Solution Discovery and Solid State Characterisation of a
HeterometallicPolyoxometalate $\{Mo_{11}V_7\}$:
 $[Mo_{11}^{VI}V_5^{V}V_2^{V}O_{52}(\mu_9-SO_3)]^7$

Haralampos N. Miras,^a Daniel J. Stone,^b Eric J.L. McInnes,^{b*} Raphael Raptis,^c Peter Baran,^c George I. Chilas,^d Michael P. Sigalas,^e Themistoklis A. Kabanos,^{d*} Leroy Cronin^{a*}

^aProf. Dr. L. Cronin*, Dr. H. N. Miras, WestCHEM, Department of Chemistry, he University of Glasgow Glasgow G12 8QQ, Scotland, UK Fax: (+44)-141-330-4888 *E-mail:L.Cronin@chem.gla.ac.uk. Homepage:* <u>http://www.chem.gla.ac.uk/staff/lee</u>

^bProf E. J. L. McInnes, Dr. D. J. Stone, EPSRC c.w. EPR Centre, School of Chemistry, University of Manchester, Manchester M13 9PL, U.K. *E-mail: eric.mcinnes@manchester.ac.uk*

[°]Prof. Dr. P. Baran, Prof. Dr. R. Raptis, Department of Chemistry, University of Puerto Rico, P.O. San Juan, Rio Piedras, PR, USA

^dProf. Dr. T. A. Kabanos^{*}, G. I. Chilas, Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece. Fax:(+30)651-44831 *E-mail: tkampano@cc.uoi.gr*

^eAssoc. Prof. Dr. M. P. Sigalas, Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Experimental and Analytical Data

(NH₄)₆Mo₇^{VI}O₂₄·4H₂O (0.60 g, 0.4 mmol) was dissolved in an HCl solution (37 % HCl in water, 1:4 v/v, 25 ml, pH ~ 0) and then solid NH₄VO₃ (0.60 g, 5.1 mmol) was added in one portion to the solution under stirring. Upon dissolution of NH₄VO₃ the light red colour of the solution changed to light green and the pH changed to 0.7. Then, solid (NH₄)₂SO₃ (6.20 g, 46.2 mmol) was gradually added to it, under magnetic stirring. A series of colour changes ensued beginning from green colour at pH = 0.7, then light blue at pH = 1.5, followed by the formation of a deep violet (pH = 3) solution. The compound 1 can be synthesized within the pH range 2.5 - 5, although the highest yield has been obtained at a pH value of 3. The solution was filtered off and the filtrate left in an open vessel (a 250 ml beaker) at room temperature (~25 °C) for 3 days, during which deep green crystals suitable for X-ray structure analysis, were obtained. Yield: 0.95 g (21 % based on Mo). Elemental analysis calcd for: H₅₂Mo₁₁N₇O₆₇SV₇: H: 1.97, N: 3.68, S: 1.20, Mo: 39.58, V: 13.37; found: H: 1.88, N: 3.82, S: 1.22, Mo: 39.48, V: 13.40. IR bands (KBr): cm⁻¹ 3400 (br) [v(O–H) from H₂O], 1401s [v(NH₄)], 1037 [v(SO₃²⁻)], 970 (sh) [v(V=O)], 944 (s) [v(Mo=O)], 886 (s) $[v(SO_3^{2-})]$, 861 (s) $[v(SO_3^{2-})]$, 817 (vs) $[v(SO_3^{2-})]$; UV-Vis (H₂O): 243(21106), 587(532) nm(dm³ mol⁻¹ cm⁻¹); UV-Vis (reflectance): 249(19987); TGA: percentage weight loss (temperature (°C)): 8.10 (25 - 200, assigned to H2O), 4.92 (200 - 420 °C, assigned to removal of NH_4^+ cations as NH_3 molecules), 2.69 (420 - 510, assigned to removal of $SO_3^{2^-}$ as gas SO_2). -ve (negative) mode cryospray ionisation mass spectrometry (CSIMS) at 20°C in CH₃CN {(Pr₄N)₄[H₁. ${}_{n}V_{5+n}^{V}V_{2-n}^{IV}Mo_{11}O_{52}(SO_{3})]$ ²⁻ where n = 1 gives an envelope centred at m/z ca. 1534.5 and where n = 0 an envelope centred at m/z ca. 1635.0 as confirmed by isotopic fitting of the envelopes to the bifurcated isotopic distribution shown between 1522 and 1547 mass units. § Crystal data for **1**: $(NH_4)_7[Mo^{VI}_{11}V_5^VV_2O_{52}(SO_3)] \cdot 12H_2O$: $H_{52}Mo_{11}N_7O_{67}SV_7$, $M_r = 2666.47$,

§ Crystal data for 1: $(NH_4)_7[Mo^{VI}_{11}V_5^VV_2O_{52}(SO_3)]\cdot 12H_2O$: $H_{52}Mo_{11}N_7O_{67}SV_7$, $M_r = 2666.47$, monoclinic, space $P2_1/m$, a = 12.140(2), b = 19.148(2), c = 13.492(2) Å, V = 3020.1(1) Å³, Z = 2, $\rho_{calc} = 2.898$ Mg cm⁻³, T = 150(2) K. R1(final)= 0.0301, wR2 = 0.0846. Further details on the crystal structure investigation may be obtained from the Fachinformationenzentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany, (fax: (+49) 7247-808-132, email: crysdata@fiz-karlsruhe.de).

Redox Titrations

(1) Compound 1 (NH₄)₇Mo₁₁V^V₅V^{IV}₂(SO₃)O₅₂·12H₂O mass used =47 mg Oxidant = 0.01 M Ce^{IV} in 0.5 M of sulphuric acid solution Theoretical amount of oxidant for *two electron* reduced species in mL: 3.72 Experimental amount used in mL: 3.35

Figure S1. Redox titration curve of Compound 1

Figure S2. Solid state K-band EPR spectrum of 1 at 10 K (black) and simulation (red).

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008

Figure S3. Solid state EPR spectra of 1 at 300 K (top) and 10 (bottom)

Figure S4. Negative ion mass spectrum in acetonitrile solution of $\{(Pr_4N)_4[H_{1-n}V_{2-n}^V V_{2-n}^V Mo_{11}O_{52}(SO_3)]\}^{2-}$. Two envelopes can be seen where n = 1 (with only one vanadium ion in oxidation state IV) giving an envelope centred at m/z *ca*. 1534.5, and where n = 0 (with 2 vanadium ions in oxidation state IV, requiring one proton) giving an envelope centred at m/z *ca*. 1535.0. Black line: experimental data, Red bars: simulation of isotope pattern.