Electronic Supplementary Information

Rhodium(I)-Catalyzed One-Pot Synthesis of Dialkyl Ketone from Methanol and Alkene through Directed sp ${ }^{3}$ C-H Bond Activation of N-Methylamine
Eun-Ae Jo, Ji-Hyun Lee, Chul-Ho Jun*
Department of Chemistry and Centre for Bioactive Molecular Hybrid(CBMH), Yonsei University, Seoul 120-749, Korea. Fax: (+82) 23147 2644; Email: junch@yonsei.ac.kr

General Information

Flash column chromatography was performed using E. Merck 230-400 mesh silica gel. Column chromatography were monitored by analytical thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates ($60 \mathrm{~F}-254$) using UV light as a visualizing agent p-anisaldehyde solution, and heat as developing agent. Gas chromatographic analyses were performed on a Donam DS 6200 instrument with FID detector and a Hewlett Packard HP-5 capillary column. Low-resolution mass spectra were measured on a Hewlett-Packard HP G1800A GCD system equipped with a Hewlett Packard HP-5 capillary column. NMR spectra were recorded in CDCl_{3} on a Bruker Advance DPX $250\left({ }^{1} \mathrm{H}\right.$ NMR, 250 $\mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR, 62.9 MHz) and a Bruker Advance II DPX $400\left({ }^{1} \mathrm{H}\right.$ NMR, $400 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR, 100 MHz) spectrometers, and the chemical shift was expressed in ppm relative to TMS. Infrared (IR) spectra were recorded on Nicolet Impact 400 spectrometer. Elemental Analysis (EA) was obtained from the Organic Chemistry Research Center, Sogang University, Seoul, Korea. High-resolution mass spectrometry was performed by the National Center for Inter-University Facilities, Seoul National University, Seoul, Korea.

Materials

$\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RhCl}$ (2) was prepared as described in the literature. ${ }^{1}$ Methanol and olefins used in the experiments were purchased from commercial sources. Toluene was distilled from sodium/benzophenone under nitrogen atmosphere prior to use.

Typical procedure for the reaction of methanol and norbornene (1a) (Table 1, entry 1)
A screw-capped pressure vial (1 mL) was charged with $32.0 \mathrm{mg}(1 \mathrm{mmol})$ of methanol, 46 mg (0.05 $\mathrm{mmol})$ of $\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RhCl}(2), 32 \mathrm{mg}(0.3 \mathrm{mmol})$ of 2-amino-4-picoline (3), $12 \mathrm{mg}(0.1 \mathrm{mmol})$ of benzoic acid (4), $564 \mathrm{mg}(6 \mathrm{mmol})$ of norbornene (1a) and 50 mg of toluene. The reaction mixture was stirred for

[^0]24 h in an oil bath that was preheated at $150^{\circ} \mathrm{C}$. After cooling to room temperature, the organic layer was purified by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane : ethyl acetate $\left.=20: 1\right)$ to afford $185 \mathrm{mg}(85 \%)$ of dinorbornyl ketone (5a).

Formation of aminal (N, N '-bis(4-methyl-2-pyridinyl)methandiamine) from formaldehyde and 2-amino-4-picoline (3), and the subsequent reaction of the resulting aminal and norbornene (1a) in the presence of $\mathbf{R h C l}\left(\mathbf{P P h}_{3}\right)_{3}$ (2) and benzoic acid (4). Paraformaldehyde ($0.9 \mathrm{~g}, 0.03 \mathrm{mmol}$), polymeric form of formaldehyde, was added to 2 -amino-4-picoline (3) (2 equiv.) at room temperature over $4 \AA$ molecular sieve. On standing at room temperature for 1 day, white solid was formed. It was dissolved in methylene chloride and filtered. The resulting solution was concentrated and dried in-vacuo to give aminal as a white solid $(74 \%, 5.09 \mathrm{~g})$. When the reaction of the resulting aminal and norbornene (1a, 3 mmol based on aminal) was carried out in toluene at $150{ }^{\circ} \mathrm{C}$ for 24 h in the presence of $\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RhCl}(2$, $5 \mathrm{~mol} \%$ based on aminal) and benzoic acid (4), dinorbornyl ketone (5a) was not determined in the final reaction mixture.

