How to Very Efficiently Functionalize Gold Nanoparticles by "Click" Chemistry

Elodie Boisselier, Lionel Salmon, Jaime Ruiz, Didier Astruc*

SUPPLEMENTARY INFORMATION

		Page
1.	Synthesis of dodecanthiolate-AuNPs	. 1
2.	Ligand exchange with bromoundecanethiol	. 2
3.	Azidation of the AuNPs	3
4.	General procedure for "click" reactions	. 4
5.	Click chemistry with phenylacetylene	5
6.	Click chemistry with ferrocenylacetylene	6
7.	Click chemistry with the tetraethyleneglycol derivative	8
8.	Click chemistry with the triallyl aryl dendron	. 9
9.	Click chemistry with the short polyethyleneglycol (PEG) containing dendron.	. 10
10.	Click chemistry with the long PEG containing dendron	12
11.	Calculations of the diameters and molar masses of AuNPs	. 14

1. Synthesis of dodecanethiolate-AuNPs

An aqueous solution of hydrogen tetrachloroaurate (30 mL, 30 mmol dm⁻³, 0.9 mmol) was mixed with a toluene solution of tetraoctylammoniumbromide (80 mL, 50 mmol dm⁻³, 4 mmol). The two-phase mixture was vigorously stirred until all the hydrogen tetrachloroaurate was transferred into the organic layer, and dodecanethiol ($C_{12}H_{25}SH$, 0.9 mmol) was then added to the organic phase. A freshly prepared solution of sodium borohydride (25 mL, 0.4 mol dm⁻³, 10 mmol) was slowly added with vigorous stirring. After further stirring for 3 h, the organic phase was separated, evaporated to 10 mL in a rotary evaporator and mixed with 400 mL ethanol to remove excess thiol. The mixture was kept for 4 h at $-18^{\circ}C$, and the dark brown precipitate was filtered off and washed with ethanol and acetone. The crude product was dissolved in 10 mL toluene and again precipitated with 400 mL ethanol.

<u>Fig. S2:</u> TEM image of dodecanethiolate-AuNPs

diameter = $2.5 \text{ nm} (\pm 0.3 \text{ nm})$

Absorbance

20 nm

<u>Fig. S3:</u> UV-vis. Spectrum of dodecanethiolate-AuNPs in CH_2Cl_2

2. Ligand exchange with bromoundecanethiol

Dodecanethiolate-AuNPs (130 mg) were dissolved in distilled CH_2Cl_2 and bromoundecanethiol (500 mg) was added to the solution. After stirring for 5 days under N₂ at room temperature, AuNPs was evaporated and precipitated with acetone and ethanol to remove the excess thiol (m = 130 mg, yield = 94%).

<u>Fig. S4:</u> ¹H NMR spectrum of mixed dodecanethiolate-1-bromoundecanethiolate AuNPs in CDCl₃ (δ ppm)

¹H NMR (CDCl₃, 250MHz): 3.40 (2H, CH₂-Br), 1.22 (22H, CH₂), 0.83 (3H, CH₃)

(ppm)

Fig. S5: UV-vis. Spectrum of mixed dodecanethiolate-1bromoundecanethiolate

3. Azidation of the AuNPs

The mixed AuNPs (10 mg/mL, 150 mg) were dissolved in CH_2Cl_2 (15 mL) and added to an equal volume of 0.25 M NaN₃ (244 mg) in DMSO. The solution was stirred for 48 h under N₂ at rt, water was added, and the black organic layer was isolated. The organic layer was dried over sodium sulfate, the solvent was evaporated, and the AuNPs were washed with ethanol and dried (m = 140mg, yield = 98%).

<u>Fig. S6:</u> ¹H NMR spectrum of mixed dodecanethiolate-1azidoundecanethiolate AuNPs in CDCl₃ (δ ppm)

¹H NMR (CDCl₃, 250MHz): 3.26 (2H, CH₂-Br), 1.22 (22H, CH₂), 0.83 (3H, CH₃)

<u>Fig. S7:</u> UV-vis. spectrum of mixed dodecanethiolate-1-azidoundecanethiolate AuNPs in CH_2Cl_2

