Formation of a stable dicarbenoid and an unsaturated $C_2P_2S_2$ ring from two-electron oxidation of the $[C(PPh_2S)_2]^{2-}$ dianion

Jari Konu and Tristram Chivers*

University of Calgary, Department of Chemistry, 2500 University Drive N.W., T2N 1N4 Calgary, AB, Canada. Tel:+1-403-220-5741, Fax:+1-403-289-9488, e-mail:chivers@ucalgary.ca

General Procedures. All reactions and the manipulations of products were performed under an argon atmosphere by using standard Schlenk techniques or an inert atmosphere glove box. The compounds $(Ph_2P)_2CH_2$ (Aldrich, 97%), MeLi (1.6 M sol. in Et₂O, Aldrich), I₂ (Aldrich, 99.99+%) and 12-Crown-4 (Alfa Aesar, 98%) were used as received. The dianion Li₂[C(PPh₂S)₂] (**3**) was prepared by a literature method and was used *in situ*.^{1, 2} The solvents Et₂O and toluene were dried by distillation over Na/benzophenone under an argon atmosphere prior to use.

Spectroscopic Methods. The ¹H, ⁷Li, ¹³C and ³¹P NMR spectra were obtained in CD₂Cl₂ or d₈-THF on a Bruker DRX 400 spectrometer operating at 399.59, 155.30, 100.49 and 161.77 MHz, respectively. ¹H and ¹³C spectra are referenced to the solvent signal and the chemical shifts are reported relative to (CH₃)₄Si. ⁷Li and ³¹P NMR spectra were referenced externally and the chemical shifts are reported relative to a 1.0 M solution of LiCl in D₂O and to an 85% solution of H₃PO₄, respectively.

X-ray Crystallography. Yellow, plate-shaped crystals of $[(Et_2O)(\mu-Li)][(\mu_4-Li){IC(PPh_2S)_2}]$ (5) were obtained from toluene after 24 h at 5 ° while yellow, block-like crystals of $[(SPh_2P)_2C_2(PPh_2)_2S_2]$ ·Et₂O (6·Et₂O) were grown from Et₂O after 3 d at 23 °C. The crystals were coated with Paratone 8277 oil and mounted on a glass fiber. Diffraction data were collected on a Nonius KappaCCD diffractometer using monochromated MoK_{α} radiation ($\lambda = 0.71073$ Å) at -100 °C. The data sets were corrected for Lorentz and polarization effects, and empirical absorption correction was applied to the net intensities. The structures were solved by direct methods using SHELXS-97 ³ and refined using SHELXL-97.⁴ After the full-matrix least-squares refinement of the non-hydrogen atoms with anisotropic thermal parameters, the hydrogen atoms were placed in calculated positions (C-H = 0.95, 0.98 and 0.99 Å for phenyl, CH₃ and CH₂ hydrogens,

respectively). The isotropic thermal parameters of the hydrogen atoms were fixed at 1.2 times to that of the corresponding carbon for phenyl and CH_2 hydrogens, and 1.5 times for CH_3 hydrogens. In the final refinement the hydrogen atoms were riding on their respective carbon atoms. Crystallographic data are summarized in Table S1.

Improved synthesis of 5. A solution of $H_2C(PPh_2S)_2$ (0.345 g, 0.77 mmol) in 40 mL of Et₂O was cooled to -80 °C and 1.00 mL of MeLi (1.6 M in Et₂O, 1.60 mmol, slight excess) was added via syringe. The reaction mixture was stirred for 15 min at -80 °C and 2 ½ h at 23 °C. To the cloudy solution of Li₂[C(PPh₂S)₂] a solution of I₂ (0.203 g, 0.80 mmol) in 30 mL of Et₂O was added at room temperature. The reaction mixture was stirred for ½ h after which a solution of 12-Crown-4 (0.141 g, 0.80 mmol) in 10 mL of Et₂O was added via cannula and stirring was continued for 3 h. The white pecipicate was removed by filtration with a PTFE-disk and the solvent was evaporated in vacuo to give a yellow, amorphous powder (0.385 g). Based on ³¹P and ¹H NMR data, the product contains a ca. 9/1 mixture of **5** and H₂C(PPh₂S)₂, however **6** is not observed. Repeated attempts at further purification of **5** resulted in hydrogen abstraction from solvent(s) and formation of additional H₂C(PPh₂S)₂ as well as H(I)C(PPh₂S)₂.

