Trimeric liquid crystals assembled using both hydrogen and halogen bonding

Carsten Präsang, H. Loc Nguyen, Peter N. Horton, Adrian C. Whitwood and Duncan W. Bruce*

Electronic Supplementary Information

Crystals 2-6 and 4-1 had data collected on Bruker SMART¹ Apex X-ray diffractometer at 110 K, controlled by Bruker SMART and integrated using Bruker SAINT+ software,² whilst crystal **3** had data collected on a Bruker Nonius KappaCCD Area Detector at the window of a Bruker Nonius FR591 rotating anode driven by COLLECT³ and DENZO⁴ software at 120 K. All the structures were determined in SHELXS-97⁵ and refined using SHELXL-97⁶ with full-matrix least squares on F^2 . All non-hydrogen atoms were refined anisotropically. For 2-6 and 4-1, the hydrogens were placed using a riding model except for the hydroxyl hydrogen which was placed by difference map after all other atoms were located. For **3** the hydrogen atoms were found by difference map and allowed to refine isotropically.

Crystal Data for 2-6

Crystal data for **2**-6: C₄₄H₄₇F₄IN₂O₃; $M = 854.74 \text{ g mol}^{-1}$; T = 110(2) K; $\lambda = 0.71073$ Å; triclinic, space group *P*-1; a = 10.4105(10), b = 10.9417(11), c = 19.4274(19) Å; $\alpha = 75.531(2)$, $\beta = 78.768(2)$, $\gamma = 66.626(2)$; V = 1955.5(3) Å³; Z = 2; $\rho_{calc} = 1.452$ Mg m⁻³; μ (Mo-K_a) = 0.880 mm⁻¹; F(000) = 876; crystal size = $0.38 \times 0.10 \times 0.06$ mm. A total of 19211 reflections were collected (1.09 $\leq \theta \leq 28.31^{\circ}$) of which 9443 were independent ($R_{int} = 0.0281$). The structure was solved using SHELXS-97 and refined using SHELXL-97 with full-matrix least squares on F^2 , 499 parameters, GoF = 1.117, $R_1[I > 2\sigma(I_0)] = 0.0442$, w $R_2[I > 2\sigma(I_0)] = 0.1159$; R_1 (all reflections) = 0.0579, w R_2 (all reflections) 0.1320; -1.119 < $\Delta \rho < 1.836$ eÅ³. CCDC xxxyyy. For crystallographic data in CIF and other electronic format see DOI: xxxxx.

Crystal Data for 3

Crystal data for **3**: C₃₁H₃₆F₅NO₂; $M = 549.61 \text{ g mol}^{-1}$; T = 120(2) K; $\lambda = 0.71073$ Å; triclinic, space group P-1; a = 6.0419(4), b = 14.9401(11), c = 16.9981(13) Å; $\alpha = 109.712(4)$, $\beta = 99.798(3)$, $\gamma = 101.546(4)^{\circ}$; V = = 1367.42(17) Å³; Z = 2; $\rho_{calc} = 1.335$ Mg m⁻³; μ (Mo-K_{α}) = 0.105 mm⁻¹; F(000) = 580; crystal size = 0.23 × 0.10 × 0.08 mm³. The crystals were stacked plates that gave a slightly smeared diffraction pattern, especially at the higher angles, but was perfectly acceptable to solve, resulting in a high R_{int} and R_1 (all data). A total of 22968 reflections were collected (2.63 $\leq \theta \leq 27.55^{\circ}$) of which 6154 were independent ($R_{int} = 0.1539$). The structure was solved using SHELXS-97 and refined using SHELXL-97 with full-matrix least squares on F^2 , 496 prameters, GoF = 0.913; $R_1[I>2\sigma(I_0)] = 0.0610$, w $R_2[I>2\sigma(I_0)] = 0.1034$; R_1 (all reflections) = 0.2173, w R_2 (all reflections) 0.1406; $-0.281 < \Delta \rho < 0.258$ eÅ³. CCDC xxxyyy. For crystallographic data in CIF and other electronic format see DOI: xxxxx.

Crystal Data for 4-1

Crystal data for 4-1: C₂₀H₁₄F₄INO₂; 503.22 g mol⁻¹; *T* = 110(2) K; $\lambda = 0.71073$ Å; orthorhombic, space group *P*2₁2₁2₁; *a* = 6.0363(5), *b* = 8.5988(6), *c* = 35.409(3) Å; $\alpha = \beta = \gamma = 90^{\circ}$; *V*= 1837.9(3) Å³; *Z* = 4; $\rho_{calc} = 1.819$ Mg m⁻³; μ (Mo-K_{α}) = 1.798 mm⁻¹; *F*(000) = 984; crystal size = 0.27 × 0.23 × 0.04 mm³. A total of 20820 reflections were collected (2.30 $\leq \theta \leq 30.01^{\circ}$) of which 5331 were independent (*R_{int}* = 0.0358). The structure was solved using SHELXS-97 and refined using SHELXL-97 with full-matrix least squares on *F*², 277 parameters, *GoF* = 1.134; *R*₁[I>2 σ (*I*₀)] = 0.0377, w*R*₂[I>2 σ (*I*₀)] = 0.0841; *R*₁ (all reflections) = 0.0441, w*R*₂ (all reflections) 0.0865; -1.103 $< \Delta \rho < 1.046$ eÅ³. CCDC xxxyyy. For crystallographic data in CIF and other electronic format see DOI: xxxxx.

¹ SMART diffractometer control software (v5.625), Bruker-AXS GMBH, Karlsruhe, Germany.

² Saint+ integration and absorption-correction software (v6.22), Bruker-AXS GMBH, Karlsruhe, Germany.

³ Collect: Data collection software, R. Hooft, Nonius B.V., 1998

Z. Otwinowski & W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press

⁵ G. M. Sheldrick, Acta Cryst. (1990) A46 467-473

⁶ G. M. Sheldrick (1997), University of Göttingen, Germany

Representation of the disorder in the structure of 4-1

Helical arrangement in the structure of **4**-1.