Supplementary Information

Secure route to the epoxybicyclo[7.3.0]dodecadienediyne core of kedarcidin chromophore

Kouki Ogawa,[†] Yasuhito Koyama,[†] Isao Ohashi,[†] Itaru Sato,[‡] Masahiro Hirama*,^{†,‡}

[†]Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan [‡]Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

Experimental Procedure	1
¹ H and ¹³ C NMR spectra	14

General Methods. All reactions using air- and moisture-sensitive compounds were conducted under an atmosphere of argon. For thin-layer chromatography (TLC) analysis, Merck pre-coated plates (silica gel 60 F254, Art 5715, 0.25 mm) were used. Silica Gel 60N (100–210 μm, Kanto Chemical Co., Inc.) was used for flash column chromatography on Melting point (mp) determinations were performed by using a Yanaco MP-S3 silica gel. micro melting point instruments and are uncorrected. ¹H-NMR (400, 500 and 600 MHz) and ¹³C-NMR (100, 125 and 150 MHz) spectra were measured on a Varian INOVA 400-MR, a Varian INOVA 500 and a JEOL ECA-600 spectrometers. Chemical shifts are expressed in ppm relative to tetramethylsilane. Infrared (IR) spectra were recorded on a PERKIN ELMER Spectrum BX FT-IR System spectrometer. Optical rotations ($[\alpha]_D$) were measured on a JASCO DIP-370 polarimeter. MALDI-TOF MS spectra were measured on an Applied Biosystems Voyager DE STR SI-3 instrument. ESI-TOF MS spectra were measured on a BRUKER DALTONICS APEX III (HRMS).

All compounds given below bear the same formula numbers as used in the main text. Compounds unlabeled in the main text are labeled with letters [A and B]. The carbon numbers of intermediates are labeled according to those of the natural kedarcidin chromophore (1).¹

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

t-Butyldiphenylsilyl Ether 2

To a solution of A^2 (674.0 mg, 2.16 mmol), DMAP (106.0 mg, 0.86 mmol) and imidazole (1.47 g, 21.6 mmol) in dry CH₂Cl₂ (72.0 mL) was added TBPSCl (2.81 mL, 10.8 mmol) at 0 °C. The mixture was warm to 50 °C and stirred for 48 h. The reaction mixture was diluted with CH₂Cl₂ and filtered through a pad of Celite. The organic layer was concentrated to afford crude product which was directly used in the next reaction.

To a solution of the crude mixture in CH₂Cl₂ (4.7 mL) were added H₂O (57.0 μ L, 3.14 mmol) and trifluoroacetic acid (0.47 mL) at 0 °C. After 15 min, the reaction was quenched by the addition of sat. aq. NaHCO₃ and the mixture was extracted with EtOAc. The combined organic extracts was dried over MgSO₄ and concentrated in vacuo. The crude mixture was purified by flash column chromatography on silica gel (hexane/EtOAc = 20/1-5/1) to afford 2 (107.3 mg, 0.143 mmol, 91% for 2 steps) as a colorless amorphous; $R_{\rm f}$ = 0.38 (hexane/EtOAc = 5/1); $[\alpha]_D^{26}$ +53.9 (*c* 0.72, CHCl₃); FT-IR (film) v 3512, 2931, 2858, 1734, 1427, 1111, 1072, 702, 507 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.88 (9H, s, TBPS), 1.00 (9H, s, TBPS), 2.11 (1H, dd, J = 12.0, 3.0 Hz, C8-OH), 3.48 (1H, s, C9-OH), 3.58 (1H, dd, J = 12.0, 12.0 Hz, H8), 3.71 (1H, dd, J = 12.0, 3.0 Hz, H8), 4.36 (1H, s, H10), 4.42 (1H, d, J = 3.0 Hz, H11), 5.92 (1H, d, J = 3.0 Hz, H12), 7.40 (12H, m, TBPS), 7.73 (8H, m, TBPS); ¹³C NMR (125 MHz, CDCl₃) δ 19.1, 19.5, 26.8, 27.1, 65.5, 78.1, 82.1, 85.0, 110.9, 127.75, 127.80, 127.9, 128.1, 129.95, 129.97, 130.2, 130.3, 132.1, 132.6, 133.3, 135.76, 135.79, 135.9, 136.0, 142.1; HRMS (MALDI), calcd for C₃₈H₄₅INaO₄Si₂⁺ 771.1793 (M+Na⁺), found 771.1771.

