Supplementary Material

Facile photogeneration of a charge separated state in a cyanoacetylide bridged Fe(II)-Re(I) heterobimetallic complex.

Mark E. Smith,[†] Emma L. Flynn,[†] Mark A. Fox,[†] Alexandre Trottier,[†] Eckart Wrede,[†] Dmitri S. Yufit,[†] Judith A.K. Howard,[†] Kate L. Ronayne,[‡] Michael Towrie,[‡] Anthony W. Parker,[‡] František Hartl^{*,⊥} and Paul J. Low^{*,†}

Department of Chemistry, Durham University, South Rd, Durham, DH1 3LE, UK

Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK

Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Contents

Page 2	The cyclic voltammogram of $[3]$ PF ₆
Page 3	Computational Details
Page 4	Selected observed and computed geometrical parameters
Page 5	Frontier orbitals for $[3-H]^+$
Page 5	Comparison of selected IR vibrational frequencies for $[3]^+$ and $[3]^{2+}$,
	calculated frequencies $([3-H]^+)$ and photoexcited $[3]^+*$.
Page 6	Orbital energies and % orbital compositions for $[\mathbf{3-H}]^+$
Page 7	TD-DFT data for $[3-H]^+$
Page 9	Synthetic details for $[3]PF_6$ and $[3]BF_4$
Page 10	Description of the disorder model employed for $[3]BF_4$

* Decamethylferrocene internal reference, -0.56 V vs ferrocene.

Computational details

All computations were carried out with the Gaussian 03 package¹ using models which employ a Fe(dHpe)₂Cp fragment rather than the Fe(dppe)Cp moiety to reduce computational effort, for the experimental geometries $[3]^{n+}$ (n = 0, 1, 2) and are denoted $[3-H]^{n+}$. The model geometries of the bimetallic species, $[3-H]^{n+}$ (n = 0, 1, 2), were optimized using the $PBE1PBE^2$ functionals with no symmetry constraints using the $6-31G^{*3}$ basis set for the O atoms and the pseudopotentials LANL2DZ⁴ for all other atoms. Frequencies were calculated on these optimized geometries. No imaginary frequencies were obtained which indicates that the computed geometries are true minima of the potential energy surface. A scaling factor of 0.95 was applied to the calculated IR frequencies.⁵ Small energy differences were found between geometries where the metal fragments in $[3-H]^{n+}$ (n = 0, 1, 2) are disposed in either a cisoid and transoid fashion, and indeed both conformations are found as true minima. The more stable *cisoid* forms of $[3-H]^{n+}$ (n = 0, 1, 2) geometries have total energy values of -1492.86858, -1492.71820 and -1492.40561 hartrees respectively whereas the transoid forms have corresponding values of -1492.86352, -1492.71615 and -1492.40373 hartrees. The *cisoid* conformations of $[3-H]^{n+}$ (n = 0, 1, 2) are examined in detail here. Electronic structure calculations and TD-DFT calculations were also carried out at the same level of theory.

 Gaussian 03, Revision C.02, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, Jr., J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian, Inc., Wallingford CT, 2004.
 Perdew, J.P.; Burke, K.; Ernzerhof, M. *Phys. Rev. Lett.* **1996**, *77*, 3865.
 (a) Petersson G.A.; Al-Laham, M.A. *J. Chem. Phys.* **1991**, *94*, 6081. (b) Petersson, G.A.; Bennett,

- A.; Tensfeldt, T.G.; Al-Lanam, M.A.; Shirley, W.A.; Mantzaris, J. J. Chem. Phys. **1988**, 89, 2193. 4. (a) Dunning Jr., T.H.; P. J. Hay, in *Modern Theoretical Chemistry*, Ed. H. F. Schaefer III, Vol. 3
- 4. (a) Dunning Jr., I.H., P. J. Hay, in *Modern Theoretical Chemistry*, Ed. H. F. Schaeter III, Vol. 3 (Plenum, New York, 1976). (b) Hay, P.J.; Wadt, W.R. J. Chem. Phys. **1985**, 82, 270. (c) Wadt, W.R.;

Kryspin, I.; Winter, R.F.; Kaifer, E. *Chem. Eur. J.* **2003**, *9*, 2636. (c) Fox, M.A.; Roberts, R.L.;

^{3. (}a) Petersson G.A.; Al-Laham, M.A. J. Chem. Phys. **1991**, 94, 6081. (b) Petersson, G.A.; Bennett A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. J. Chem. Phys. **1988**, 89, 2193.

