SUPPORTING INFORMATION

Synthesis of Nano-Scale Carceplexes from Deep-Cavity Cavitands

Kannupal Srinivasan and Bruce C. Gibb*

Department of Chemistry, University of New Orleans New Orleans, LA 70148, USA

Email: bgibb@uno.edu

TABLE OF CONTENTS

General Experimental Methods and Data for carceplexes	S3-S5
¹ H NMR and MALDI-TOF MS spectra of carceplex 3@2	S6-S7
¹ H NMR and MALDI-TOF MS spectra of carceplex 4@2	S8-S9
¹ H NMR, NOESY and MALDI-TOF MS spectra of carceplex 5@2	S10-S12
¹ H NMR, COSY and MALDI-TOF MS spectra of carceplex 9@2	S13-S15
¹ H NMR, COSY and MALDI-TOF MS spectra of carceplex 10@2	S16-S18
Shielding of protons of guests in carceplexes	S19-S21

General experimental methods. All reagents were purchased from various commercial sources and used without further purification. All reactions were run under a nitrogen atmosphere. The synthesis of **1** has been reported previously.³¹ Flash chromatography (silica gel 60 Å, 230-400 mesh; Natland International) was used for product purification. Melting points were determined on a Mel-Temp II apparatus and are uncorrected. The NMR spectra were recorded on a Varian 400 MHz or 500 MHz spectrometer. The mass spectra were recorded on an Applied Biosystems 4700 Reflector MALDI-TOF mass spectrometer and high-resolution mass spectra were obtained with internal calibration using Opti-TOFTM Cal Mix 5 (Applied Biosystems). Elemental analyses were performed by Atlantic Microlab Inc.

General procedure for the synthesis of carceplexes: To a mixture of the tetraphenol 1 (87 mg; 0.05 mmol) and the corresponding template (0.5 mmol) in anhydrous DMA (25 mL) under nitrogen atmosphere was added DBU (37 μ L; 0.25 mmol). After stirring at rt for 10 min, BrCH₂Cl (34 μ L; 0.5 mmol) was added and the reaction mixture was heated to 60 °C for 24 h. After this time, an additional portion of BrCH₂Cl (34 μ L; 0.5 mmol) was added and the reaction mixture was heated to 60 °C for 24 h. After this time, an additional portion of BrCH₂Cl (34 μ L; 0.5 mmol) was added and the reaction mixture was then cooled to rt. DMA was removed under reduced pressure, water was added and extracted with CHCl₃ (three times). The organic layers were combined, dried with anhydrous Na₂SO₄, filtered and the solvent was removed. The crude product was loaded on a column (SiO₂) and eluted with CH₂Cl₂/hexane (9:1) to 100% CH₂Cl₂ to give the carceplex as a white solid. An analytical sample was prepared by washing the solid with ether (three times) and drying at 120 °C under vacuum for 3 h.

Carceplex 3@2: The crude product was washed with methanol to remove excess template before purifying by column chromatography. Yield = 5%; Mp > 250 °C; ¹H NMR (400 MHz, CDCl₃): δ -3.01 (d, *J* = 2.4 Hz, 1H), -1.23 (s, 3H), -0.91-1.28 (m, 3H), -0.71-0.74 (m, 1H), -0.35-0.37 (m, 3H), -0.16 (s, 3H), 0.06-0.07 (m, 3H), 0.18-0.20 (m, 1H), 0.37-0.40 (m, 2H), 0.65-0.68 (m, 1H), 0.77 (m, 1H), 0.94 (m, 2H), 1.04-1.12 (m, 2H), 1.21-1.25 (m, 1H), 2.51-2.63 (m, 32H), 4.04 (m, 1H), 4.30 (s, 4H), 4.56 (s, 4H), 4.80 (t, *J* = 7.4 Hz, 8H), 5.95 (s, 8H), 6.32 (s, 8H), 6.58-6.60 (m, 24H), 7.10-7.12 (m, 16H), 7.20-7.22 (m, 48H), 7.48-7.52 (m, 8H). MS (MALDI-TOF) *m*/*z*: (M + Ag)⁺ calcd, 3935.98; found, 3936.58. Anal. Calcd for C₂₄₇H₁₈₈O₄₂·0.5CH₂Cl₂: C, 76.80; H, 4.92. Found C, 76.69; H, 4.84.

Carceplex 4@2: Yield = 9%; Mp > 250 °C; ¹H NMR (400 MHz, CDCl₃): δ -1.69 (m, 1H), -1.45-1.50 (m, 2H), -1.34 (s, 3H), -1.21-1.26 (m, 2H), -0.79-1.02 (m, 6H), -0.46-0.59 (m, 4H), -0.36 (s, 3H), -0.03-0.04 (m, 2H), 0.24-0.53 (m, 6H), 0.69 (m, 2H), 0.88-0.90 (m, 1H), 2.51-2.63 (m, 32H), 4.22 (s, 4H), 4.31 (s, 4H), 4.80 (t, *J* = 7.6 Hz, 8H), 5.90 (s, 4H), 5.94 (s, 4H), 6.35 (s, 8H), 6.52 (s, 4H), 6.56 (s, 4H), 6.59 (s, 4H), 6.62 (s, 4H), 6.73-6.75 (m, 8H), 7.10-7.12 (m, 16H), 7.20 (m, 48 H), 7.47-7.52 (m, 8H); MS (MALDI-TOF) *m/z*: (M + Ag)⁺ calcd, 3908.01; found, 3908.94. Anal. Calcd for C₂₄₇H₁₉₂O₄₀·H₂O: C, 77.70; H, 5.12. Found C, 77.41; H, 5.09.