<u>Alkyne 3</u>

The diol **2** was dissolved in a mixed solvent of DMSO (20.3 mL) and CH_2Cl_2 (57.7 mL). Et₃N (7.32 mL, 52.5 mmol) and SO₃·pyridine (4.17 g, 26.3 mmol) was added

portionwise at room temperature. After stirring for 5 h, the mixture was diluted with Et_2O and the reaction was quenched by the addition of water. The mixture was successively washed with water and brine. The combined organic extracts was dried over MgSO₄ and concentrated *in vacuo* to afford crude aldehyde (1.31 g, 100%). This aldehyde was used in the next reaction without further purification.

A solution of aldehyde (0.250 g, 0.335 mmol) in CH₂Cl₂ (34.0 mL) was cooled to To this solution was added dropwise a THF solution of ethynylmagnesium −78 °C. bromide (0.5 M, 13.4 mL, 6.70 mmol). After the mixture was warmed to 0 °C over a period of 1 h, sat. aq. NH₄Cl was added at 0 °C. The mixture was exacted by the EtOAc and combined organic extracts was dried over MgSO₄ and concentrated in vacuo. The crude mixture was purified by column chromatography on silica gel (hexane/EtOAc 1/0-20/1) to afford 3 (160.0 mg, 0.207 mmol, 62% for 2 steps, colorless oil) and the recovered starting material 2 (114.6 mg, 0.153 mmol, 38%); $R_{\rm f} = 0.50$ (hexane/EtOAc = 3/1); [α]_D²¹+53.0 (*c* 0.72, CHCl₃); FT-IR (film) v 3467, 3307, 2931, 2858, 1427, 1111, 703, 506 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.80 (9H, s, TBPS), 1.03 (9H, s, TBPS), 2.31 (1H, d, J = 5.0 Hz, C8-OH), 2.39 (1H, d, J = 2.0 Hz, H6), 3.85 (1H, s, C9-OH), 4.58 (1H, d, J =2.0 Hz, H11), 4.61 (1H, dd, J = 5.0, 2.0 Hz, H8), 4.64 (1H, s, H10), 5.93 (1H, d, J = 2.0 Hz, H12), 7.26-7.71 (20H, m, TBPS); ¹³C NMR (125 MHz, CDCl₃) δ 19.1, 19.5, 26.7, 27.1, 68.4, 75.7, 79.0, 80.6, 83.5, 84.6, 105.3, 127.6, 127.87, 127.93, 128.1, 129.8, 130.0, 130.2, 130.4, 131.8, 132.6, 132.8, 133.6, 135.8, 135.96, 135.98, 136.3, 143.9; HRMS (MALDI), calcd for C₄₀H₄₅INaO₄Si₂⁺ 795.1793 (M+Na⁺), found 795.1731.

TMS-protected Alkyne 4

To a solution of **3** (0.97 g, 1.26 mmol) and Et_3N (3.5 mL, 25.1 mmol) in dry CH_2Cl_2 (126.0 mL) was added MsCl (0.975 mL, 12.6 mmol) at -45 °C. After stirring for 2 h, DBU (7.5 mL, 50.4 mmol) was added the mixture. After stirring for 1 h at 0 °C, the reaction was quenched by the addition of sat. aq. NH₄Cl and the mixture was extracted with EtOAc. The combined organic extracts was dried over MgSO₄ and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel

(hexane/EtOAc 1/0–20/1) to afford propargylic oxirane (682.5 mg, 0.904 mmol, 72%) as a colorless oil.

To a solution of propargylic oxirane (686.4 mg, 0.909 mmol) and $LiN(TMS)_2$ (1.54 mL, 8.18 mmol) in THF (18.2 mL) was added TMSCl (1.54 mL, 8.18 mmol) at -68 °C. After stirring at -68 °C for 20 min, the reaction was quenched by the addition of sat. aq. NH₄Cl and the mixture was extracted with Et₂O. The combined organic extracts was dried over MgSO₄ and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (hexane/EtOAc 1/0–50/1) to afford **4** (719.6 mg, 0.870 mmol, 96%) as a colorless amorphous.