Hay, P.J. J. Chem. Phys. **1985**, 82, 284. (d) Hay, P.J.; Wadt, W.R. J. Chem. Phys. **1965**, 82, 270. (c) Wadt, W.R.

^{5. (}a) Scott, A.P.; Radom, L. J. Phys. Chem. **1996**, 100, 16502. (b) Röder, J.C.; Meyer, F.; Hyla-

Khairul, W.M.; Hartl, F.; Low, P.J. J. Organomet. Chem. 2007, 692, 3277.

	Experimental [3]BF ₄	Computed $[3-H]^+$
Fe-C(1)	1.828(3)	1.829
Fe(1)-P(1)	2.1803(8)	2.249
Fe(1)-P(2)	2.2033(7)	2.250
C(1)-C(2)	1.235(4)	1.257
C(2)-C(3)	1.348(4)	1.345
C(3)-N(1)	1.161(3)	1.185
N(1)-Re(1)	2.120(2)	2.096
Re(1)-N(2)	2.180(2)	2.151
Re(1)-N(3)	2.172(2)	2.151
P(1)-Fe(1)-P(2)	87.59(3)	86.91
P(1)-Fe(1)-C(1)	85.84(8)	88.32
P(2)-Fe(1)-C(1)	86.32(8)	90.45
Fe(1)-C(1)-C(2)	177.9(2)	179.7
C(1)-C(2)-C(3)	170.1(3)	179.5
C(2)-C(3)-N(1)	179.6(3)	179.2
C(3)-N(1)-Re(1)	169.2(2)	176.3
N(1)-Re(1)-N(2)	81.36(9)	85.69
N(2)-Re(1)-N(3)	74.61(8)	75.76
N(1)-Re(1)-C(10)	177.1(1)	177.8

Table 1. Selected bond lengths (Å) and angles (°) for experimental and computed geometries

Figure S1. Selected frontier orbitals for the cation [{Cp(dHpe)Fe}(μ -C=CC=N){Re(bpy)(CO)₃}]⁺ [**3-H**]⁺

Table 2. Comparison of selected IR vibrational frequencies for $[3]^+$ and $[3]^{2+}$, calculated frequencies ($[3-H]^+$) and photoexcited $[3]^{+*}$.

	$[3-H]^+$	$[3]^+$	[3] ⁺ * ‡	$[3]^{2+}$
v(CN)	2204	2190	а	2210
v(CO)	2016	2035	2011	2040
v(CC)	1980	1970	a	2000
v(CO)	1941	1930br	1908	1940br
v(CO)(eq)	1934	1930br	1908	1940br

‡ Transient feature centroids become less accurate as time delay progression evolves and signal amplitude decreases.

^a masked by bleach

Table 3. The orbital numbers, orbital type and composition (%) of selected orbitals for $[3-H]^+$