4. General procedure for "click" reactions

The azidoalkylthiolate-AuNPs (50 mg) and the alkyne (0.1 mmol) were dissolved in THF. At 0°C, CuSO₄ was added (2 eq. *per* alkyne, 1M water solution), followed by dropwise addition of a freshly prepared solution of sodium ascorbate (4 eq. *per* branch, 1M water solution) in order to set a 1:1 (THF/water) ratio. The solution was allowed to stir for 2 days at rt under N₂. After removing THF under vacuum, CH₂Cl₂ and water solution of ammonia were added. The mixture was allowed to stir for 10 min. in order to remove all the Cu^{II} trapped inside the AuNPs as Cu(NH₃)₆. The organic phase was washed twice with water, dried with sodium sulfate, and the solvent was removed under vacuum. In order to remove the excess alkyne, the product was precipitated with MeOH/ether for the PEG ligand, with CH₂Cl₂/MeOH for the triallyl dendron, and with CH₂Cl₂/ether for the ferrocenyl and phenyl derivatives.

5. Click chemistry with phenylacetylene

Fig. S8: ¹H NMR spectrum of phenyltriazolylakanethiolate AuNPs in CDCl₃ (δ ppm)

¹H NMR (CDCl₃, 250MHz):7.74 (2H, C-C*H*-phenyl) 7.60 (1H, C*H*-triazole), 7.33 (3H, C*H*-CH-C), 4.36 (2H, triazole-C*H*₂), 1.25 (18H, CH₂CH₂CH₂), 0.87 (3H, CH₂CH₃)

6. Click chemistry with ferrocenylacetylene

Fig. S11: ¹H NMR spectrum of ferrocenyltriazolylakanethiolate AuNPs in CDCl₃ (δ ppm)

¹H NMR (CDCl₃, 250MHz): 7.54 (1H, C*H*-triazole), 7.33 (3H, C*H*-CH-C), 4.73, 4.28, 4.07 (9H, Cp), 4.19 (2H, triazole-C*H*₂), 1.25 (18H, CH₂CH₂CH₂), 0.87 (3H, CH₂CH₃)

<u>Fig. S12:</u> IR spectrum of ferrocenyltriazolylakanethiolate AuNPs

Disappearance of the $\nu_{\rm N_3}$ band at 2094 $\rm cm^{-1}$

...

<u>Fig. S13</u>: UV-vis. spectrum of ferrocenyltriazolylakanethiolate AuNPs in CH₂Cl₂

Fig. S14: Cyclic voltammetry of AuNPs with ferrocenyl termini obtained by "click" chemistry

 $E_{1/2}$ 0.67 V. Solvent :CH₂Cl₂; temperature: 20°C; supporting electrolyte: [*n*Bu₄N][PF₆] 0.1M; working and counter electrodes: Pt; reference electrode: Ag; scan rate: 0.200 V.s⁻¹; internal reference: decamethylferrocene.

7. Click chemistry with the tetraethyleneglycol derivative

Fig. S15: ¹H NMR spectrum of AuNPs with tetraethyleneglycol termini in CDCl₃ (δ ppm)

¹H NMR (CDCl₃, 250MHz): 7.53 (1H, C*H*-triazole), 4.69 (2H, triazole-C*H*₂-0), 4.35 (2H, CH₂-C*H*₂-triazole), 3.66 (12H, OC*H*₂C*H*₂O), 3.37 (3H, C*H*₃O), 2.66 (2H, C*H*₂S), 1.25 (18H, CH₂C*H*₂CH₂), 0.87 (3H, CH₂C*H*₃).

Fig. S16: IR spectrum of AuNPs with tetraethyleneglycol termini

Disappearance of the v_{N_3} band at 2094 cm⁻¹

<u>Fig. S17</u>: UV-vis. spectrum of AuNPs with tetraethyleneglycol termini in CH_2Cl_2

8. Click chemistry with the triallyl aryl dendron

Fig. S18: ¹H NMR spectrum of AuNPs with triallyl aryl dendron termini in CDCl₃ (δ ppm)

¹H NMR (CDCl₃, 250MHz): 7.53 (1H, C*H*-triazole), 7.21 and 6.94 (4H, C*H* aromatic), 5.54 (3H, C*H* allyl), 5.01 (6H, CH-CH₂-allyl), 4.69 (2H, triazole-CH₂-0), 2.44 (2H, CH₂ allyl), 1.25 (18H, CH₂CH₂CH₂), 0.87 (3H, CH₂CH₃)

Fig. S19: IR spectrum of AuNPs with triallyl aryl dendron termini

Disappearance of the v_{N_3} band at 2094 cm⁻¹

<u>Fig. S20</u>: UV-vis. spectrum of AuNPs with trially aryl dendron termini in CH_2Cl_2

