Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Supplementary Information

www.rsc.org/xxxxxx XXXXXXXXX

Activation of Aryl Halides by Cu⁰/1,10-phenanthroline: Cu⁰ as Precursor of Cu^I Catalyst in Cross-Coupling Reactions

Mounir Mansour,^a Roberto Giacovazzi,^a Armelle Ouali,^b Marc Taillefer^b and Anny Jutand^{*a}

^a Ecole Normale Supérieure (ENS), Département de Chimie, UMR CNRS 8640, 24 Rue Lhomond F-75231 Paris Cedex 05, France. Fax: 33144322402; Tel: 33144323872; E-mail: <u>Anny.Jutand@ens.fr</u>

^b Institut Charles Gerhardt Montpellier, AM₂N, ENSCM, 8 rue de l'Ecole Normale, F-34296 Montpellier Cedex 5, France.

Reaction of 1,10-phenanthroline with CuI in acetonitrile. The cyclic voltammetry of CuI (2 mM) was performed in CH₃CN (containing nBu_4NBF_4 , 0.3 M). It exhibited an irreversible reduction peak ($E^p = -0.637$ V vs SCE) and two ¹⁵ irreversible oxidation peaks ($E^p = +0.506$ V and +0.854 V). The first oxidation peak was assigned to the oxidation of Γ

- by comparition to an authentic sample of nBu_4NI . Conductivity measurements performed in acetonitrile revealed that CuI was fully dissociated into ionic $_{20}$ Cu(CH₃CN)₄⁺ and I⁻ (conductivity: $\kappa = 110 \ \mu Scm^{-1}$ for CuI
- (2 mM), Tacussel CDM210 conductivity meter, cell constant = 1 cm^{-1}). Consequently, in acetonitrile CuI behaved as the cationic Cu(CH₃CN)₄⁺ and its reaction with phenanthroline was similar to that performed from
- ²⁵ Cu(CH₃CN)₄⁺PF₆⁻ in acetonitrile. Indeed, the cyclic voltammogram exhibited three reduction peaks ($E^{p}_{R0'} = -1.60 \text{ V}, E^{p}_{R1'} = -1.78 \text{ V}, E^{p}_{R3'} = -1.96 \text{ V}$) very similar to those observed when starting from Cu(CH₃CN)₄⁺PF₆⁻ (see text, Fig. 1b).

Mechanism of the activation of ArX by Cu⁰/phenanthroline by electron tranfer. A more sophisticated study should be done to discriminate two mechanisms proceeding by electron transfer (L = ³⁵ phenanthroline):

Outer-sphere mechanism :

$$\begin{array}{ccc} Cu^{l}L^{+} + 1 & & & & \\ Cu^{0}L & + & ArX & & & \\ Cu^{l}L^{+} & + & ArX^{*} & \\ ArX^{*-} & & & & \\ Ar^{*} + & Cu^{l}L^{+} & & \\ Ar^{*} + & Cu^{l}L^{+} & \\ \end{array}$$

40

Inner-sphere mechanism :

$$\begin{array}{ccc} Cu^{l}L^{+} + 1 & e & & & Cu^{0}L \\ Cu^{0}L & + & ArX & & & & [ArX \rightarrow Cu^{0}L] \\ [ArX \rightarrow Cu^{0}L] & & & Cu^{l}L^{+} + & Ar^{*} + & X^{-} \\ Ar^{*} + & Cu^{0}L & & & & Ar^{-} + & Cu^{l}L^{+} \end{array}$$

⁴⁵ Such study is beyond the purpose of this work. We are nevertheless inclined to favour an inner-sphere mechanism for the reaction of Cu⁰(phen) with ArX since the catalytic effect was less important in the presence of 2 equiv of phenanthroline. Cu⁰(phen) and Cu⁰(phen)₂ were generated at the same potential

 $_{50}$ (R₁). Since Cu⁰(phen)₂ was less efficient, this suggests that the

saturated complex Cu⁰(phen)₂ (19-electron instead of 15electron for Cu⁰(phen)) could not coordinate to PhI as required in an inner-sphere mechanism. Cu⁰(phen)₂ probably reacted via an outer-sphere process which is always slower than an innersphere one. The inner-sphere mechanism from Cu⁰(phen) is

also supported by the fact that $4\text{-NC-C}_6H_4\text{-Cl}$ was more easily reduced than $4\text{-CH}_3\text{O-C}_6H_4\text{-Br}$ (Table 1) but no NC-C₆H₅ was formed in the electrolysis performed from $4\text{-NC-C}_6H_4\text{-Cl}$ whereas $4\text{-CH}_3\text{O-C}_6H_5$ was formed from $4\text{-CH}_3\text{O-C}_6H_4\text{-Br}$ ⁶⁰ (Table 1).