[3-H] ⁺													
MO		eV	Ср	Fe	dppe	C(1)	C(2)	C(3)	Ν	Re	CO	(CO) ₂	bpy
132	L+9	-2.45	1	7	6	2	1	0	1	21	19	41	2
131	L+8	-2.54	0	2	1	8	2	5	6	10	1	38	27
130	L+7	-2.56	0	1	0	3	1	2	2	3	0	13	74
129	L+6	-2.74	19	54	16	11	0	0	0	0	1	0	0
128	L+5	-3.26	23	51	21	1	0	1	1	1	1	1	0
127	L+4	-3.30	0	7	5	27	4	21	18	7	12	0	0
126	L+3	-3.37	0	6	5	19	2	17	12	15	12	11	0
125	L+2	-3.97	0	0	0	0	0	0	0	0	1	2	97
124	L+1	-4.14	0	0	0	0	0	0	0	1	0	1	98
123	LUMO	-5.11	0	0	0	0	0	0	0	2	0	3	94
122	HOMO	-8.17	7	40	3	3	16	0	8	15	4	3	1
121	H-1	-8.51	2	35	2	6	13	1	7	23	5	4	3
120	H-2	-8.79	17	54	6	4	1	1	1	12	2	2	2
119	H-3	-8.98	4	20	1	1	2	4	0	47	8	8	4
118	H-4	-9.15	0	1	0	0	0	0	0	70	0	27	1
117	H-5	-9.38	3	37	2	1	10	2	3	27	4	5	5
116	H-6	-10.02	47	39	4	4	3	0	1	1	0	0	0
115	H-7	-10.13	60	28	2	2	4	0	2	1	0	0	1
114	H-8	-10.30	1	1	0	1	0	0	0	0	0	0	96
113	H-9	-10.49	5	25	13	20	18	0	9	3	0	1	5
112	H-10	-10.85	18	31	6	20	13	0	8	2	0	1	3

Table 4 Excitation energies and oscillator strengths from TD-DFT computations (PBE1PBE//LANL2DZ/6-31G*) for **[3-H]**⁺. See Table 3 for details on orbital numbers listed in the transitions.

Excitation energies and oscillator strengths for [**3-H**]⁺:

Excited State 1: Singlet-A	2.2062 eV		
561.97 nm f=0.0000		Excited State 8: Singlet-A	3.0321 eV
116 ->128 0.19742		408.90 nm f=0.0001	
117 ->128 0 11784		118 ->123 0 67820	
120 ->128 0 49138		120 ->123 -0 11649	
120 > 120 0.49150		120 / 125 0.11019	
121 - 220 - 0.55509		Evolted State Or Singlet A	2 1176 J
122 ->129 0.10889		Excited State 9. Singlet-A	5.11/0 eV
		397.69 nm f=0.0095	
Excited State 2: Singlet-A	2.3057 eV	117 ->123 -0.11278	
537.72 nm f=0.0016		118 ->123 0.12173	
119 ->123 0.18576		120 ->123 0.63748	
122 ->123 0.67813		121 ->123 -0.24149	
Excited State 3: Singlet-A	2.3288 eV	Excited State 10: Singlet-A	A 3.1402 eV
532.39 nm f=0.0036		394.83 nm f=0.0004	
113 ->128 0.15867		112 ->128 0.11470	
119 ->128 -0 23377		117 ->128 0 25477	
$122 \rightarrow 120$ 0.22577		119 ->129 -0 13531	
122 -> 120 0.54020		121 > 128 = 0.36353	
Evolted State 4: Singlet A	2 5265 N	121 - 120 = 0.30333	
Exclude State 4. Singlet-A	2.3303 eV	122 - 2129 = 0.33727	
488./9 nm 1=0.0001		122 ->130 -0.10601	
112 ->128 -0.12412			
113 ->129 0.11146		Excited State 11: Singlet-A	A 3.3303 eV
116 ->128 -0.17883		372.29 nm f=0.0017	
117 ->128 -0.30312		119 ->124 0.14627	
119 ->129 -0.16578		122 ->124 0.68346	
120 ->128 -0.18310			
121 ->128 -0.22351		Excited State 12: Singlet-	A 3.4654 eV
122 ->129 0.37564		357.77 nm f=0.0072	
122 ->130 -0 11893		117 ->123 -0 22667	
122 100 0.110,0		$119 \rightarrow 125$ 0.12407	
Excited State 5: Singlet A	2 6886 eV	121 > 127 0.12307	
461.15 nm f = 0.0402	2.0000 CV	121 > 127 = 0.10557 122 > 125 = 0.52823	
120 > 122 = 0.22(20)		122 - 125 = 0.32825	
120->123 0.22629		122 ->126 -0.14//3	
121 ->123 0.64696		122 ->127 -0.24369	
Excited State 6: Singlet-A	2.9088 eV	Excited State 13: Singlet-A	A 3.4717 eV
426.23 nm f=0.0071		357.13 nm f=0.0005	
112 ->129 0.13621		122 ->125 0.26471	
117 ->129 0.18717		122 ->127 0.59693	
120 ->129 -0.23654			
121 ->129 0.49053			
121 ->130 -0.15590		Excited State 14: Singlet-	A 3.5194 eV
121 ->133 -0.10148		352.29 nm f=0.0248	
121 • 135 0.10110		$116 \rightarrow 129$ 0 16552	
Excited State 7: Singlet A	3 0252 eV	117_>129 0.10552	
400.84 nm = -0.0016	J.0232 CV	120 > 120 0.24/11	
110 > 122 0 ((42)		120 - 2129 0.29919 121 > 127 0.10(02)	
119 - 123 0.00043		121 - 2127 = 0.19603	
122 ->123 -0.19040		122 ->125 -0.24853	