4: $R_{\rm f} = 0.69$ (hexane/EtOAc = 5/1); $[\alpha]_{\rm D}^{22}$ +88.2 (*c* 1.59, CHCl₃); FT-IR (film) v 3071, 2959, 2932, 2858, 1427, 1112, 844, 703, 611 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.19 (9H, s, TMS), 0.95 (9H, s, TBPS), 0.97 (9H, s, TBPD), 3.02 (1H, s, H8), 3.83 (1H, s, H10), 4.61 (1H, d, *J* = 3.0 Hz, H11), 6.36 (1H, d, *J* = 3.0 Hz, H12), 7.36 (12H, m, TBPS), 7.55 (8H, m, TBPD); ¹³C NMR (100 MHz, CDCl₃) δ –0.3, 19.2, 19.3, 26.7, 26.9, 49.6, 73.9, 78.2, 82.4, 95.9, 98.3, 101.1, 127.6, 127.7, 127.8, 127.9, 129.79, 129.83, 129.9, 130.0, 133.1, 133.2, 133.5, 133.7, 135.7, 135.8, 135.9, 136.0, 136.3, 147.4; HRMS (MALDI), cal for C₄₃H₅₁INaO₃Si₃⁺ 849.2083 (M+Na⁺), found 849.2079.

Alkyne 5

5: $R_{\rm f} = 0.57$ (hexane/EtOAc = 3/1); $[\alpha]_{\rm D}^{21}$ +31.0 (*c* 1.10, CHCl₃); FT-IR (film) v 2957, 2876, 1729, 1155, 1032, 745 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.72 (6H, t, *J* = 7.5 Hz, TES), 0.95 (9H, q, *J* = 7.5 Hz, TES), 1.20 (9H, s, Piv), 2.56 (1H, s, H2), 3.40 (3H, s, MOM), 3.63 (1H, d, *J* = 10.0 Hz, H5), 3.71 (1H, d, *J* = 10.0 Hz, H5), 4.00 (1H, dd, *J* = 7.5, 2.5 Hz, H13), 4.21 (1H, dd, *J* = 11.5, 7.5 Hz, H14), 4.63 (1H, dd, *J* = 11.5, 2.5 Hz, H14), 4.78 (1H, d, *J* = 6.0 Hz, NAP), 4.79 (2H, s, MOM), 4.84 (1H, d, *J* = 6.0 Hz, NAP), 7.47 (3H, m, NAP), 7.82 (4H, m, NAP); ¹³C NMR (125 MHz, CDCl₃) δ 6.2, 7.1, 27.3, 38.8, 56.3, 65.8, 73.6, 73.9, 74.0, 75.5, 80.4, 84.1, 97.9, 125.9, 126.0, 126.2, 126.5, 127.8, 128.0, 128.2, 133.1, 133.4, 135.7, 178.5; HRMS (MALDI), cal for C₃₀H₄₄NaO₆Si⁺ 551.2799 (M+Na⁺), found 551.2814.

2-Naphthylmethyl (NAP) Ether 6

To a solution of **4** (22.3 mg, 0.0270 mmol) and **5** (15.7 mg, 0.0297 mol) in dry DMF (27.8 mL) was added *i*-Pr₂NEt (47.0 μ L, 0.270 mmol). The solution was degassed by freeze-pump-thaw cycles (three times). To the solution was added CuI (5.1 mg, 0.0270 mmol) and Pd₂(dba)₃·CHCl₃ (7.0 mg, 6.75 μ mol) under N₂ stream. After the mixture was stirred at room temperature for 2 h in the dark. The mixture was diluted with Et₂O and sat. aq. NH₄Cl was added at 0 °C. The mixture was stirred vigorously at room temperature for 1 h until the color of the aqueous phase turned into dark blue. After extraction with Et₂O, the combined organic extracts was washed with brine, dried over MgSO₄ and concentrated *in vacuo* to afford the coupling product which was directly used in the next reaction.

