Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Palladium-Catalyzed Decarboxylative Coupling of Aromatic Acids with Aryl Halides or Unactivated Arenes Using Microwave Heating

Adelina Voutchkova, ^a Abigail Coplin, Nicholas Leadbeater ^b and Robert H. Crabtree *

^a Chemistry Department, Yale University, 225 Prospect St, New Haven, CT, 06511; Tel: +1-203-432-3925; E-mail: robert.crabtree@yale.edu
^b Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 USA. Fax: +1 860 486 2981; Tel: +1 860 486 5076; E-mail: nicholas.leadbeater@uconn.edu

CONTENTS:

- 1. Screening of catalytic conditions for catalytic coupling of benzoic acids with aryl iodides
- 2. General catalytic protocol for coupling of benzoic acids with aryl iodides
- 3. General catalytic protocol for coupling of benzoic acids with arenes
- 4. Characterization of organic products

General

Dimethylsulfoxide and dimethylformamide were dried and degassed over activated 4 Å molecular sieves. Anhydrous deuterated dimethylsulfoxide (d₆-DMSO) was obtained from Cambridge Isotopes in 1-mL ampules and used immediately after opening. All reactions and manipulations involving organometallic compounds were carried out under dry nitrogen and in oven-dried glassware. Reagents were obtained from commercial sources and were used without further purification: ¹BuXPhos¹² was obtained from Sigma-Aldrich; Pd(OAc)₂ was obtained from Strem Chemicals. N,N'- dimethylimidazolium carboxylate was prepared as previously reported.^{13 1}H- and ¹³C-NMR spectra were recorded on Bruker 300, 400 or 500 MHz spectrometers. Coupling constants *J* are quoted in Hz. A Biotage Initiator microwave unit was used for all microwave heating. Microwave reactor tubes were obtained from Biotage. Compounds 1¹, 2², 3³, 4⁴, 6⁵, 7⁶, 8⁷, 9⁸, 10⁹, 11¹⁰, 12¹¹ were previously described.

Screening of catalytic conditions for catalytic coupling of benzoic acids with aryl iodides

Entry	Ligand	% yield 1	% yield 2	Ratio 1/2
1	Silver oxide	62	29	2.13
2	Silver carbonate	60	23	2.52
3	Silver oxide 0.5 equiv	56	44	1.28
4	Copper(I) iodide + K ₂ CO ₃	29	59	0.49

Table 1. Screening of reaction conditions for the reaction shown:

5	Copper(II) carbonate + KF	25	42	0.62
6	Silver benzoate	16	37	0.42
7	Copper(I) oxide	15	75	0.2
8	Silver trifluroacetate	0	0	n/a
9	Silver formate	0	31	0
10	K_2CO_3 – control	0	23	n/a

Conditions: 270 μ mol 2,6-dimethoxybenzoic acid, 280 μ mol iodoanisole, 10% Pd(OAc)₂ 20% ligand, 270 μ mol silver carbonate, 1 mL d₆-DMSO, 200°C microwave heating, 5 min. Reported yields are based on NMR quantization using 10 μ L cyclooctane as internal standard.

Entry	Ligand	% yield 1	% yield 2	<i>Ratio</i> 1/2
1	AsPh ₃	59	23	2.54
2	^t BuXPhos	52	46	1.13
3	dppf	43	40	1.06
4	AsPh ₃ , NaOAc	39	52	0.75
5	PPh ₃	38	53	0.72
6	OPPh ₃	38	33	1.16
7	DPEPhos	36	30	1.2
8	PCy ₃	32	23	1.4
9	XantPhos	23	12	2
10	SbPh ₃	21	28	0.76
11	bipyridine	20	66	0.3
12	NHC-CO ₂ ^a	9	86	0.1

Table 2. Screening of additives for the reaction shown above (Scheme 2).

^aNHC-CO₂: N,N'-dimethylimidazolium carboxylate¹³; Conditions: 270 μ mol 2,6-dimethoxybenzoic acid, 280 μ mol iodoanisole, 10% Pd(OAc)₂ 20% AsPh₃, 270 μ mol additive, 1 mL d₆-DMSO, 200°C microwave heating, 5 min. Reported yields are based on NMR using 10 μ L cyclooctane as internal standard and average of two trials.