Carceplex 5@2: Yield = 2%; Mp > 250 °C; ¹H NMR (400 MHz, CDCl₃): δ -2.15 (s, 3H), -1.49 (s, 3H), -0.53-0.71 (m, 4H), -0.19-0.25 (m, 6H), 0.30 (s, 3H), 0.42-0.64 (m,

S4

4H), 0.82-0.95 (m, 3H), 1.21-1.25 (m, 1H), 1.36 (m, 2H), 2.51-2.61 (m, 32H), 3.03 (s, 1H), 4.38 (s, 4H), 4.41 (s, 4H), 4.76-4.85 (m, 8H), 5.83 (s, 4H), 5.99 (s, 4H), 6.32 (d, J = 5.2 Hz, 4H), 6.42 (d, J = 5.2 Hz, 4H), 6.52 (s, 4H), 6.54 (s, 4H), 6.57 (s, 4H), 6.63-6.64 (m, 8H), 6.69 (t, J = 2.0 Hz, 4H), 7.10-7.13 (m, 16H), 7.18-7.24 (m, 48H), 7.47-7.53 (m, 8H). HRMS (MALDI-TOF) m/z: (C₂₄₉H₁₉₀O₄₂ + Ag)⁺ calcd, 3958.1783; found, 3958.1809.

Carceplex 9@2: Yield = 5%; Mp > 250 °C; ¹H NMR (400 MHz, CDCl₃): δ -0.76 (s, 4H), -0.52 (s, 4H), -0.04 (d, *J* = 11.6 Hz, 8H), 0.37 (d, *J* = 11.2 Hz, 8H), 1.73 (s, 4H), 2.51-2.61 (m, 32H), 4.23 (s, 8H), 4.81 (t, *J* = 7.8 Hz, 8H), 5.92 (s, 8H), 6.35 (s, 8H), 6.55 (s, 16H), 6.72 (m, 8H), 7.10-7.11 (m, 16H), 7.20-7.26 (m, 48H), 7.50 (m, 8H). HRMS (MALDI-TOF) *m/z*: (C₂₄₈H₁₈₈O₄₀+ Ag)⁺ calcd, 3915.1828; found, 3915.1809.

Carceplex 10@2: Yield = 38%; Mp > 250 °C; ¹H NMR (400 MHz, CDCl₃): δ – 0.88 (d, J = 11.6 Hz, 6H), – 0.33 (s, 6H), – 0.04 (d, J = 11.2 Hz, 6H), 0.45 (s, 12H), 2.49-2.63 (m, 32H), 4.18 (s, 8H), 4.80 (t, J = 7.8 Hz, 8H), 5.91 (s, 8H), 6.36 (s, 8H), 6.55 (s, 16H), 6.77 (t, J = 2.2 Hz, 8H), 7.10-7.12 (m, 16H), 7.20-7.23 (m, 48H), 7.50 (t, J = 8.2 Hz, 8H). MS (MALDI-TOF) m/z: (M + Ag)⁺ calcd, 3918.01; found, 3917.64. Anal. Calcd for C₂₄₈H₁₉₀O₄₀·H₂O: C, 77.81; H, 5.06. Found C, 77.64; H, 5.06.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008

¹H NMR spectrum of carceplex 3@2

MALDI-MS spectrum of carceplex 3@2

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008

¹H NMR spectra of carceplex 4@2

4700 Reflector Spec #1 MC[BP = 3908.9, 27899]

MALDI-MS spectrum of carceplex 4@2

¹H NMR spectrum of carceplex **5@2**

NOESY spectrum of carceplex 5@2

MALDI-TOF (HRMS) spectrum of carceplex 5@2

¹H NMR spectrum of carceplex 9@2

COSY spectrum of carceplex 9@2

MALDI-MS (HRMS) spectra of carceplex 9@2

¹H NMR spectrum of carceplex **10@2**

COSY spectrum of carceplex 10@2

4700 Reflector Spec #1 MC[BP = 3918.6, 9403]

MALDI-MS spectrum of carceplex 10@2

Shielding of protons of guests in carceplexes

1) For template 3:

Proton	In free guest (ppm)	In carceplex (ppm)
18-Me	0.88	– 1.23 (s)
19-Me	1.03	-0.16 (s)
ОН	Not observed	-3.01 (d)
Alkene-H	5.38 (m)	4.04 (m)

2) For template 4:

Proton	In free guest (ppm)	In carceplex (ppm)
18-Me	0.68	– 1.34 (s)
19-Me	0.78	-0.36 (s)

3) For template 5:

Proton	In free guest (ppm)	In carceplex (ppm)
18-Me	0.66	– 1.49 (s)
19-Me	1.18	0.30 (s)
CH ₃ CO	2.12	-2.15 (s)
Alkene-H	5.74 (s)	3.03 (s)

4) For template 9:

Proton	In free guest (ppm)	In carceplex (ppm)
р	1.83	– 0.76 (s)
q	1.92	-0.52 (s)
r	1.66-1.69	-0.04 (d)
S	1.83-1.86	0.37 (d)
t	2.90	1.73 (s)

5) For template 10:

Proton	In free guest (ppm)	In carceplex (ppm)
р	1.56-1.68	– 0.88 (d)
q	1.95	-0.33 (s)
r	1.56-1.68	-0.04 (d)
S	1.56	0.45 (s)