## Light Harvesting Antenna on an Amyloid Scaffold

Yan Liang<sup>a</sup>, Peng Guo<sup>b</sup>, Sai Venkatesh Pingali<sup>c</sup>, Suzette Pabit<sup>b</sup>, Pappannan Thiyagarajan<sup>\*c</sup>, Keith M. Berland<sup>\*b</sup>, and David G. Lynn<sup>\*a</sup>

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

## **Supporting Information**

## **Materials and Methods**

**Peptide synthesis:** The amyloid  $\beta$  16-22 peptide was synthesized using standard FMOC peptide synthesis protocols with an Applied Biosystems ABI431 peptide synthesizer. The peptide was cleaved from the resin using the solution of TFA/thioanisole /ehtanedithiol/anisole (90/5/3/2). The peptide was then precipitated from the cleavage solution and washed repeatedly using excess ice-cold diethyl ether. Reverse phase HPLC was used for the peptide purification. The solvents used for purification were acetonitrile and water, both of which contained 0.1% TFA. The molecular weights of the peptides were verified by MALDI mass spectroscopy.

*Fluorescent modifications*: Rh16-22 was synthesized using standard FMOC peptide synthesis protocols with an Applied Biosystems ABI431 peptide synthesizer. Rh110 was attached to the peptide backbone at the N-terminus through standard FMOC peptide synthesis protocols. The peptide was cleaved from the resin using the solution of TFA/thioanisole/ehtanedithiol/anisole (90/5/3/2). The peptide was then precipitated from the cleavage solution and washed repeatedly using excess ice-cold diethyl ether. Reverse phase HPLC was used for the peptide purification. The solvents used for purification were acetonitrile and water, both of which contained 0.1% TFA. The molecular weights of the peptides were verified by MALDI mass spectroscopy. Peptides with F19 1- $^{13}$ C labeling were synthesized as described using 1- $^{13}$ C phenylalanine at the appropriate position.

Amyloid assembly Purified A $\beta$ (16-22) was dissolved in 2:3 acetonitrile:water with 1%TFA to a final concentration of 1.0mM. Purified Rh16-22 was dissolved in 2:5 acetonitrile:water with 1%TFA to a final concentration of 1.0mM. The peptide solution was allowed to self-assemble and mature at room temperature for 2 weeks. The co-assembly system was prepared by dissolving purified A $\beta$ (16-22) into Rh16-22 stock solution (4 $\mu$ M in 2:3 acetonitrile:water with 1%TFA). The samples of mature A $\beta$ (16-22) nanotubes (1mM) mixed with Rh110 or Alexa555 were prepared by mixing mature A $\beta$ (16-22) nanotubes (1mM) and the dye stock solution in 1:1 (v:v) ratio. Rh110 concentration was 4 $\mu$ M in 2:3 acetonitrile:water with 1%TFA, and Alexa555 concentration is 1 $\mu$ M in 2:3 acetonitrile:water with 1%TFA.

**Transmission Electron Microscopy (TEM):** Aliquots (20  $\mu$ l) of an incubated A $\beta$ (16-22) solution were applied to TEM grids (Formvar/carbon film coated 200 mesh, purchased from Electron microscopy sciences) and allowed to adsorb for 1 min after a certain fold dilution depending on the nanotube density. Excess peptide solution was wicked off with a filter paper. 10  $\mu$ l of 5% uranyl acetate (purchased from Sigma-Aldrich) was then added to stain the sample for 3 min. Excess fluid was wicked off with a filter paper and grids were dried under house vacuum overnight before experiments. The micrographs were recorded on a Hitachi H -7500 transmission electron microscope instrument with a LaB6 emission filament at an accelerating voltage of 75 kV. Negatives were scanned at 600 dpi resolution on an Agfa DuoScan flatbed scanner (Agfa Corp., Ridgefield park, NJ).