General catalytic protocol for coupling of benzoic acids with aryl iodides

A microwave reactor tube was loaded with 2,6-dimethoxybenzoic acid (0.0500 g, 270 μ mol), iodoanisole (0.0655 g, 270 μ mol), Pd(OAc)₂ (0.0061 g, 27 μ mol), ^tBuXPhos (0.0264 g, 54 μ mol), Ag₂CO₃ (0.0833 g, 30 μ mol, 1.1 equiv), 0.100 g 4Å activated molecular sieves and a stir bar. d₆-DMSO was added and the suspension was stirred for 5 min at room temperature. The tube was then sealed with a septum, and heated to 200 °C in a Biotage microwave unit at 100 W maximum power for 5 min. After completion, the mixture was allowed to cool to 50 °C then diluted with 30 mL ethyl acetate and filtered through Celite. The organic fraction was washed with saturated NaCl solution (2 x 20 mL), dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography using hexanes/ethyl acetate (80:20) to give pure 2,4',6-trimethoxybiphenyl after drying (1, 0.0501 g, 75%).

General catalytic protocol for coupling of benzoic acids with unsubstituted arenes

A microwave reactor tube was loaded with 2,6-dimethoxybenzoic acid (0.0500 g, 270 μ mol), Pd(OAc)₂ (0.0061 g, 27 μ mol), ^tBuXPhos (0.0264 g, 54 μ mol), Ag₂CO₃ (0.0833 g, 30 μ mol, 1.1 equiv), 0.100 g 4Å activated molecular sieves and a stir bar. d₆-DMSO and 2-phenylpyridine (50 μ L, 270 μ mol), was added and the suspension was stirred for 5 min at room temperature. The tube was then sealed with a septum, and heated to 200 °C in a Biotage microwave unit at 100 W maximum power for 5 min, with initial power set to 50 W. After completion, the mixture was allowed to cool to 50 °C then diluted with 30 mL ethyl acetate and filtered through Celite. The organic fraction was washed with

saturated NaCl solution (2 x 20 mL), dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography using hexanes/ether (80:20) to give pure 2,4',6-trimethoxybiphenyl after drying (**11**, 0.0459 g, 69%).

Characterization of organic products

2,4',6-Trimethoxybiphenyl (1): ¹H NMR (500 MHz, CDCl3) δ : 3.67 (s, 6H), 3.76 (s, 3H), 6.75 (d, J = 8.3 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 7.19 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ :552559142113311911261128413215781584

į3Dimethoxybenzene (2): ¹H NMR (400 MHz, CDCl₃) δ : 3.72 (s, 6H), 6.42 (m, 3H), 7.11 (t, *J* = 8.2 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃) δ : 54.2, 99.5, 105.2, 128.8, 159.9.

4-Fluoro-4'-methoxybiphenyl (3): ¹H NMR (400 MHz, CDCl₃): 3.92 (s, 3H), 7.02 (d, *J* = 6.78 Hz, 2H), 7.21 (d, *J* = 8.63 Hz, 2H), 7.52-7.61 (m, 3H). ¹³C NMR (125 MHz; CDCl₃) δ: 55.45, 104.78, 114.76, 125.52, 128.85, 129.25, 131.25, 158.23, 160.23.

1-(4-Methoxyphenyl)naphthalene (4): ¹H NMR (400 MHz; CDCl₃) δ: 3.93 (s, 3H), 7.08 (d, *J* = 8.6 Hz, 2H), 7.45-7.49 (m, 4H), 7.52-7.56 (m, 2H), 7.84 (d, *J* = 8.2 Hz, 1H), 7.95 (d, *J* = 9.2 Hz, 2H); ¹³C NMR (100 MHz; CDCl3) δ: 56.1, 114.2, 125.5, 125.9, 127.1, 126.5, 127.7, 128.3, 129.6, 132.2, 132.9, 134.3, 134.9, 141.1, 160.