Aminal (N, N '-bis(4-methyl-2-pyridinyl)methandiamine): ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06$ (d, $J=$ $5.1 \mathrm{~Hz}, 2 \mathrm{H}$, in pyridine), $6.78(\mathrm{~s}, 2 \mathrm{H}$, in pyridine), $6.49(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}$, in pyridine), $5.54(\mathrm{~s}, 4 \mathrm{H},-$ $\left.\mathrm{NHCH}_{2} \mathrm{NH}-\right), 2.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ in pyridine). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.0,148.9,147.5,116.1$, 109.2, 60.6, 21.6. IR $\left(\mathrm{CDCl}_{3}\right): 3060,3002,2918,1601,1555,1488,1434,1351,1306,1251,1193,1178$, 953, 889, 802, $749 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{4}\left(\left[\mathrm{MCH}^{+}\right]\right)$241.1375, found 241.1453. Anal calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4}$: C, 68.39; H, 7.06; N, 24.54. Found: C, 67.47; H, 6.83; N, 21.51.

Dinorbornyl ketone (5a). ${ }^{2}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $82.60-2.24(\mathrm{~m}), 2.01-1.00(\mathrm{~m}) .{ }^{13} \mathrm{C}$ NMR (62.9 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 214.1,213.8,53.4,52.8,41.4,40.1,36.4,36.0,33.6,32.9,30.3,30.0,29.0,24.9 . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ (\%): $218\left(\mathrm{M}^{+}, 11\right), 151$ (33), 123 (27), 95 (99), 80 (8), 67 (15), 41 (6), 18 (22). IR (CDCl_{3}): 2950, 2868, $1701,1452,1363,1310,1098 \mathrm{~cm}^{-1}$. Registry number: 17610-50-3

[^1]2,2,8,8-Tetramethyl-5-nonanone (5b). ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.40(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.49(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 0.88(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.6(\mathrm{CO}), 38.7,37.7,30.2,29.3 \mathrm{MS}: \mathrm{m} / \mathrm{z}$ (\%): $198\left(\mathrm{M}^{+}, 1\right), 183$ (27), 141 (18), 113 (99), 85 (31), 57 (48), 43 (18), 41 (18), 18 (16). IR (CDCl_{3}): 2955, 2866, 1713, 1474, $1365 \mathrm{~cm}^{-1}$. Registry number: 5709-95-5

1,5-Dicyclohexyl-3-pentanone (5c). ${ }^{4}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.69-162$ $(\mathrm{m}, 10 \mathrm{H}), 1.48(\mathrm{q}, 4 \mathrm{H}), 1.25-1.11(\mathrm{~m}, 8 \mathrm{H}), 0.91-0.82(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.1(\mathrm{CO})$, $40.3,37.2,33.1,31.2,26.5,26.2 . \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%): 250\left(\mathrm{M}^{+}, 3\right), 155$ (36), 149 (10), 139 (27), 137 (16), 121 (62), 110 (8), 97 (52), 96 (99), 95 (32), 94 (19), 93 (11), 83 (11), 79 (11), 71 (16), 69 (19), 67 (18), 58 (10), 55 (41), 41 (24). IR (CDCl_{3}): 2922, 2850, 1713, 1448, $1367 \mathrm{~cm}^{-1}$. Registry number: 62221-44-7

1,5-Bis(trimethylsilyl)-3-pentanone (5d). ${ }^{5}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.39(\mathrm{~m}, 4 \mathrm{H}), 0.77(\mathrm{~m}, 4 \mathrm{H})$, 0.004 ($\mathrm{s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.9$ (CO), 36.4, 10.4, -1.8. MS: m/z (\%): 230 $\left(\mathrm{M}^{+}, 2\right), 157$ (31), 147 (99), 73 (84), 45 (8), 18 (10). IR (CDCl_{3}): 2953, 2895, 1719, 1415, 1248, 1187, $978,834,755,691 \mathrm{~cm}^{-1}$. Registry number: 18053-95-7