*Two photon fluorescence imaging:* Two-photon fluorescence images were acquired on a home built laser scanning microscope<sup>1</sup>. Rh16-22 and Rh110 were excited at 780 nm using a mode-locked Tsunami Ti:Sapphire laser pumped with a 532-nm 5W Millenia solid-state Nd:YVO<sub>4</sub> laser (Spectra-Physics, Mountain View, CA). Alexa555 is not excited efficiently at 780nm, but can be excited at 980nm. The 4X-expanded laser beam was directed into a IX-71 Olympus microscope (Olympus America, Center Valley, PA) and focused into the sample with a 60× UPlanSApo 1.2 NA water-immersion objective lens (Olympus America, Center Valley, PA). Fluorescence collected through the objective lens passed through a dichroic mirror (675 DCSX) and a short pass filter (E680SP, Chroma Technology, Rockingham, VT), and was focused onto a photon-counting photomultiplier tube (Hamamatsu, H7421). Images were acquired with custom software.

*Flourier Transform Infrared Spectroscopy (FTIR)* A 500  $\mu$ L solution of mature samples formed by A $\beta$ (16-22), fluorescence labeled peptides or the co-assembling system was spun down at 16,100 x g for 30 min and the pellet was frozen at -80°C and lyophilized. The lyophilized pellet was mixed with dehydrated KBr crystals at a ratio of 1:10 (w/w), and the KBr/peptide pellet was analyzed on a MAGNA-IR 560 Spectrometer. E. S. P. instrument operated at 2cm<sup>-1</sup> resolution.

*Fluorescence lifetime imaging:* The fluorescence lifetime imaging was measured using the time-correlated single-photon-counting (TCSPC) technique and Becker & Hickl electronics<sup>2</sup>. The detector was a Hamamatsu H7422-40 PMT (Hamamatsu Photonics, Japan) and a bandpass emission filter HQ530/50 (Chroma Technology) was used for lifetime measurement. The  $256 \times 256$  pixel images were taken in a 100µs pixel-time scanning mode with a total collection time ranged from 120 to 180s. The fluorescence decay histogram for each pixel was well described by a single-exponential decay. A Levenberg–Marquardt routine for nonlinear fitting is applied to fit a decay curve to the data of this model function in a separate off-line software package SPCImage (Becker & Hickl Gmbh). The lifetime of rhodamine 6G in pure water (lifetime =4.08ns) was measured before each experiment.

*Wide angle X-ray scattering (WAXS)* Powder samples in 1.5mm diameter quartz capillary tubes were measured at the the 12-ID beamline at the APS with a shorter camera length and X-rays with E = 18 keV. The peaks in the plot I(Q) versus Q are related to repeat distance d by the relation  $d = (2\pi/Q)$ . The intense, sharp and narrow peaks imply a high degree of order, and the weak and broad peaks relate to a low degree of repetition of the corresponding length scale.

*Calculation of*  $R_0$ : Föster radius is calculated through the overlap integral for the donor emission spectrum and the acceptor absorption spectrum. The definition is as below<sup>3</sup>:

$$R_0 = \sqrt[6]{\frac{8.8 \times 10^{-5} \kappa^2 Q_D J_{DA}}{n^4}}$$
$$J_{DA} = \int_0^\infty f_D(\lambda) \varepsilon_A(\lambda) \lambda^4 d\lambda$$

 $\kappa^2$  is the orientation factor. In the calculation, the donor and acceptor are assumed to be randomly orientation dipoles, with the average value of  $\kappa^2$ , 2/3.

 $Q_D$  is the quantum yield of the donor, and the value is 0.6.

n is approximate index of refraction of the solution, the value is 1.343.

 $J_{DA}$  is the overlap integral of the donor emission spectrum and the acceptor absorption spectrum, and its definition as shown above.

 $\varepsilon_A$  is the extinction coefficient of the acceptor at each wavelength. The calculation uses a constant value of 150000.



**Figure S1** TEM of donor and acceptor with  $A\beta(16-22)$  nanotubes. (a)  $A\beta(16-22)$ :Rh16-22 co-assembly (250:1 molar ratio); (b)  $A\beta(16-22)$  mature nanotubes with Rh110, (250:1 molar ratio); (c)  $A\beta(16-22)$  mature nanotubes with A555 (1000:1 molar ratio); Image scale=100nm.

## **Reference:**

- [1] A. Nagy, J. Wu, K. M. Berland, Biophys. J. 2005, 89, 2077.
- [2] M. Peter, S. M. Ameer-Beg, Biol. Cell 2004, 96, 231
- [3] B. W. v. d. Meer, Resonance energy transfer : theory and data, New York : VCH, 1994.