2,4,6-Triisopropyl-4'-methoxybiphenyl (5) ¹H NMR (400 MHz, CDCl₃) δ : 1.15 (d, J = 6.9 Hz, 12H), 1.38 (d, J = 6.9 Hz, 6H), 2.73 (sept, J = 6.9 Hz, 2H), 3.01 (sept, J = 6.9 Hz, 1H), 3.92 (s, 3H), 7.01 (d, J = 8.7 Hz, 2H), 7.13 (s, 2H), 7.17 (d, J = 8.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl3) δ : 24.2, 30.1, 34.2, 55.0, 113.2, 120.4, 129.2, 130.5, 132.5, 136.3, 147.0, 147.6, 158.1.

4'-Methoxy-4-methylbiphenyl (6): ¹H NMR (500 MHz, CDCl₃) δ : 2.24 (s, 3H), 3.79 (s, 3H), 6.85 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 7.48-7.41 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ : $\tilde{2}_{3}5\tilde{3}_{5}1\tilde{3}_{6}1\tilde{2}_{5}2\tilde{3}_{2}1\tilde{2}_{6}6\tilde{3}_{5}1\tilde{3}_{2}6\tilde{3}_{5}1\tilde{3}_{2}6\tilde{3}_{5}1\tilde{3}_{5}0\tilde{3}_{5}5$

2,3,4,5,6-Pentafluoro-4'-methoxybiphenyl (7): ¹H NMR (400 MHz, CDCl₃) δ : 3.85 (s, 3H), 7.02 (d, J = 8.8 Hz, 2H), 7.33 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) (except for C6F5)) δ 55.8, 114.1, 118.7, 131.3, 160.2; ¹⁹F NMR (282 MHz, CDCl₃) δ :163.7 (m, 2F),157.7 (t, J = 21.0 Hz, 1F), 144.9 (dd, J = 7.1, 23.1 Hz, 2F).

TABLE 2

2,6-Dimethoxy-4'-methylbiphenyl (1b): ¹H NMR (400 MHz, CDCl₃) δ: 2.40 (s, 3H), 3.75 (s, 6H), 6.69 (d, *J* = 8.3 Hz, 2H), 7.30 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): d 21.2, 55.7, 104.3, 120.0, 127.2, 127.4, 127.5, 128.2, 131.3, 133.9, 137.0, 157.6.

2,6-Dimethoxy-4'-acetylbiphenyl (1c): ¹H NMR (400 MHz, CDCl3) δ (ppm): 2.54 (s, 3H), 3.65 (s, 6H), 6.60 (d, *J* = 8.3 Hz, 2H), 7.28 (t, *J* = 8.3 Hz, 1H), 7.42 (d, *J* = 8.3 Hz, 2H), 8.04 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (CDCl₃) 26.2, 56.4, 95.9, 105.5, 120.2, 132.1, 133.4, 162.5, 193.8; MS (*m/z*) 256.

9-(2',6'-Dimethoxyphenyl)-anthracene (1d): ¹H NMR (400 MHz, CDCl3) δ 8.34 (s, 1 H), 7.62 (d, *J* = 8.5 Hz, 2 H), 7.49 (dd, *J* = 8.5, 1.0 Hz, 2 H), 7.38 (t, *J* = 8.3 Hz, 1 H), 7.35-7.42 (m, 2 H), 7.23-7.35 (m, 2 H), 6.68 (d, *J* = 8.3 Hz, 2 H), 3.39 (s, 6 H); ¹³C NMR (100 MHz, CDCl3) δ 159.1, 131.7, 130.7, 130.4, 129.8, 128.7, 126.7, 126.6, 125.2, 125.1, 115.6, 104.4, 56.1;

3-(2,6-Dimethoxyphenyl)-pyridine (1f): ¹H NMR (500 MHz, CDCl3) δ:3.74 (s, 6H), 6.67 (d, *J* = 8 Hz, 2H), 7.30-7.33 (m, 2H), 7.69 (d, *J* = 8 Hz, 1H), 8.52 (d, *J* = 5 Hz, 1H), 8.60 (d, *J* = 2 Hz, 1H). ¹³C NMR (125 MHz, CDCl3) δ: 55.8, 115.6, 120.2, 122.6, 129.5, 129.9, 138.4. 147.6 151.8, 157.6.