To a solution of the coupling product (25.8 mg, 0.0210mmol) in MeOH (1.0 mL) was added K_2CO_3 (2.4 mg, 0.0174 mmol) at room temperature. After stirring for 2 h, the reaction mixture was diluted with EtOAc and the reaction was guenched with sat. aq. NH₄Cl. The mixture was then extracted with EtOAc. The combined organic extracts was dried over MgSO₄ and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (hexane/EtOAc 50/1-20/1) to afford 6 (17.5 mg, 0.0151 mmol, 72% for 2 steps) as a colorless oil; $R_{\rm f} = 0.55$ (hexane/EtOAc = 5/1); $[\alpha]_{\rm D}^{25}$ +92.4 (c 1.26, CHCl₃); FT-IR (film) v 3287, 2957, 1728, 1158, 1111, 741, 703 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.69 (6H, q, *J* = 8.0 Hz, TES), 0.90 (9H, s, TBPS), 0.93 (9H, t, *J* = 8.0 Hz, TES), 0.99 (9H, s, TBPS), 1.02 (9H, s, Piv), 2.38 (1H, d, J = 1.5 Hz, H6), 3.10 (1H, d, J = 1.5 Hz, H8), 3.38 (3H, s, MOM), 3.66 (1H, d, J = 9.0 Hz, H5), 3.68 (1H, d, J = 9.0 Hz, H5), 3.94 (1H, s, H10), 4.02 (1H, dd, J = 8.0, 1.5 Hz, H13), 4.29 (1H, dd, J = 12.0, 8.0 Hz, H14), 4.64 (1H, dd, *J* = 12.0, 1.5 Hz, H14), 4.67 (1H d, *J* = 3.0 Hz, H11), 4.76 (2H, s, MOM or NAP), 4.76 (1H, d, J = 6.5 Hz, MOM or NAP), 4.85 (1H, d, J = 6.5 Hz, MOM or NAP), 6.09 (1H, d, J = 3.0 Hz, H12), 7.24-7.78 (17H, m, NAP, TBPS); ¹³C NMR (125 MHz, CDCl₃) δ 6.1, 7.1, 19.2, 19.5, 26.8, 27.0, 27.3, 38.8, 48.8, 56.3, 60.5, 66.4, 73.0, 73.6, 73.8, 73.9, 74.0, 76.3, 78.0, 79.6, 80.3, 96.2, 97.9, 125.8, 125.9, 126.08, 126.14, 126.3, 127.4, 127.58, 127.62, 127.7, 127.8, 127.9, 128.0, 128.08, 128.13, 129.5, 129.78, 129.82, 129.9, 133.06, 133.08,

133.2, 133.4, 133.6, 133.7, 135.6, 135.7, 135.8, 135.86, 135.88, 136.0, 136.1, 136.5, 143.7, 178.4; HRMS (MALDI), calcd for $C_{70}H_{85}NaO_9Si_3^+$ 1177.5472 (M+Na⁺), found 1177.5441.

Aldehyde 7

To a solution of **6** (602.4 mg, 0.521 mmol) in H₂O (2.0 mL) and CH₂Cl₂ (10.0 mL) was added DDQ (236.5 mg, 1.04 mmol) at room temperature. After stirring for 2 h, the reaction was quenched by the addition of sat. aq. NaHCO₃ and the mixture was extracted with Et₂O. The combined organic extracts was dried over MgSO₄ and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (hexane/EtOAc 20/1-5/1) to afford alcohol(475.4 mg, 0.468 mmol, 90%) as a colorless oil.

To a solution of alcohol (475.4 mg, 0.468 mmol) and NaHCO₃ (235.9 mg, 2.81 mmol) in CH₂Cl₂ (31.2 mL) was added Dess-Martin periodinane (397.0 mg, 0.936 mmol). After stirring at room temperature for 2 h, the reaction mixture was diluted with Et₂O and sat. aq. NaHCO₃ and sat. aq. Na₂S₂O₃ were successively added to the mixture. After stirring for 0.5 h, the mixture was washed with sat. aq. NaHCO₃. The aqueous layer was extracted with Et₂O and the extracts were combined. The combined organic extracts was dried over MgSO₄ and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (hexane/EtOAc = 1/0-10/1) to afford 7 (445.6 mg, 0.440 mmol, 94%) as a colorless amorphous.

7: $R_{\rm f} = 0.60$ (hexane/EtOAc = 5/1); $[\alpha]_{\rm D}^{25}$ +50.5 (*c* 1.31, CH₂Cl₂); FT-IR (film) v 2957, 1737, 1152, 1112, 740, 703 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 0.87 (6H, q, *J* = 7.8 Hz, TES), 0.99 (9H, s, Piv), 1.10 (9H, t, *J* = 7.8 Hz, TES), 1.11 (9H, s, TBPS), 1.14 (9H, s, TBPS), 2.47 (1H, d, *J* = 1.8 Hz, H6), 3.09 (1H, d, *J* = 1.8 Hz, H8), 3.20 (3H, s, MOM), 4.15 (1H, s, H10), 4.19 (1H, dd, *J* = 5.1, 2.9 Hz, H13), 4.43 (1H, dd, *J* = 11.9, 5.1 Hz, H14), 4.67 (2H, s, MOM), 4.71 (1H, dd, *J* = 11.9, 2.9 Hz, H14), 4.88 (1H, d, *J* = 2.9 Hz, H11), 6.18 (1H, d, *J* = 2.9 Hz, H12), 7.21 (12H, m, TBPS), 7.62 (8H, m, TBPS), 9.69 (1H, s, H5); ¹³C NMR (150 MHz, C₆D₆) δ 6.5 (3C, TES), 7.3 (3C, TES), 19.3 (TBPS), 19.6 (TBPS), 26.9 (3C, TBPS), 27.1 (3C, TBPS), 27.2 (3C, Piv), 38.8 (Piv), 49.2 (C8), 56.0 (MOM), 63.6 (C14), 73.6 (C9), 76.9 (C6), 78.2 (C7), 78.3 (C3), 79.9 (C10), 80.4 (C13), 80.9 (C11), 84.2 (C2), 92.0 (C4),

