Heterolytic dihydrogen activation with the 1,8-bis(diphenylphosphino)naphthalene/ $B(C_6F_5)_3$ pair and its application for metal-free catalytic hydrogenation of silyl enol ethers

Huadong Wang, Roland Fröhlich[‡], Gerald Kehr, Gerhard Erker*

Supplementary Information

Experimental section:

All manipulations were carried out under argon using Schlenk-type glassware or in a glovebox unless otherwise noted. Solvents, including deuterated solvents used for NMR spectroscopy, were dried and distilled prior to use according to standard procedures. Elemental analyses were performed with a Foss-Heraeus CHN-O-Rapid instrument. NMR spectra were measured using a Bruker AC200 P, a Varian 500 MHz INOVA, or a Varian Unity Plus 600 NMR spectrometer. Most assignments were based on a series of NOE, TOCSY, and 2D NMR experiments. 1,8-Bis(diphenylphosphino)naphthalene was synthesized according literature procedures (R. D. Jackson, S. James, A. G. Orpen, P. G. Pringle, *J. Organomet. Chem.*, 1993, **458**, C3-C4.)

Data set was collected with a Nonius KappaCCD diffractometer, equipped with a rotating anode generator. Programs used: data collection COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN (Z. Otwinowski, W. Minor, *Methods in Enzymology*, **1997**, 276, 307-326), absorption correction SORTAV (R.H. Blessing, *Acta Cryst.* **1995**, *A51*, 33-37; R.H. Blessing, *J. Appl. Cryst.* **1997**, *30*, 421-426), structure solution SHELXS-97 (G.M. Sheldrick, *Acta Cryst.* **1990**, *A46*, 467-473), structure refinement SHELXL-97 (G.M. Sheldrick, Universität Göttingen, 1997), graphics SCHAKAL (E. Keller, Universität Freiburg, 1997).

CCDC 630677 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, E-mail: deposit@ccdc.cam.ac.uk].

1,8-Bis(diphenylphosphino)naphthalene (5) + **B**(**C**₆**F**₅)₃: **5** (20.0mg, 0,040 mmol) and B(C₆**F**₅)₃ (20.6 mg, 0.040 mmol) was mixed in d_8 -toluene (1 mL). ¹H NMR (500 MHz, d_8 -toluene, 298K): δ 6.95 (14 H, m, *o*, *p*-Ph and 3,6-Naph), 7.23 (8 H, br. s, *m*-Ph), 7.45 (2 H, dm, J = 7.8 Hz, 2,7-Naph), 7.49 (2 H, br. d, J = 7.7 Hz, 4,5-Naph). ³¹P{¹H} NMR (202 MHz, d_8 -toluene, 298K): δ 13.8. ¹¹B{¹H} NMR (160 MHz, d_8 -toluene, 298K): δ 59.0. ¹⁹F NMR (470 MHz, d_8 -toluene, 298K): δ -129.0 (br. s, *o*-C₆F₅), -142.2 (br. s, *p*-C₆F₅), -160.4 (br. s, *m*-C₆F₅).