NMR data for H(I)C(PPh₂S)₂: ³¹P NMR (d₈-THF): δ 49.2 ppm. ¹H NMR; δ 6.05 ppm (t, 1H bonded to PCP-carbon, ²*J*(¹H, ³¹P) = 7.2 Hz). ¹³C{¹H} NMR; δ 26.5 ppm (t, PCP-carbon, ¹*J*(¹³C, ³¹P) = 31.2 Hz).

cf. NMR data for H(Cl)C(PPh₂S)₂: ³¹P NMR (d₈-THF): δ 46.3 ppm. ¹H NMR; δ 5.55 ppm (t, 1H bonded to PCP-carbon, ²*J*(¹H, ³¹P) = 8.9 Hz). ¹³C{¹H} NMR; δ 53.7 ppm (t, PCP-carbon, ¹*J*(¹³C, ³¹P) = 31.2 Hz)].⁵

Improved synthesis of 6. A solution of $H_2C(PPh_2S)_2$ (0.169 g, 0.38 mmol) in 40 mL of Et₂O was cooled to -80 °C and 0.50 mL of MeLi (1.6 M in Et₂O, 0.80 mmol, slight excess) was added via syringe. The reaction mixture was stirred for 15 min at -80 °C and 2 $\frac{1}{2}$ h at 23 °C.

The turbid solution of $\text{Li}_2[C(PPh_2S)_2]$ was cooled to -80 °C and a mixture of I₂ (0.102 g, 0.40 mmol) and 12-Crown-4 (0.141 g, 0.80 mmol) in 30 mL of Et₂O was added via cannula. The reaction mixture was stirred for $\frac{1}{2}$ h at -80 °C and 3 h at 23 °C. The pale yellow precipitate was removed by filteration with a PTFE-disk and the solvent was evaporated under vacuum to give a yellow, amorphous powder (0.142 g). Based on ³¹P and ¹H NMR data, this procedure produces a mixture of **6**, H₂C(PPh₂S)₂ and H(I)C(PPh₂S)₂ in an approximately 2:1:1 ratio; the dicarbenoid **5** is not observed. However, it was not possible to separate a pure sample of **6** from the other products.

	5	6 ∙Et₂O
empirical formula	$C_{54}H_{50}I_2Li_2OP_4S_4$	$C_{54}H_{50}OP_4S_4$
fw	1234.74	967.06
cryst. system	monoclinic	monoclinic
space group	C2/c	$P2_1/c$
<i>a</i> , Å	26.997(5)	18.496(4)
<i>b</i> , Å	10.517(2)	11.907(2)
<i>c</i> , Å	20.050(4)	23.533(5)
α, deg.	90.00	90.00
β, deg.	109.28(3)	108.68(3)
γ, deg.	90.00	90.00
<i>V</i> , Å ³	5373(2)	4910(2)
Ζ	4	4
T, ⁰C	-100	-100
$\rho_{calcd}, g/cm^3$	1.526	1.308
μ (Mo K α), mm ⁻¹	1.483	0.363
crystal size, mm ³	0.16x0.06x0.02	0.20x0.12x0.06
<i>F</i> (000)	2472	2024
Θ range, deg	2.99-25.03	2.46-25.03
reflns collected	8595	16547
unique reflns	4707	8634
R _{int}	0.0284	0.0432
reflns [$l \ge 2\sigma(l)$]	3694	6137
$R_1 \left[I \ge 2\sigma(I)\right]^b$	0.0312	0.0484
wR_2 (all data) ^c	0.0629	0.1149
GOF on F^2	1.057	1.042
completeness	0.989	0.997

Table S1. Crystallographic data for $[(Et_2O)(\mu-Li)][(\mu_4-Li)\{IC(PPh_2S)_2\}_2]$ (5) and $[(SPh_2P)_2C_2(PPh_2)_2S_2]\cdot Et_2O(\mathbf{6}\cdot Et_2O).^a$