1,5-Bis(triethylsilyl)-3-pentanone (5e). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.38(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $\left.18 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.79(\mathrm{~m}, 4 \mathrm{H}), 0.54\left(\mathrm{q}, 12 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 213.1$ (CO), 36.3, 7.3, 5.2, 3.0. MS: m/z (\%): 314 ($\mathrm{M}^{+}, 1$), 286 (16), 285 (63), 217 (21), 190 (18), 189 (99), 169 (10), 161 (29), 115 (57), 87 (66), 86 (16), 72 (11), 59 (27). IR (CDCl_{3}): 2952, 2909, 2874, 1719, 1457, $1415,1238,1186,1016,733 \mathrm{~cm}^{-1}$. HRMS (EI+) calcd for $\mathrm{C}_{17} \mathrm{H}_{38} \mathrm{OSi}_{2}$ ([$\left.\mathrm{MNa}^{+}\right]$) 337.2461, found 337.2354. Anal calcd for $\mathrm{C}_{17} \mathrm{H}_{38} \mathrm{OSi}_{2}$: C, 64.89; H, 12.17; Found: C, 64.80; H, 12.11.

7-Tridecanone (5f). ${ }^{4}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.27$

[^2]$(\mathrm{m}, 12 \mathrm{H}), 0.89-0.86(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.1(\mathrm{CO}), 43.0,31.9,29.2,24.2,22.5$, 14.1. MS: m/z (\%): 198 (M+, 1), 141 (7), 128 (7), 113 (41), 85 (23), 71 (19), 58 (26), 43 (35), 28 (21), 18 (99). IR (CDCl_{3}): $2953,2929,2848,1704,1469 \mathrm{~cm}^{-1}$. Registry number: 462-18-0

2-Methylamino-4-methylpyridine (8). ${ }^{6}{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$, in pyridine), 6.41 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, in pyridine), 6.19 ($\mathrm{s}, 1 \mathrm{H}$, in pyridine), 4.81 (br s, $1 \mathrm{H}, \mathrm{NH}$), $2.95(\mathrm{~d}, 3 \mathrm{H}$, NHCH_{3}), 2.22 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ in pyridine). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.9,148.4,147.8,114.3,106.4$, 29.2, 21.3. MS: m/z (\%): 122 (M+, 99), 121 (49), 94 (30), 93 (79), 92 (25), 66 (16), 65 (10), 39 (6). IR $\left(\mathrm{CDCl}_{3}\right): 3423,3286,2921,1615,1568,1525,1413,1384,1286,1241,1183,1082,976,914,797 \mathrm{~cm}^{-1}$. HRMS (EI+) calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2}\left(\left[\mathrm{M}^{+}\right]\right)$122.0845, found 122.0844. Registry number: 45699-12-5

N-d-4-Methyl-2-pyridinamine ($8-\mathrm{d}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$, in pyridine), 6.43 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$, in pyridine), $6.20\left(\mathrm{~s}, 1 \mathrm{H}\right.$, in pyridine), $4.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ in pyridine). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.0,148.6,147.9,114.5,106.5,21.4 . \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%): 125\left(\mathrm{M}^{+}\right.$, 99), 124 (13), 123 (32), 96 (15), 95 (21), 94 (79), 92 (30), 92 (18), 80 (15), 65 (17), 64 (10), 31 (12), 28 (33), 18 (86), 17 (22). IR (CDCl_{3}): 3275, 1615, 1564, 1488, 1288, 1182, 1033, 984, 959, 914, 865, 796 cm^{-1}. HRMS (EI+) calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{D}_{3} \mathrm{~N}_{2}\left(\left[\mathrm{M}^{+}\right]\right)$125.1027, found 125.1029. Anal calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{D}_{3} \mathrm{~N}_{2}: \mathrm{C}$, 67.16; H, 10.46; N, 22.38; Found: C, 67.17; H, 9.83; N, 21.17.