Typical procedure for the analysis of the reaction of $Cu(CH_3CN)_4^+$, PF_6^- and 1,10-phenanthroline by cyclic voltammetry. The cyclic voltammetry was performed in a 65 air-tight three-electrode cell under argon at room temperature. The working electrode was a glassy carbon disk (d = 3 mm). The counter-electrode was a platinum wire. The reference was a Saturated Calomel Electrode separated from the solution by a bridge filled with 2 mL of 70 degassed and dried acetonitrile containing nBu₄NBF₄ (0.3 M). 15 mL of degassed and dried acetonitrile containing nBu₄NBF₄ (0.3 M) were introduced into the cell followed by 11.2 mg (0.03 mmol) of Cu(CH₃CN)₄⁺PF₆⁻. Cyclic voltammetry was performed at the scan rate of 0.5 Vs⁻¹. 5.4 75 mg (0.03 mmol) of 1,10-phenanthroline were then introduced and the CV performed under the same conditions. When the CV was performed at higher scan rates (from 20 up to 1000 Vs⁻¹), the size of the electrode was changed (d = 1 mm) to minimize the ohmic drop. ⁸⁰ Similar experiments were performed in the presence of 11 mg (0.06 mmol) of 1,10-phenanthroline.

Typical procedure for Cu⁰-catalyzed electrosyntheses of ArH from ArX (Table 1). Electrosyntheses were performed in a two-compartment air-tight three-electrode cell under argon at room temperature. The two compartments were separated by a sintered glass disk. The cathode was a carbon woven (*ca.* 4 cm² surface area). The anode was a sacrificial zinc road (oxidation to Zn²⁺). The reference was a Saturated Calomel Electrode ⁹⁰ separated from the solution by a bridge filled with 2 mL of degassed and dried acetonitrile containing *n*Bu₄NBF₄ (0.3 M). The cathodic and anodic compartments were charged with 12 mL and 2 mL of degassed and dried acetonitrile containing *n*Bu₄NBF₄ (0.3 M) respectively. 18.6 mg (0.05 mmol) of 95 Cu(CH₃CN)₄⁺PF₆⁻, 9 mg (0.05 mmol) of phenanthroline and 117 mg (0.5 mmol) of 4-MeO-C₆H₄-I were added to the Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

cathodic compartment. The electrolysis was carried out at a controlled potential of -1.5 V, using a Tacussel PJT 35-2 potentiostat. The electrolysis was stopped when the current dropped to background level, after 90 min. A charge of 106 C

- $_{\rm 5}$ had been passed through the cell. The cathodic compartment was hydrolyzed with 1 mL of aqueous HCl (10 %). After extraction with diethyl ether, the organic phase was dried on MgSO₄ and evaporated. The yield of Ph-OMe (76 %) was determined on the crude mixture by ¹H NMR (250 MHz) using
- ¹⁰ CHCl₂CHCl₂ (0.2 mmol) as an internal standard. Characterization of Ph-OMe: ¹H NMR (250 MHz, CDCl₃) $\delta =$ 3.73 (s, 3H, C<u>H</u>₃), 6.83 (d, 2H, *J* = 7.7 Hz, *o*-<u>H</u>), 6.87 (t, 1H, *J* = 7.7 Hz, *p*-<u>H</u>); 7.21 (t, 2H, *J* = 7.7 Hz, *m*-<u>H</u>); similar to the spectrum of a commercial authentic sample. The ¹H NMR
- ¹⁵ spectra of the arenes (PhCN, PhCH₃) synthesized in Table 1 were identical to those of commercial samples.

Characterization of phenanthroline by cyclic voltammetry

²⁰ **Fig. SI1** Cyclic voltammetry of 1,10-phenanthroline (4 mM) performed in acetonitrile containing nBu_4NBF_4 (0.3 M) at a steady glassy carbon disk electrode (d = 3 mm) at the scan rate of 0.5 Vs⁻¹, at 20 °C. First reduction peak potential: $E^{0}_{R3} = -2.03$ V vs SCE.

Activation of PhI by electrogenerated Cu⁰(phenanthroline) as evidenced by cyclic voltammetry.

25

Fig. S12 a) Cyclic voltammetry of $Cu(CH_3CN)_4^+$, PF_6^- (2 mM) in the ³⁰ presence of 1,10-phenanthroline (2 mM), in acetonitrile containing *n*Bu₄NBF₄ (0.3 M) at a steady glassy carbon disk electrode (d = 3 mm) at the scan rate of 0.5 Vs⁻¹, at 20 °C. b) After addition of PhI (2 mM). The current scale has been divided by 2 when going from a) to b).

2 | Journal Name, [year], [vol], 00-00

- ³⁵ **Characterisation of 4-NC-C₆H₄-CuBr(phenanthroline)⁺I⁻.** The ESI MS of the isolated complex 4-NC-C₆H₄-Cu^{III}-Br(phenanthroline)⁺I⁻ generated by oxidative addition of 4-NC-C₆H₄-I to CuBr(PPh₃)(phen)¹ in toluene at reflux exhibited an isotopic pattern centred at 426 in agreement
- ⁴⁰ with the formula $C_{19}H_{12}BrCuN_3$. The ¹H NMR (250 MHz, CD_2Cl_2 , TMS) exhibited two broad signals of same amplitude at 6.88 and 6.60 ppm assigned to the aromatic protons of 4-NC-C₆<u>H</u>₄ ligated to the Cu^{III} center.

45 **References**

50

55

60

65

70

75

80

85

 For the use of CuBr(PPh₃)(phen) as catalyst in cross-coupling reactions see: R. K. Gujadhur, C. G. Bates, D. Venkataraman, *Org. Lett.*, 2001, *3*, 4315.

This journal is © The Royal Society of Chemistry [year]