	122 ->126	-0.28012	
	122 ->127	0 12332	
		0.12002	
Ez	cited State 15	5: Singlet-A	3.5785 eV
34	6.47 nm f=0.0	284	
	117 ->123	0.59857	
	120 ->123	0.10498	
	121 ->124	0 19705	
	122 ->125	0.20869	
Ez	cited State 16	5: Singlet-A	3.6662 eV
33	8.18 nm f=0.0	309	
	117 ->123	-0.16175	
	120 ->124	0.22060	
	121 ->124	0.61448	
	122 ->125	-0.13302	
	122 120	0.15502	
E	cited State 17	⁷ Singlet-A	3 7592 eV
32	9.82 nm f=0.0	073	0.709201
52	117 ->125	-0 10373	
	120 ->125	0 23175	
	121 ->125	0.58383	
	121 ->125	-0.25700	
	121 -> 120	-0.23700	
E	cited State 18	8. Singlet-A	3 7747 eV
Ez 32	xcited State 18 8 46 nm f=0 0	3: Singlet-A	3.7747 eV
Ел 32	xcited State 18 8.46 nm f=0.0 116 ->129	3: Singlet-A 423 0 10665	3.7747 eV
Ez 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129	3: Singlet-A 423 0.10665 0.15678	3.7747 eV
Ех 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129	3: Singlet-A 423 0.10665 0.15678 0.23731	3.7747 eV
E2 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127	3: Singlet-A 423 0.10665 0.15678 0.23731 0.31595	3.7747 eV
E2 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126	3: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848	3.7747 eV
E2 32	kcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126	3: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848	3.7747 eV
Ez 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 xcited State 19	3: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 2: Singlet-A	3.7747 eV
E ₂ 32 E ₂	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 xcited State 19 1 78 nm f=0.0	8: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 9: Singlet-A 017	3.7747 eV 3.8531 eV
E ₂ 32 E ₂ 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 xcited State 19 1.78 nm f=0.0	8: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 9: Singlet-A 017 0.11462	3.7747 eV 3.8531 eV
E ₂ 32 E ₂ 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 xcited State 19 1.78 nm f=0.0 120 ->125 120 ->126	8: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 0: Singlet-A 017 0.11462 0.11021	3.7747 eV 3.8531 eV
E ₂ 32 E ₂ 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 xcited State 19 1.78 nm f=0.0 120 ->125 120 ->126	8: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 0: Singlet-A 017 0.11462 0.11031 0.24275	3.7747 eV 3.8531 eV
Ex 32 Ex 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 xcited State 19 1.78 nm f=0.0 120 ->125 120 ->126 121 ->125	8: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 9: Singlet-A 017 0.11462 0.11031 0.24275 0.59462	3.7747 eV 3.8531 eV
E2 32 E2 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 xcited State 19 1.78 nm f=0.0 120 ->125 120 ->126 121 ->125 121 ->126	8: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 9: Singlet-A 017 0.11462 0.11031 0.24275 0.59462 0.12595	3.7747 eV 3.8531 eV
Ex 32 Ex 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 xcited State 19 1.78 nm f=0.0 120 ->125 120 ->126 121 ->125 121 ->126 121 ->131	8: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 9: Singlet-A 017 0.11462 0.11031 0.24275 0.59462 -0.13585	3.7747 eV 3.8531 eV
E ₂ 32 E ₂ 32	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 xcited State 19 1.78 nm f=0.0 120 ->125 120 ->126 121 ->125 121 ->126 121 ->131 xaitad State 20	 3: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 D: Singlet-A 017 0.11462 0.11031 0.24275 0.59462 -0.13585 	3.7747 eV 3.8531 eV
E ₂ 32 E ₂ 32 E ₂	scited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 scited State 19 1.78 nm f=0.0 120 ->125 120 ->126 121 ->126 121 ->126 121 ->126 121 ->126 121 ->131 scited State 20 6.32 nm f=0.0	 3: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 9: Singlet-A 017 0.11462 0.11031 0.24275 0.59462 -0.13585 9: Singlet-A 	3.7747 eV 3.8531 eV 4.0476 eV
E2 32 E2 32 E2 30	xcited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 xcited State 19 1.78 nm f=0.0 120 ->125 120 ->126 121 ->125 121 ->126 121 ->131 xcited State 20 6.32 nm f=0.0	 3: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 b: Singlet-A 017 0.11462 0.11031 0.24275 0.59462 -0.13585 b: Singlet-A 001 0.12170 	3.7747 eV 3.8531 eV 4.0476 eV
E2 32 E2 32 E2 30	scited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 scited State 19 1.78 nm f=0.0 120 ->125 120 ->126 121 ->125 121 ->126 121 ->126 121 ->131 scited State 20 6.32 nm f=0.0 114 ->123	 3: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 b: Singlet-A 017 0.11462 0.11031 0.24275 0.59462 -0.13585 b: Singlet-A 001 0.13170 0.66728 	3.7747 eV 3.8531 eV 4.0476 eV
E ₂ 32 52 32 52 32 52 30	scited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 scited State 19 1.78 nm f=0.0 120 ->125 120 ->126 121 ->126 121 ->126 121 ->126 121 ->126 121 ->131 scited State 20 6.32 nm f=0.0 114 ->123 119 ->124	 3: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 b: Singlet-A 017 0.11462 0.11031 0.24275 0.59462 -0.13585 b: Singlet-A 001 0.13170 0.66728 0.15494 	3.7747 eV 3.8531 eV 4.0476 eV
E ₂ 32 E ₂ 32 E ₂ 30	scited State 18 8.46 nm f=0.0 116 ->129 117 ->129 120 ->129 121 ->127 122 ->126 scited State 19 1.78 nm f=0.0 120 ->125 120 ->126 121 ->126 121 ->126 121 ->126 121 ->126 121 ->121 scited State 20 6.32 nm f=0.0 114 ->123 119 ->124 122 ->124	 3: Singlet-A 423 0.10665 0.15678 0.23731 -0.31595 0.45848 b): Singlet-A 017 0.11462 0.11031 0.24275 0.59462 -0.13585 b): Singlet-A 001 0.13170 0.66728 -0.15484 	3.7747 eV 3.8531 eV 4.0476 eV

