na) _{0.256} WO ₄
Sm ³⁺	0.925 : 0.075 : 1	0.165 : 0.884 : 0.058 : 1	Ca _{0.884} (Sm,Na) _{0.116} WO ₄
Eu ³⁺	0.925 : 0.075 : 1	0.121 : 0.868 : 0.066 : 1	Ca _{0.868} (Eu,Na) _{0.132} WO ₄

* In the as-prepared samples, the concentration of Na⁺ ions is larger than Ln^{3+} (Ln=Dy, Tb, Sm, Eu). The presence of excess sodium in all samples may be the consequence of the co-doping of Ln^{3+} and Na⁺ at Ca²⁺ sites and the excess surface adsorption of Na⁺.

Fig. S2 XRD patterns of CaWO₄:Na⁺/Ln³⁺ spheres (Ln = Dy, Tb, Sm). These XRD data matched well that for Ln=Eu. Using the Scherrer formula for (101) diffraction peak, the mean sizes for Ln = Dy, Tb, and Sm were calculated to be 11.5, 11.7, and 7.7 nm, respectively.

Fig. S3 XRD pattern of CaWO₄: Na^+/Eu^{3+} prepared in the citric acid free system. Inset is the corresponding emission spectrum.

Fig. S4 TEM image of CaWO₄ nanocrystals prepared in the PVP free system. The as-prepared CaWO₄ consists of nearly dispersed nanoparticles with a spindly shape. The diameter of spindly particle was about 16 nm.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008

Fig. S5 SEM images of CaWO₄ spheres prepared with different PVP contents of (a) 0.3g, (b) 1.2g, (c) 1.8g, and (d) 2.4g.

Fig. S6 Excitation spectra of the as-prepared $CaWO_4:Na^+/Ln^{3+}$ spheres (Ln=Dy, Tb, Sm, Eu).

Fig. S7 Emission spectra of (a) CaWO₄:Na⁺/Eu³⁺ spheres and (b) CaWO₄:Na⁺/Ln³⁺ nanocrystals prepared in the absence of PVP.