6: A mixture of 1,8-bis(diphenylphosphino)naphthalene (150 mg, 0.30 mmol) and B(C₆F₅)₃ (155 mg, 0.30 mmol) in toluene (15 ml) was stirred under a H₂ atmosphere (2 bar) at room temperature for 3 h. Afterwards the reaction flask was closed and stirred for another 14 h. The colorless reaction mixture was condensed to ~3 ml, and pentane (30 ml) was added, resulting in the formation of a white precipitate. This precipitate was collected by filtration and rinsed with pentane (15 ml), affording complex 6 as a white solid (245mg, 80%). Single crystals of complex 6 were obtained through vapor diffusion of pentane into a solution of dichloromethane. ¹H NMR (500 MHz, CD₂Cl₂, 298K): δ 3.60 (1 H, br. q (1:1:1:1), $J_{BH} \approx$ 92 Hz, BH), 7.16 (8 H, br. s, o-Ph), 7.41 (8 H, br. m, *m*-Ph), 7.55 (4 H, br. m, *p*-Ph), 7.67 (4 H, br. m, 2,3,6,7-Naph), 8.34 (2 H, br. d, *J* = 7.9 Hz, 4,5-Naph), 10.1 (1 H, br. t, J_{PH} = 280 Hz, PH). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298K): δ 127.1, 141.8 (2,7 / 3,6-Naph), 130.1 (m-Ph), 132.6 (p-Ph), 133.5 (o-Ph), 136.6 (4,5-Naph), 136.7 (dm, $J_{CF} = 252$ Hz, m-C₆F₅), 138.2 (dm, $J_{CF} = 246$ Hz, p-C₆F₅), 148.5 (dm, $J_{CF} = 238$ Hz, o-C₆F₅), 148.5 (dm, J_{CF} = 238 Hz, O-C C_6F_5).[1,8,9,10-Naph and C(i-Ph) were not observed]. ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298K): δ 1.5 (m, minor isomer), -3.5 (br s, $v_{1/2} \approx 150$ Hz, major isomer), -20.0 (m, minor isomer). ³¹P NMR (202 MHz, CD₂Cl₂, 298K): δ 1.5 (dm, $J_{PH} \approx 415$ Hz, minor isomer), -3.5 (br d, $J_{\text{PH}} \approx 280$ Hz, $v_{1/2} = 150$ Hz; major isomer), -20.0 (m, minor isomer). [ratio: 1 : 13 : 1]. ${}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR (202 MHz, CD₂Cl₂, 193K): δ 10.0 (d, $J_{PP} \approx 110$ Hz, $v_{1/2} = 20$ Hz; major isomer), 1.9 (d, $J_{PP} \approx 46$ Hz, minor isomer), -18.8 (d, $J_{PP} \approx 110$ Hz, $v_{1/2} \approx 10$ Hz; major isomer), -21.2 (d, $J_{PP} \approx 46$ Hz, minor isomer); ³¹P NMR (202 MHz, CD₂Cl₂, 193K): δ 10.0 (dd, $J_{PH} \approx 557$ Hz, $J_{PP} \approx 110$ Hz, $v_{1/2} = 50$ Hz; major isomer), 1.9 (dm, $J_{PH} \approx 410$ Hz, minor isomer), -18.8 (d, $J_{PP} \approx 110$ Hz, $v_{1/2} = 30$ Hz; major isomer), -21.2 (m, minor isomer), [ratio: 13 : 1 : 13 : 1]. ¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 298K): δ -25.8 (s, $v_{1/2} \approx 50$ Hz); ¹¹B NMR (160 MHz, CD₂Cl₂, 298K): δ -25.8 (d, $J_{BH} \approx 92$ Hz). ¹⁹F NMR (470 MHz, CD₂Cl₂, 298K): δ -134.3 (m, *o*-C₆F₅), -165.1 (m, $p-C_6F_5$), -168.0 (m, $m-C_6F_5$).

¹H NMR (500 MHz, C₆D₆, 298K): δ 4.49 (1 H, br, B*H*), 6.67-7.07 (22 H, m, Ph and 3,6-Naph), 7.31 (2 H, br. s, 2,7-Naph), 7.57 (2 H, br. d, J = 7.1 Hz, 4,5-Naph), 9.68 (1 H, br. t, $J_{PH} = 280$ Hz, P*H*). ³¹P{¹H} NMR (121 MHz, C₆D₆, 298K): δ 2.3 (m, minor isomer), -4.3 (br s, $v_{1/2} \approx 150$ Hz, major isomer), -20.6 (m, minor isomer). ¹¹B{¹H} NMR (96 MHz, C₆D₆, 298K): δ -22.8 (s, $v_{1/2} \approx 50$ Hz); ¹¹B NMR (96 MHz, C₆D₆, 298K): δ -22.8 (d, $J_{BH} \approx 84$ Hz). ¹⁹F NMR (282 MHz, C₆D₆, 298K): δ 132.0 (m, *o*-C₆F₅), -163.7 (m, *p*-C₆F₅), -166.4 (m, *m*-C₆F₅).