Excited State 21: Singlet-A 4.0834 eV 303.63 nm f=0.0030 118 ->124 -0.21644 120 ->124 0.60915 121 ->124 -0.25385 Excited State 22: Singlet-A 4.1355 eV 299.80 nm f=0.0004 117 ->124 -0.12556 118 ->124 0.65928 120 ->124 0.19797 Excited State 23: Singlet-A 4.2059 eV 294.79 nm f=0.0092 -0.25742 118 ->125 120 ->125 0.41636 120 ->126 -0.36988 120 ->127 -0.13063 121 ->125 -0.21162 121 ->127 0.10923 121 ->131 -0.10526 4.2240 eV Excited State 24: Singlet-A 293.52 nm f=0.0197 118 ->125 0.57564 120 ->126 -0.23843 120 ->127 -0.17680 121 ->127 0.14266 Excited State 25: Singlet-A 4.2274 eV 293.29 nm f=0.0514 118 ->125 -0.12745119 ->125 0.64829 122 ->125 -0.14222 Excited State 26: Singlet-A 4.2459 eV 292.01 nm f=0.0419 117 ->125 -0.10729118 ->125 0.24334 119 ->125 0.11708 119 ->126 -0.13667 120 ->125 0.33177 120 ->127 0.36109 121 ->125 -0.14824121 ->127 -0.23851 122 ->126 -0.13124 122 ->131 -0.12681

