# Highly Sensitive "Turn-on" Fluorescent Sensor for Hg<sup>2+</sup> in Aqueous Solution based on Structure-Switching DNA

Zidong Wang,<sup>*a,b*</sup> Jung Heon Lee,<sup>*a,b*</sup> and Yi Lu<sup>*a,b,c*</sup>\*

<sup>a</sup>Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Str., Urbana, IL-61801, USA.

<sup>b</sup>Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign ,405 N. Mathews Ave., Urbana, IL-61801, USA.

<sup>c</sup>Department of Chemistry, University of Illinois at Urbana-Champaign, 608 S. Mathews Ave., Urbana, IL-61801, USA. Fax: (+1) 217-333-2685; Tel: (+1) 217-333-2619; E-mail: <u>yi-lu@uiuc.edu</u>

# **Electronic Supplementary Information (Experimental section, Figure S1, Dissociation constant calculation)**

## **Experimental section**

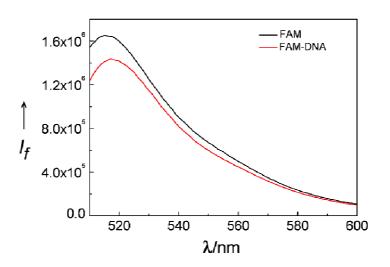
#### **Sensor Preparation and Mercury Detection:**

All oligonucleotides were purchased from Integrated DNA Technologies (Coralville, IA) and were purified by HPLC. To prepare the sensor solution, 100 nM Strand A (5'-FAM-TCATGTTTGTTGGTTGGCCCCCCTTCTTTCTTA-3') and 400 nM Strand B (5'-ACAAACATGA-BHQ1-3') were added to 100 mM NaNO<sub>3</sub> and 10 mM MOPS (3-(N-morpholino)propanesulfonic acid), pH 7.2 buffer solution and kept at room temperature for 1 h to hybridize two strands. Then 500  $\mu$ L of the sensor solution prepared above was transferred to a cuvette. The cuvette was placed in a fluorimeter (FluoroMax-P; Horiba Jobin Yvon, Edison, NJ) at 25 °C. The excitation was set at 491 nM and the emission at 518 nm was monitored. After the initial reading, the cuvette was taken out, and a small volume of concentrated Hg<sup>2+</sup> solution was added. After vortexing, the cuvette was put back into the fluorimeter to continue the kinetics measurement.

#### Quantum yield of the fluorescent sensor:

The fluorescence intensity of the free FAM and FAM attached to DNA strand A at the same concentration (100 nM) and under the same pH (7.2) was measured and compared. As shown in Figure S1, about 88% of the FAM fluorescence intensity was retained after DNA conjugation to FAM. Since the free FAM in aqueous solution at pH 7.2 has the fluorescence quantum yield of 75% (see

http://www.promega.com/geneticidproc/ussymp8proc/21.html), we estimated the fluorescence quantum yield of FAM after DNA conjugation to be ~ 66%.


#### Selectivity Assay:

To determine the selectivity of the sensor, 1  $\mu$ M of various metal ions (M<sup>2+</sup>) including Mg<sup>2+</sup>, Ca<sup>2+</sup>, Mn<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, Pb<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup>, and Hg<sup>2+</sup> was added to the sensor solution individually and the fluorescence increase was monitored using a fluorimeter. In addition, 1  $\mu$ M Hg<sup>2+</sup> and 1  $\mu$ M one of other metal ions (Hg<sup>2+</sup>-M<sup>2+</sup> pair) were added together to the sensor solution and the fluorescence response was recorded as well.

#### **Mercury Detection in Pond Water:**

A pond water sample was collected from the University of Illinois campus and filtered through 0.22  $\mu$ m membrane before testment. 180  $\mu$ L of the pond water was mixed with concentrated buffer and Hg<sup>2+</sup> solution to make the final volume of 200  $\mu$ L containing 500 nM Hg<sup>2+</sup>, 100 mM NaNO<sub>3</sub> and 10 mM MOPS at pH 7.2. 300  $\mu$ L concentrated sensor solution was then mixed with 200  $\mu$ L of previously prepared pond water and the fluorescence response was monitored by fluorimeter. The final mixture contained 200 nM Hg<sup>2+</sup> and 100 nM hybrdized DNA.

## Figure S1



**Figure S1**: Fluorescence spectra of free FAM (black line) and FAM attached to DNA strand A (red line) at same concentration and buffer conditions (100 nM, pH 7.2 MOPS buffer)

# DISSOCIATION CONSTANT CALCULATION

Through fitting calibration curve in Figure 2b using following equation in Origin Software, the dissociation constant (k) was calculated to be 471 nM with a Hill coefficient (n) of 2.4.

$$y = y_0 + (y_m - y_0) * \frac{x^n}{k^n + x^n}$$

- k: Dissociation constant
- *n* : Hill coefficient
- $\mathcal{X}$  : Hg<sup>2+</sup> concentration
- $\mathcal{Y}_0$ : Background fluorescence intensity
- $\mathcal{Y}_m$ : Saturated fluorescence intensity