Novel binuclear lanthanide luminescent peptide conjugates: Structural analysis in aqueous solution of potential metallo enzymatic mimics

Célia S. Bonnet, Marc Devocelle and Thorfinnur Gunnlaugsson*

Electronic Supplementary Information

Figure 1. ES MS spectrum of 1

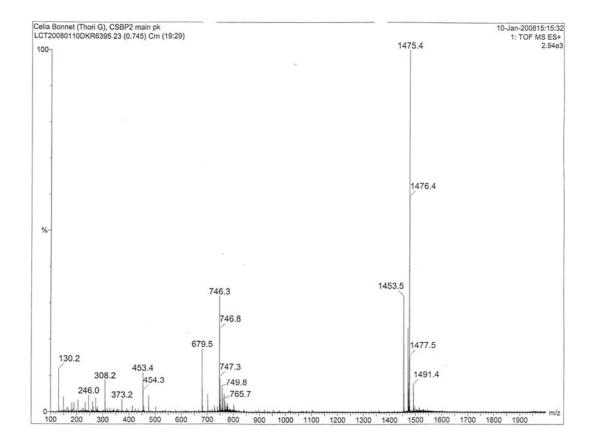
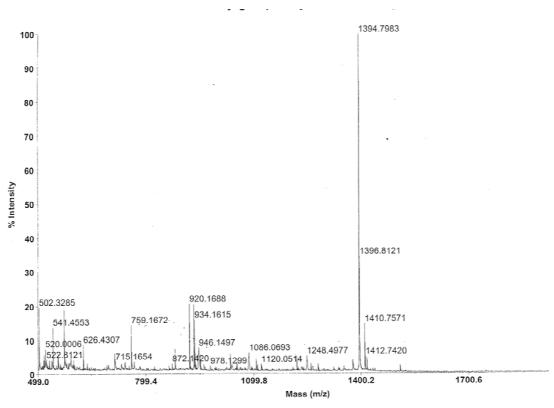
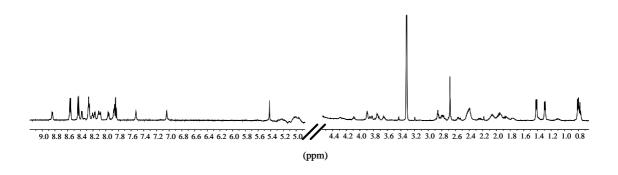
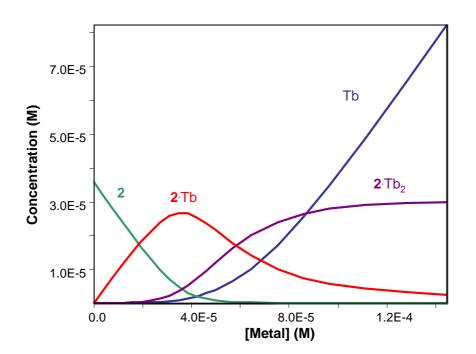
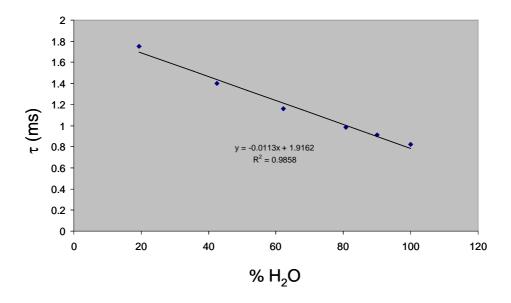




Figure 2. Maldi-Tof spectrum of 2



D:\...\CSB1P 19.7.07_0002.dat



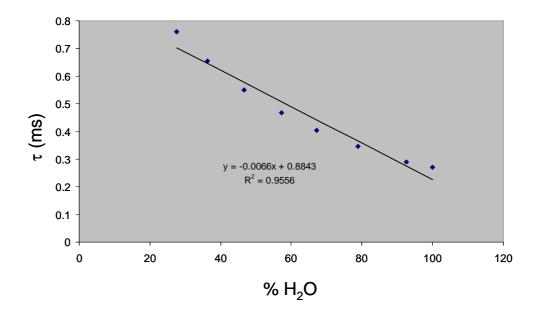
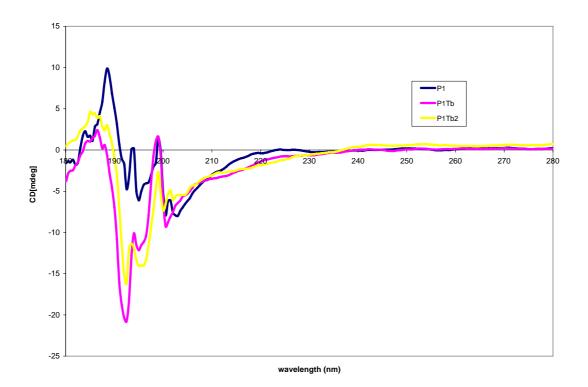

Figure 4. Speciation distribution obtained at pH 7, with $[2] = 35 \ \mu M$ and with the following conditional stability constant : log $\beta_{11} = 6.8$, log $\beta_{21} = 11.9$. It should be noted that when [M] = 0.8*[2] (conditions used for the measurements of q-value), no free metal is present and less than 5% of binuclear complex is in solution.

Figure 5. Luminescent decay rates of a Tb^{3+} bound to **2** with increasing H₂O concentration. $[\text{Tb}^{3+}] = 0.8*[\text{P}] = 13.5 \text{ mM}$, pH = 7.0, [HEPES] = 10 mM, [NaCl] = 0.1 M. The excitation wavelength was 280 nm, and Tb³⁺ sensitized emission was recorded at 545 nm. Same results are obtained by direct excitation on the metal at 368 nm. Extrapolation to an H₂O-free solution provides the rate constant in D₂O.

Figure 6. Luminescent decay rates of a Eu^{3+} bound to **2** with increasing H₂O concentration. $[Eu^{3+}] = 0.8*[P] = 15.5 \text{ mM}$, pH = 7.0, [HEPES] = 10 mM, [NaCl] = 0.1 M. The excitation wavelength was 344 nm, and Eu^{3+} sensitized emission was recorded at 616 nm. Extrapolation to an H₂O-free solution provides the rate constant in D₂O.



4

2		Mu	ull			-				-• A •-	κ.			L		
6 eq NaOH		ma	M	w	L		h				_ ^	J	~	1	Å	
0.25 eq Eu		mm_	hu	W	h	、			Τ.					J		
2 eq Eu				hart	mL_									 ln		
10.4 10.0 9.6	9.2 8.8	8.4 8.0	7.6	7.2	6.8	4.4	4.0	3.6	3.2	2.8	2.4	2.0	1.6	1.2	0.8	0.4
:	:															

Figure 7. ¹H NMR spectra (600 MHz) of **2**, **2** basified by NaOH and the corresponding Eu(III) complexes in a mixture $9:1 H_2O:D_2O$

Figure 8. CD-Spectra of **2** (shown as P1) and the changes observed upon addition of one and two equivalents of Tb(III).

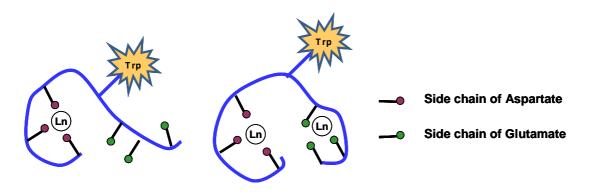


Figure 9. Schematic representation of the mono and di-nuclear complexes of 2.