Synthetic details: A Schlenk flask was charged with [Fe(C=CC=N)(dppe)Cp] (50 mg, 0.088 mmol), $[Re(NCMe)(CO)_3(bpy)]PF_6$ (54 mg, 0.088 mmol) and thf (25 mL). The mixture was warmed to ca. 50°C and stirred for 48 h. The solvent was removed and the residue extracted with CH₂Cl₂. Hexane was added and the solution concentrated to give a yellow precipitate which was collected, washed with hexane, pentane and air-dried. Yield = 75 mg (75 %). Found C 49.86, H 3.43, N 3.63. $C_{47}H_{37}F_{6}FeN_{3}O_{3}P_{3}Re$ requires C 49.48, H 3.27, N 3.68. ¹H NMR (CDCl₃): δ 8.71 (dd, 4H, bpy), 8.29 (t, 2H, bpy), 7.56-7.09 (m, 22H, dppe + bpy), 4.30 (s, 5H, Cp), 2.37 (m, 4H, dppe). ${}^{31}P{H}$ NMR (CDCl₃): δ 102.6 (s, dppe), -143.0 (ht, $J_{PF} = 713 \text{ Hz}$, $[PF_6]^-$). ¹³C{H} NMR (CDCl₃): d 194.5 (s, 2 x CO), 190.3 (s, CO), 180.4 (t, J_{CP} 36 Hz, C_a), 155.8 (C1 bpy), 152.4 (C3 bpy), 141.2 (C5 bpy), 139.2, 134.5 (m, $C_{i,i'}$ dppe) 132.9, 131.4 (dd, ${}^{2}J_{CP}$, ${}^{4}J_{CP} \sim 5$ Hz, $C_{o,o'}$ dppe), 130.3, 129.9 (s, $C_{p,p'}$ dppe), 128.5, 128.1 (dd, ${}^{3}J_{CP}, {}^{5}J_{CP} \sim 5$ Hz, $C_{m,m'}$ dppe), 127.6, 125.3 (C2, C4 bpy), 104.5 (s, CN), 84.0 (s, C_b), 81.7 (s, Cp), 28.4 (m, CH₂ dppe). 19 F{H} NMR (CDCl₃) d -73.3 (d, J_{PF} 713 Hz, PF_6). MALDI-MS m/z 996, $[3]^+$. IR (CH₂Cl₂): v(C=N) 2188 cm⁻¹, v(C=C) 1970 cm⁻¹, v(C=O) 2035, 1930(br) cm⁻¹. The analogous compound [3]BF₄ was obtained from а similar reaction between $[Fe(C \equiv CC \equiv N)(dppe)Cp]$ and [Re(OTf)(CO)₃(bpy)], carried out in CH₂Cl₂ containing one molar equivalent of NaBF₄, and, in contrast to the PF₆ salt, crystallized in a form suitable for X-ray diffraction by slow diffusion of methanol in a CH₂Cl₂ solution of the complex.

Crystallography

There is a disorder (1:1) of the ethylene bridge and two benzene rings at P(1) phosphorus atom, which corresponds to a racemic mixture of λ - and δ -conformers of [**3**]BF₄. The P(1) atom is also slightly disordered, however the attempts to model this disorder did not improved the refinement indicators. As a result the variation of observed P(1)-C bond lengths is rather high.