Elemental analysis: Found C, 62.11; H, 2.45. Calc. for $C_{52}H_{28}BF_{15}P_2$: C, 61.81, H, 2.79%. Crystal data for $C_{34}H_{27}P_2 \cdot HB(C_6F_5)_3$, M = 1010.49, triclinic, space group *P*1bar (No. 2), a = 9.7493(5), b = 13.3554(6), c = 19.3935(9) Å, a = 100.853(2), $\beta = 99.692(2)$, $\gamma = 94.678(4)^\circ$, V = 2427.8(2) Å³, $D_c = 1.382$ g cm⁻³, $\mu = 1.645$ mm⁻¹, Z = 2, $\lambda = 1.54178$ Å, T = 223(2) K, 29126 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($sin\theta$)/ λ] = 0.60 Å⁻¹, 8515 independent ($R_{int} = 0.062$) and 6735 observed reflections [$I \ge 2\sigma(I)$], 639 refined parameters, R = 0.060, $wR^2 = 0.172$.

6-D₂: Following the procedure of the synthesis of **6**, **6**-D₂ was prepared from 1,8-bis(diphenylphosphino)naphthalene (150 mg, 0.30 mmol) and B(C₆F₅)₃ (155 mg, 0.30 mmol) under D₂ atmosphere (1.7 bar). **6**-D₂ was isolated as a white solid (217mg, 71%). ²H NMR (77 MHz, toluene, 298K): δ 4.34 (1 D, $v_{1/2}$ = 20 Hz, BD), 9.73((1 D, br. t, $J_{PD} \approx 40$ Hz, PD).

General procedures for the hydrogenation of silyl enol ethers:

A mixture of 1,8-bis(diphenylphosphino)naphthalene (20 mol%), $B(C_6F_5)_3$ (20 mol%) and silyl enol ether (200 mg) in benzene (3ml) was stirred under H₂ atmosphere (2 bar) at room temperature for 20 h. Afterwards pentane (30 ml) was added to the reaction mixture, and resulting white slurry was passed through Celite. Solvent was removed under vacuum, yielding the respective silyl ether as colorless oil.

Trimethyl(*1-phenylethoxy*)*silane:* 192 mg, yield 95%. ¹H NMR (300 MHz, C₆D₆): δ 0.06 (9 H, *s*, Si(CH₃)₃), 1.39 (3 H, *d*, *J* = 6.3 Hz, CCH₃), 4.74 (1 H, *q*, *J* = 6.4 Hz, CH), 7.04-7.34 (5 H, *m*, C₆H₅). ¹³C NMR (75.5 MHz, C₆D₆): δ 0.0, 27.2, 70.9, 125.7, 127.2, 128.3, 146.8.

(3,3-Dimethyl-2-butoxy)trimethylsilane: 181 mg, yield 89%. ¹H NMR (300 MHz, C₆D₆): δ 0.11 (9 H, s, Si(CH₃)₃), 0.89 (9 H, s, C(CH₃)₃),), 1.02 (3 H, d, J = 6.0 Hz, CCH₃), 3.36 (1 H, q, J = 6.1 Hz, CH). ¹³C NMR (75.5 MHz, C₆D₆): δ 0.0, 18.2, 25.5, 34.8, 75.7.

(Cyclohexyloxy)trimethylsilane: 174 mg, yield 86%. ¹H NMR (300 MHz, C₆D₆): δ 0.12 (9 H, s, Si(CH₃)₃), 1.00-1.85 (10 H, m, CH₂), 3.58 (1H, m, CH). ¹³C NMR (75.5 MHz, C₆D₆): δ 0.0, 23.9, 25.4, 35.9, 70.3.