TABLE 3

2-(2',6'-dimethoxybiphenyl-2-yl)pyridine (10): ¹H NMR (400 MHz, CD₂Cl2) δ:375s, 6H), 6.82 (d, *J* = 7.6 Hz, 2H), 6.98 (t, *J* = 8.3, 1H), 7.16 (d, J = 8.3 Hz, 1H), 7.32-29 (m, 3H), 7.43 (m, 3H), 7.72 (m, 1H), 7.90 (m, 1H), 8.12 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (125 MHz, CD₂Cl₂) δ: 55.72, 102.91, 122.36, 122.89, 125.32, 128.55, 128.89, 129.53, 130.25, 131.23, 132.04, 136.23, 140.05, 147.54, 156.98, 157.55.

N-(2',6'-dimethoxybiphenyl-2-yl)acetamide (11): ¹H NMR (300 MHz, CD₂Cl₂)

δ:2μ<u>s</u>3<u>H</u>372<u>s</u>6<u>H</u>5.92 (s, 1H), 6.87 (d, J = 8.3 Hz), 7.25 (t, J = 8.5 Hz, 1H), 7.38 (t, J = 8.5 Hz, 1H), 7.47 (t, J = 8.3 Hz, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H). ¹³C NMR (125 MHz, CD₂Cl₂) δ: 23.56, 56.23, 105.36, 120.38, 121.54, 122.67, 123.82, 128.43, 129.67, 131.35, 140.68, 154.58, 168.74. Mol. wt. calculated for Chemical Formula: C₁₆H₁₇NO₃: 271.3111 m/z, found: 271.3178.

1-(2',6'-dimethoxybiphenyl-3-yl)ethanone (12): ¹H NMR (300 MHz, CD₂Cl₂) δ :242s, 3H), 3.72 (s, 6H), 6.85 (d, *J* = 8.3 Hz, 2H), 7.21 (t, *J* = 8.5 Hz, 1H), 7.45 (t, *J* = 8.5 Hz, 1H) 7.59 (t, *J* = 8.5 Hz, 1H), 7.82 (d, *J* = 8.5 Hz, 1H), 8.01 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (125 MHz, CD₂Cl₂) δ : 27.31, 56.33, 104.12, 104.76, 122.65, 128.54, 128.98, 129.65, 130.44, 131.16, 140.30, 140.05, 157.92. Mol. wt. calculated for Chemical Formula: C₁₆H₁₆O₃: 256.2964 m/z, found: 256.2934.

Reference:

- 1. Becht, J.; Catala, C.; Le Drian, C.; Wagner, A. Org. Lett. 2007, 9, 1781.
- Saa, J. M.; Dopico, M.; Martorell, G.; Garcia-Raso, A. J. Org. Chem. 1990, 55, 991.
- Moore, L. R.; Western, E. C.; Craciun, R.; Spruell, J. M.; Dixon, D. A.; O'Halloran, K. P.; Shaughnessy, K. H. Organometallics 2008, 27, 576.
- 4. Spivey, A. C.; Tseng, C.; Hannah; Gripton, C. J.; de Fraine, P.; Parr, N. J.; Scicinski, J. J. Chem. Commun., 2007, 2926.
- 5. Milne, J. E.; Buchwald, S. L. J. Am. Chem. Soc., 2004, 126, 13028-13032.
- Wei, W.; Qin, Y.; Luo, M.; Xia, P.; Shing Wong, M. Organometallics 2008, 27, 2268.
- 7. Korenaga, T.; Kosaki, T.; Fukumura, R.; Ema, T.; Sakai, T. Org. Lett. 2005, 7, 4915.
- 8. Becht, J. Gissot, A. Wagner, A. Mioskowski, C. Chem. Eur. J. 2003, 9, 3209-3215.
- Song, C.; Ma, Y.; Chai, Q.; Ma, C.; Jiang, W.; Andrus, M. B. *Tetrahedron* 2005, 61, 7438.
- 10. Yin, J.; Rainka, M. P.; Zhang, X.-X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, **124**, 1162.

- 11. Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, **127**, 4685.
- 12. Anderson, K. W.; Tundel, R. E.; Ikawa, T.; Altman, R. A.; Buchwald, S. L. *Angew. Chem. Int. Ed.* 2006, **45**, 6523.
- 13. Voutchkova, A. M.; Appelhans, L. N.; Chianese, A. R.; Crabtree, R. H. *J. Am. Chem. Soc.* 2005, **127**, 17624.