 $\overline{{}^{a} \lambda (\text{MoK}\alpha)} = 0.71073 \text{ Å. } {}^{b} R_{1} = \Sigma \left[\left| F_{o} \right| - \left| F_{c} \right| \right] / \Sigma \left| F_{o} \right| . {}^{c} wR_{2} = \left[\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w F_{o}^{4} \right]^{\frac{1}{2}}.$

5^{a}						
C(1)-I(1)	2.147(3)	P(1)-S(1)	1.997(1)	Li(1)-S(2)	2.512(5)	
C(1)-P(1)	1.750(3)	P(2)-S(2)	2.022(1)	Li(2)-S(2)	2.461(5)	
C(1)-P(2)	1.745(3)	Li(1)-S(1)	2.466(4)	Li(2)…I(1)	3.167(1)	
P(1)-C(1)-P(2)	123.8(2)	P(1)-S(1)-Li(1)	106.2(1)	S(1)-Li(1)-S(2A)	99.8(1)	
P(1)-C(1)-I(1)	111.8(2)	P(2)-S(2)-Li(1)	100.9(1)	S(2)-Li(1)-S(2A)	102.5(3)	
P(2)-C(1)-I(1)	107.3(2)	P(2)-S(2)-Li(2)	111.5(1)	S(2)-Li(2)-S(2A)	105.5(3)	
C(1)-P(1)-S(1)	120.6(1)	S(1)-Li(1)-S(2)	117.4(1)	O(1)-Li(2)-	127.2(1)	
C(1)-P(2)-S(2)	118.6(1)	S(1)-Li(1)-S(1A)	119.5(3)	S(2)/S(2A)		
6 ⋅Et ₂ O						
C(1)-P(1)	1.762(3)	C(2)-P(4)	1.692(3)	P(2)-S(4)	2.133(1)	
C(1)-P(2)	1.692(3)	C(2)-S(2)	1.769(3)	P(3)-S(3)	1.969(1)	
C(1)-S(2)	1.775(3)	P(1)-S(1)	1.975(1)	P(4)-S(4)	2.137(1)	
C(2)-P(3)	1.766(3)					
C(1)-S(2)-C(2)	109.1(1)	C(2)-P(4)-S(4)	114.7(1)	P(2)-C(1)-S(2)	109.0(2)	
C(1)-P(1)-S(1)	114.6(1)	P(2)-S(4)-P(4)	102.8(1)	P(3)-C(2)-P(4)	124.9(2)	
C(1)-P(2)-S(4)	111.5(1)	P(1)-C(1)-P(2)	123.9(2)	P(3)-C(2)-S(2)	122.2(2)	
C(2)-P(3)-S(3)	119.2(1)	P(1)-C(1)-S(2)	123.3(2)	P(4)-C(2)-S(2)	111.4(2)	

Table S2. Selected bond lengths (Å) and angles (°) in $[(Et_2O)(\mu-Li)][(\mu_4-Li){IC(PPh_2S)_2}_2]$ (5) and $[(SPh_2P)_2C_2(PPh_2)_2S_2] \cdot Et_2O$ (6·Et₂O).

^{*a*} Symmetry operation (A): -x, y, 0.5z.

References

- T. Cantat, N. Mézailles, L. Ricard, Y. Jean and P. Le Floch, *Angew. Chem. Int. Ed.*, 2004, 43, 6382-6285.
- (2) T. Cantat, L. Ricard, Y. Jean, P. Le Floch and N. Mézailles, *Organometallics*, 2006, 25, 4965-4976.
- (3) Sheldrick, G. M. SHELXS-97, *Program for Crystal Structure Determination*, University of Göttingen, Germany, **1997**.

- (4) Sheldrick, G. M. SHELXL-97, *Program for Crystal Structure Refinement*, University of Göttingen, Germany, **1997**.
- (5) T. Cantat, X. Jacques, L. Ricard, X. F. Le Goff, N. Mézailles and P. Le Floch, Angew. Chem. Int. Ed., 2007, 46, 5947.

Figure S1. Crystal structure of **5** with 50 % thermal ellipsoid. Hydrogen atoms have been omitted for clarity.

Figure S2. Molecular structure of $6 \cdot \text{Et}_2\text{O}$ with 50% thermal ellipsoids. Hydrogen atoms and Et_2O solvate have been omitted for clarity.