(*Cyclopentyloxy*)trimethylsilane: 172 mg, yield 85%. ¹H NMR (300 MHz, C_6D_6): δ 0.12 (9 H, s, Si(CH₃)₃), 1.30-1.80 (8 H, m, CH₂), 4.12 (1H, m, CH). ¹³C NMR (75.5 MHz, C_6D_6): δ 0.0, 23.2, 35.7, 74.1.

Isopropoxytrimethylsilane: ¹H NMR (300 MHz, C_6D_6): 0.10 (9 H, *s*, Si(CH₃)₃), 1.09 (6 H, *d*, *J* = 6.1 Hz, CCH₃), 3.83 (1 H, *m*, CH).

¹⁹F NMR (470 MHz, *d*₈-toluene, 298K)

S-14

* solvent

³¹P{¹H} NMR (121 MHz, C₆D₆)

checkCIF/PLATON report

No syntax errors found. CIF dictionary Interpreting this report

Datablock: erk4541b

Bond precision	: C-C = 0.0048 A		Wavelengt	ch=1.54178
Cell:	a=9.7493(5)	b=13.355	4(6)	c=19.3935(9)
	alpha=100.853(2)	beta=99.	692(2)	gamma=94.678(4)
Temperature:	223 K			-
	Calculated		Reported	
Volume	2427.8(2)		2427.8(2)
Space group	P -1		P-1	
Hall group	-P 1		?	
Moiety formula	C34 H27 P2, C18 H	B F15	?	
Sum formula	C52 H28 B F15 P2		С52 Н28	B F15 P2
Mr	1010.49		1010.49	
Dx,g cm-3	1.382		1.382	
Z	2		2	
Mu (mm-1)	1.645		1.645	
F000	1020.0		1020.0	
F000'	1025.16			
h,k,lmax	11,16,23		11,15,23	
Nref	8852		8515	
Tmin,Tmax	0.744,0.952		0.559,0.	952
Tmin'	0.518			
Correction met	hod= AbsCorr=MULTI-S	SCAN		
Data completen	ess= Ratio = 0.962	Theta(m	ax)= 68.	050
R(reflections)	= 0.0603(6735)	wR2(ref	lections)= 0.1716(8515)
S = 1.074	Npar= 6	539		
The following ALE	RTS were generated. Each	ALERT has	the format	
test-name_	ALERT_alert-type_alert-l	evel		
Click on the hype:	rlinks for more details	of the test		
Alert level	A Structure Contains Solv	ent Accessi	ble VOIDS.	of . 282.00 A**3
Alert level PLAT415_ALERT_2_B	B Short Inter D-HH-X	Hl	H1A	2.08 Ang.

```
    Alert level C
    PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ......
    PLAT230_ALERT_2_C Hirshfeld Test Diff for F66 -- C66 ..
    FLAT230_ALERT_2_C Hirshfeld Test Diff for C64 -- C65 ..
    PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C64
    PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ...
```

```
1 ALERT level A = In general: serious problem
1 ALERT level B = Potentially serious problem
5 ALERT level C = Check and explain
0 ALERT level G = General alerts; check
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
5 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 29/04/2008; check.def file version of 22/04/2008 /tmp/checkcif/_@@dvn25862/_@dvn25938/test.cif

Datablock erk4541b - ellipsoid plot

Comment on CHECKCIF

Comments on CHECKCIF:

PLAT601: The compound was crystallized from a "cocktail" of different solvent. These are disordered and mixed in a void. All attempts do refine the solvent molecules lead to no chemically meaningful results. Therefore the SQUEEZE program in the PLATON program suite was applied.

PLAT415: Hydrogen atoms at phosphorus and boron are localized from difference Fourier maps and refined free with isotropic thermal parameters.

PLAT029: Data collection was done with a Cu-CCD detector. The geometrical limitations lead to a completeness less than 100%.