N-d-3-Methylaniline ($11-\mathrm{d}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.11(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.5,139.1$, 129.2, 118.2, 113.3, 109.7, 21.8. MS: m/z (\%): 124 (M+, 99), 109 (5), 92 (10), 77 (8), 60 (5). IR (CDCl_{3}): $3410,3041,2918,1605,1589,1509,1490,1329,1308,1265,1182,1168,1147,1037,990,858,769,692$

[^3]cm^{-1}. HRMS (EI+) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{D}_{3} \mathrm{~N}\left(\left[\mathrm{M}^{+}\right]\right)$122.1078, found 124.1077. Anal calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{D}_{3} \mathrm{~N}$: C, 77.36; H, 11.36; N, 11.28; Found: C, 77.39; H, 11.15; N, 11.48.

2-Dimethylamino-4-methylpyridine (12). ${ }^{7}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.03(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$, in pyridine), $6.38\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, in pyridine), $6.31\left(\mathrm{~s}, 1 \mathrm{H}\right.$, in pyridine), $3.05\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.24(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$ in pyridine). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.8,148.0,147.6,113.2,106.3,38.2,21.5 . \mathrm{MS}:$ m/z (\%): 136 ($\mathrm{M}^{+}, 59$), 122 (67), 121 (99), 108 (14), 107 (70), 94 (35), 93 (95), 92 (52), 80 (13), 66 (20), 65 (22), 44 (10), 39 (10), 28 (19), 18 (10). IR (CDCl_{3}): 3011, 2921, 1717, 1608, 1414, 1355, 1310, 1273, $1225,1162,1103,1062,1019,984,797 \mathrm{~cm}^{-1}$. Registry number: 20173-72-2

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compound

${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{8 - \mathbf { d } _ { 3 }}$

[^4]${ }^{13} \mathrm{C}$ NMR of Compound 8 - \mathbf{d}_{3}

${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{1 1 - \mathbf { d } _ { 3 }}$

${ }^{13} \mathrm{C}$ NMR of Compound $11-\mathbf{d}_{3}$

$\square 8.12$

${ }^{1}$ H NMR of Compound 5e
(2t3i

${ }^{13} \mathrm{C}$ NMR of Compound 5 e

${ }^{13} \mathrm{C}$ NMR of aminal, N, N '-bis(4-methyl-2-pyridinyl)methandiamine

[^0]: 1 J. A. Osborn, G. Wilkinson, In Reagents for Transition Metal Complex and Organometallic Synthesis: R. Angelich, Ed.; Wiley: New York, 1989; Vol. 28, pp. 90-91.

[^1]: 2 M. L. N. Rao and M. Periasamy, Journal of Organometallic Chemistry 1998, 553, 91; C. Narayana and M. Periasamy, Tetrahedron Letters 1985, 26, 6361.

[^2]: ${ }^{3}$ C.-H. Jun, C. W. Moon, S.-G. Lim and H. Lee, Org. Lett. 2002, 4, 1595; C.-H. Jun, D.-Y. Lee, Y.-H. Kim and H. Lee, Organometallics 2001, 20, 2928; C.-H. Jun, K.-Y. Chung and J.-B. Hong, Org. Lett. 2001, 3, 785.
 ${ }^{4}$ H. C. Brown and M. W. Rathke, J. Am. Chem. Soc. 1967, 89, 2738.
 ${ }^{5}$ C. P. Lenges, P. S. White and M. Brookhart, J. Am. Chem. Soc. 1998, 120, 6965.

[^3]: 6 A. R. Katritzky, S. Rachwal and B. Rachwal, J. Chem. Soc., Perkin Trans 1, 1987, 805.

[^4]: ${ }^{7}$ C. Chen, K. M. Wilcoxen, C. Q. Huang, Y.-F. Xie, J. R. McCarthy, T. R. Webb, Y.-F. Zhu, J. Saunders, X.-J. Liu, T.-K. Chen, H. Bozigian and D. E. Grigoriadis, J. Med. Chem. 2004, 47, 4787; C. P. Whittle, Tetrahedron Letters 1968, 9, 3689.