97.4 (MOM), 127.8 (C1), 130.0 (TBPS), 130.1 (TBPS), 130.2 (TBPS), 133.3 (TBPS), 133.4 (TBPS), 133.8 (TBPS), 134.0 (TBPS), 135.9 (TBPS), 136.0 (TBPS), 136.1 (TBPS), 136.4 (TBPS), 144.3 (C12), 177.6 (Piv), 193.6 (C5); HRMS (MALDI), calcd for $C_{59}H_{76}NaO_9Si_3^+$ 1035.4689 (M+Na⁺), found 1035.4669.

Nine-Membered Diyne 10 and 12

Anhydrous CeCl₃ (947.9 mg, 3.84 mmol, purchased from Aldrich) was dried under vacuum at 90 °C. Under the above conditions, particles of CeCl₃ was ground with vigorous stirring using a magnetic stirrer bar for 2h. After the introduction of N₂ into the flask, the flask was cooled to 0 °C. Freshly distilled THF (32.5 mL) was then added to the flask in The resulting suspension was stirred vigorously at room temperature for 19 h. one portion. To a separate solution of HN(TMS)₂ (608 µL, 2.88 mmol) in THF (19.5 mL) was added n-BuLi (1.57 M in hexane, 1.83 mL, 2.88 mmol) dropwise at 0 °C over 2 min. The resulting solution of LiN(TMS)₂ was stirred at 0 °C for 0.5 h. The suspension of CeCl₃ was added in one portion at -45 °C via cannula over 2 min. The mixture was allowed to warm to -25 °C over a period of 1 h with vigorous stirring. To the suspension of CeCl₃ and LiN(TMS)₂ was added a solution of 7 (95.3 mg, 0.0940 mmol) in THF (13.0 ml) at -25 °C via cannula. After stirring at -25 °C for 2.0 h, the reaction was quenched with aqueous phosphate buffer (pH 7.0) and the mixture was diluted with EtOAc. The precipitate was filtered through a pad of Celite and washed with EtOAc. The combined organic extracts was washed with brine, and dried over MgSO₄. After concentration, the crude product was purified by column chromatography on silica gel (hexane/EtOAc = 1/0-5/1) to give a 4:1 mixture of 8 and 9 (55.6 mg, 0.0549 mmol, 53%, combined yield).

To a solution of the mixture of **8** and **9** (43.4 mg, 0.0428 mmol) in THF (7.1 mL) was added TBAF (1.0 M in THF, 85.6 μ L) at -78 °C. After stirring at -78 °C for 15 min, sat. aq. NH₄Cl was added and the mixture was diluted with EtOAc. After the mixture was extracted with EtOAc, the combined organic exacts was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel to afford diol (38.5 mg, 0.0428 mmol) as a mixture of diastereomers.

To a solution of diol (37.4 mg, 0.0416 mmol) and pyridine (20 $\mu L,$ 0.250 mmol) in

CH₂Cl₂ (5.0 mL) was added Ms₂O (22.4 mg, 0.125 mmol) at 0 °C. After stirring for 1 h, the reaction was quenched by adding with sat. aq. NaHCO₃. The mixture was diluted and extracted with Et₂O. The combined organic extracts was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 6/1-3/1) to afford **10** (28.9 mg, 0.0296 mmol, 71% for 2 steps) and **12** (10.3 mg, 0.0105 mmol, 25% for 2 steps) as a colorless oil, respectively.