9. Click chemistry with the short polyethyleneglycol (PEG) containing dendron

<u>Fig. S21:</u> ¹H NMR spectrum of AuNPs with short dendronic PEG termini in $CDCl_3$ (δ ppm)

¹H NMR (CDCl₃, 250MHz): 7.53 (1H, CH-triazole), 6.58 (2H, CH-arom.), 4.60 (2H, triazole-CH₂-0), 4.49 (2H, CH₂-CH₂-triazole), 4.14 (8H, OCH₂.arom. and arom-OCH₂CH₂), 3.66 (30H, OCH₂CH₂O), 3.37 (9H, CH₃O), 2.47 (2H, CH₂S), 1.25 (18H, CH₂CH₂CH₂), 0.87 (3H, CH₂CH₃).

Microanalysis: S (1.47%); Au (18.86%)

<u>Fig. S22:</u> ¹³C NMR spectrum of AuNPs with short dendronic PEG termini in CDCl₃ (δ ppm)

¹³C NMR (CDCl₃, 62 MHz):126.1 (*C*H of triazole and arom. core), 107.16 (C_q CH₂O), 70.39 (OCH₂CH₂O), 65.90 (triazole-*C*H₂-O), 58.91 (*C*H₃O)

Fig. S23: IR spectrum of AuNPs with short dendronic PEG termini

Disappearance of the v_{N_3} band at 2094 cm⁻¹

Fig. S24: UV-vis. spectrum of AuNPs with short dendronic PEG termini in CH₂Cl₂

Plasmon band of the AuNPs at 520 nm

Fig. S25: TEM image of AuNPs with short dendronic PEG termini

diameter = $2.5 \text{ nm} (\pm 0.3 \text{ nm})$

10. Click chemistry with the long PEG-containing dendron

Fig. S26: ¹H NMR spectrum of AuNPs with long dendronic PEG termini in CDCl₃ (δ ppm)

¹H NMR (CDCl₃, 250MHz): 7.53 (1H, CH-triazole), 6.58 (2H, CH-arom.), 4.60 (2H, triazole-CH₂-0), 4.49 (2H, CH₂-CH₂-triazole), 4.14 (8H, OCH₂.arom. and arom-OCH₂CH₂), 3.66 (48H, OCH₂CH₂O), 3.37 (9H, CH₃O), 2.47 (2H, CH₂S), 1.25 (18H, CH₂CH₂CH₂), 0.87 (3H, CH₂CH₃)

Fig. S27: IR spectrum of AuNPs with long dendronic PEG termini

Disappearance of the v_{N_3} band at 2094 cm⁻¹

Absorbance

Fig. S28: UV-vis. spectrum of AuNPs with long dendronic PEG termini in CH₂Cl₂

11. Calculations of the diameters and molar masses of AuNPs

Diameter of AuNPs obtained by TEM before and after AuNP transformations: 2.5 nm (±0.3)

Number of gold atoms: N(Au) = $\frac{4\pi \times 12.5^3}{3 \times 17}$ = 481 gold atoms *per* AuNP

Elemental analysis : Au (18.86%); S (1.47%).

This leads to 230 S atoms per AuNP.

Each AuNP contains 72% (\pm 3) of functionnalized ligand and 28% (\pm 3) of alkyl thiolate ligands, i.e. 166 \pm 6 functionnal ligands (% obtained by peak integrations in the ¹H NMR spectrum); the molar mass (MM) of each AuNP is calculated using the following formula:

 $MM(AuNP) = MM(functionnalized ligand) \times (230 \times 0.72) + MM (alkyl ligand) \times (230 \times 0.28) + MM(Au) \times N(Au)$

	Dodecane-	Bromoundecane-	Azidoalkyl	Phenyltriazolyl	Ferrocenyltriazolyl	TEG	Triallyl	Short PEG-	Long PEG-
	thiolate	thiolate	thiolate	derivative	derivative	derivative	dendronic	containing	containing
							derivative	dendron	dendron
MM (thiolate ligand) (g.mol ⁻¹)	201	266	228	330	438	444	494	860	1036
MM (functionnalized AuNP) (g.mol ⁻¹)	140000	150000	145000	160000	180000	180000	190000	250000	280000

Using these results, equivalent numbers used for the synthesis of the AuNPs are calculated: approximately 2000 bromoundecanethiol *per* AuNP were used for the ligand exchange, and approximately 20 NaN₃ molecules *per* bromoundecanethiol were used for the azidation of the AuNPs.