10: $R_{\rm f} = 0.40$ (hexane/EtOAc = 2/1); $[\alpha]_{\rm D}^{26}$ +83.5 (*c* 1.00, CH₂Cl₂); FT-IR (film) v 3341, 2934, 2859, 1734, 1370, 1157, 1110, 1075, 825, 704 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 1.00 (9H, s, Piv), 1.08 (9H, s, TBPS), 1.15 (9H, s, TBPS), 2.50 (3H, s, Ms), 2.68 (1H, s, H8), 2.87 (3H, s, MOM), 4.07 (1H, dd, J = 8.5, 3.2 Hz, H13), 4.27 (1H, d, J = 6.8 Hz, MOM), 4.33 (1H, d, J = 6.8 Hz, MOM), 4.45 (1H, dd, J = 12.1, 8.5 Hz, H14), 4.49 (1H, d, J = 2.4 Hz, H10), 4.90 (1H, dd, J = 12.1, 3.2 Hz, H14), 4.91 (1H, s, C4-OH), 5.21 (1H, dd, J = 2.4, 2.4 Hz, H11), 5.70 (1H, s, H5), 5.93 (1H, d, J = 2.4 Hz, H12), 7.15-7.21 (12H, m, TBPS), 7.56-7.82 (8H, m, TBPS); ¹³C NMR (150 MHz, C₆D₆) δ 19.3 (TBPS), 19.7 (TBPS), 26.9 (3C, Piv), 27.2 (6C, TBPS), 38.3 (Ms), 38.7 (Piv), 47.9 (C8), 55.8 (MOM), 64.1 (C14), 70.8 (C9), 77.8 (C5), 78.7 (C10), 79.2 (C4), 82.8 (C11), 83.5 (C13), 83.7 (C6), 86.1 (C2), 93.7 (C7), 98.5 (C3), 98.9 (MOM), 123.5 (C1), 128.5 (TBPS), 130.2 (TBPS), 130.3 (TBPS), 133.3 (TBPS), 133.4 (TBPS), 133.6 (TBPS), 134.1 (TBPS), 135.9 (TBPS), 136.3 (TBPS), 136.4 (TBPS), 142.0 (C12), 177.3 (Piv); HRMS (ESI), calcd for C₅₄H₆₄NaO₁₁SSi₂⁺ 999.3600 (M+Na⁺), found 999.3595.

12: $R_f = 0.34$ (hexane/EtOAc = 2/1); $[\alpha]_D^{26} + 132.0$ (*c* 1.28, CH₂Cl₂); FT-IR (film) v 3437, 2960, 2859, 1731, 1367, 1179, 1157, 1111, 1023, 704 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 1.01 (9H, s, Piv), 1.07 (9H, s, TBPS), 1.14 (9H, s, TBPS), 2.33 (1H, s, C4-OH), 2.35 (3H, s, Ms), 2.54 (1H, s, H8), 3.13 (3H, s, MOM), 3.96 (1H, dd, *J* = 6.1, 3.6 Hz, H13), 4.32 (1H, d, *J* = 6.8 Hz, MOM), 4.44 (1H, dd, *J* = 11.9, 6.1 Hz, H14), 4.49 (1H, d, *J* = 6.8 Hz, MOM), 4.50 (1H, d, *J* = 2.4 Hz, H10), 4.57 (1H, dd, *J* = 11.9, 3.6 Hz, H14), 5.17 (1H, dd, *J* = 2.4, 2.4 Hz, H11), 5.66 (1H, s, H5), 5.92 (1H, d, *J* = 2.4 Hz, H12), 7.15-7.20 (12H, m, TBPS), 7.57-7.82 (8H, m, TBPS); ¹³C NMR (150 MHz, C₆D₆) δ 19.3 (TBPS), 19.7 (TBPS), 27.0 (3C, PIv), 27.2 (6C, TBPS), 38.2 (Ms), 38.7 (Piv), 48.0 (C8), 56.5 (MOM), 64.5 (C14), 74.1 (C9), 76.1 (C5), 78.4 (C13), 78.6 (C10), 79.9 (C4), 83.3 (C11), 84.3 (C6), 87.0 (C2), 93.1 (C7), 96.3 (C3), 97.5 (MOM), 123.6 (C1), 128.5 (TBPS), 130.2 (TBPS), 136.00 (TBPS), 136.4 (TBPS), 136.4 (TBPS), 142.0 (C12), 177.4 (Piv); HRMS (ESI), calcd

for $C_{54}H_{64}NaO_{11}SSi_2^+$ 999.3600 (M+Na⁺), found 999.3594.

Diepoxide B

To a solution of 10 (18.5 mg, 0.0189 mmol) in CH₂Cl₂ (5.0 mL) was added DBU $(22.7 \ \mu L, 0.189 \ mmol)$ at $-70 \ ^{\circ}C$. After stirring for 0.5 h, the reaction mixture was diluted with Et₂O and sat. aq. NH₄Cl was added. The mixture was then extracted with Et₂O. The combined organic extracts was dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 20/1-5/1) to afford **B** (12.9 mg, 0.0146 mmol, 77%) as a colorless amorphous; $R_{\rm f} = 0.72$ (hexane/EtOAc = 2/1); $[\alpha]_D^{25}$ +139.1 (c 1.29, CHCl₃); FT-IR (film) v 2959, 2933, 2895, 2858, 1736, 1242, 1154, 1110, 1038, 704 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 1.00 (9H, s, Piv), 1.14 (9H, s, TBPS), 1.15 (9H, s, TBPS), 2.69 (1H, s, H8), 3.02 (3H, s, MOM), 3.10 (1H, s, H5), 3.52 (1H, t, J = 6.5 Hz, H13), 4.18 (2H, d, J = 6.5 Hz, H14), 4.29 (1H, d, J = 6.5 Hz, MOM), 4.51 (1H, d, J = 6.5 Hz, MOM), 4.55 (1H, d, J = 3.5 Hz, H10), 5.23 (1H, dd, J =3.5, 2.0 Hz, H11), 5.93 (1H, d, J = 2.0 Hz, H12),7.12-7.21 (12H, m, TBPS), 7.53-7.75 (8H, m, TBPS); ¹³C NMR (125 MHz, C₆D₆) δ 19.3, 19.8, 27.1, 27.3, 27.4, 38.8, 47.0, 51.6, 55.5, 63.58, 63.62, 72.5, 74.7, 78.8, 82.8, 83.6, 85.8, 89.0, 96.1, 123.4, 128.2, 128.3, 130.2, 130.30, 130.35, 130.4, 133.2, 133.6, 133.8, 134.1, 136.0, 136.1, 136.4, 136.5, 144.0, 177.3; HRMS (ESI), calcd for $C_{62}H_{67}F_3NaO_{12}Si_2^+$ 903.3719 (M+Na⁺), found 903.3713.

p-Trifluoromethylbenzoate 11

To a solution of **10** (28.9 mg, 0.0296 mmol) and *p*-trifluoromethylbenzoyl chloride (22.0 μ L, 0.148 mmol) in CH₂Cl₂ (5.0 mL) was added DMAP (36.2 mg, 0.296 mmol) at 0 °C. After stirring for 0.5 h, the reaction mixture was diluted with Et₂O and sat. aq. NaHCO₃ was added. The mixture was then extracted with Et₂O. The combined organic extracts was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 20/1–5/1) to afford **11** (28.1 mg, 0.0244 mmol, 83%) as a colorless oil; $R_{\rm f} = 0.26$ (hexane/EtOAc = 5/1); $[\alpha]_{\rm D}^{24} + 109.1$ (c 2.05, CH₂Cl₂); FT-IR (film) v 2934, 2859, 1735, 1372, 1267, 1111, 1041, 956, 824, 704 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.91 (9H, s, Piv), 1.04 (9H, s, TBPS), 1.20 (9H, s, TBPS), 2.79 (1H, s, H8), 3.14 (3H, s, Ms), 3.28 (3H, s, MOM), 4.05 (1H, dd, J = 12.0, 8.0 Hz, H14), 4.36 (1H, d, J = 4.0 Hz, H10), 4.37 (1H, dd, J = 8.0, 2.5 Hz, H13), 4.76 (1H, dd, J = 12.0, 2.5 Hz, H14), 4.77 (1H, d, J = 7.0 Hz, MOM), 4.81 (1H, d, J = 7.0 Hz, MOM), 5.13 (1H, dd, J = 4.0, 2.5 Hz, H11), 5.94 (1H, d, J = 2.5 Hz, H12), 6.09 (1H, s, H5), 7.31-7.72 (22H, m, TBPS, TFBz), 8.15 (2H, d, J = 8.5 Hz, TFBz); ¹H NMR (500 MHz, C₆D₆) δ 1.03 (9H, s, TBPS), 1.13 (9H, s, Piv), 1.16 (9H, s, TBPS), 2.29 (3H, s, Ms), 2.68 (1H, s, H8), 3.15 (3H, s, MOM), 4.56 (1H, dd, J = 12.5, 7.0 Hz, H14), 4.56 (1H, d, J = 2.0 Hz, H10), 4.74 (1H, dd, J = 7.0, 2.5 Hz, H13), 4.81 (1H, d, J = 6.5 Hz, MOM), 4.85 (1H, d, J = 6.5 Hz, MOM), 5.22 (1H, dd, J = 2.0, 2.0 Hz, H11), 5.25 (1H, dd, J = 12.5, 2.5 Hz, H14), 5.95 (1H, d, J = 2.0 Hz, H12), 6.50 (1H, s, H5), 7.20-7.99 (24H, m, TBPS, TFBz); ¹³C NMR (125 MHz, C₆D₆) δ 19.4, 19.8, 27.1, 27.3, 38.0, 38.8, 48.0, 56.1, 65.0, 70.4, 74.6, 78.7, 80.3, 82.6, 82.9, 84.2, 90.2, 94.7, 94.7, 98.9, 122.9, 124.3 (q, CF₃), 125.6, 125.6, 128.1, 128.3, 130.3, 130.39, 130.42, 130.7, 132.9, 133.2, 133.56, 133.64, 134.0, 134.8 (g, C-CF₃), 136.08, 136.12, 136.4, 136.5, 142.6, 163.9, 177.6; HRMS (ESI), calcd for $C_{62}H_{67}F_3NaO_{12}Si_2^+$ 1171.3736 (M+Na⁺), found 1171.3729.

p-Trifluoromethylbenzoate 13

To a solution of **12** (10.3 mg, 0.0105 mmol) and *p*-trifluoromethylbenzoyl chloride (15.6 µL, 0.105 mmol) in CH₂Cl₂ (5.0 mL) was added DMAP (25.7 mg, 0.210 mmol) at 0 ^oC. After stirring for 2 h, the reaction mixture was diluted with Et₂O and sat. aq. NaHCO₃ was added. The mixture was then extracted with Et₂O. The combined organic extracts was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10/1–7/1) to afford **13** (8.9 mg, 0.00774 mmol, 74%) as a colorless oil; $R_f = 0.26$ (hexane/EtOAc = 5/1); $[\alpha]_D^{23}$ +153.0 (*c* 1.14, CH₂Cl₂); FT-IR (film) v 2960, 2934, 2859, 1738, 1372, 1326, 1266, 1135, 1111, 704 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 0.99 (9H, s, Piv), 1.08 (9H, s, TBPS), 1.15 (9H, s, TBPS), 2.22 (3H, s, Ms), 2.73 (1H, d, *J* = 1.0 Hz, H8), 3.24 (3H, s, MOM), 4.51 (1H, dd, *J* = 11.5,

6.5 Hz, H14), 4.55 (1H, d, J = 2.5 Hz, H10), 4.57 (1H, dd, J = 6.5, 2.5 Hz, H13), 4.58 (1H, d, J = 6.5 Hz, MOM), 4.69 (1H, d, J = 6.5 Hz, MOM), 4.86 (1H, dd, J = 11.5, 2.5 Hz, H14), 5.15 (1H, dd, J = 2.5, 2.5 Hz, H11), 6.00 (1H, d, J = 2.5 Hz, H12), 6.21 (1H, d, J = 1.0 Hz, H5), 7.21 (12H, m, TBPS), 7.63 (8H, m, TBPS), 7.90 (4H, m, TFBz); ¹³C NMR (125 MHz, C₆D₆) δ 19.3, 19.8, 27.1, 27.2, 27.3, 38.4, 38.8, 47.9, 56.5, 64.9, 74.4, 74.5, 78.8, 79.3, 82.0, 83.0, 83.3, 90.5, 93.7, 94.0, 98.3, 123.1, 123.8 (q, CF₃), 125.61, 125.64, 128.2, 128.4, 130.25, 130.33, 130.36, 130.41, 130.8, 132.9, 133.1, 133.59, 133.63, 133.9, 134.6 (q, C-CF₃), 136.1, 136.4, 136.5, 143.1, 163.2, 177.4; HRMS (ESI), calcd for C₆₂H₆₇F₃NaO₁₂Si₂⁺ 1171.3736 (M+Na⁺), found 1171.3725.

14: $R_{\rm f} = 0.40$ (hexane/EtOAc = 5/1); $[\alpha]_{\rm D}^{33} + 130.2$ (*c* 0.59, CHCl₃); FT-IR (film) v 2959, 2932, 2858, 1737, 1325, 1268, 1137, 1111, 1043, 704 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 1.03 (9H, s, Piv), 1.14 (9H, s, TBPS), 1.14 (9H, s, TBPS), 1.63 (3H, s, Ac), 2.60 (1H, s, H8), 3.12 (3H, s, MOM), 4.51 (1H, d, J = 2.2 Hz, H10), 4.57 (1H, dd, J = 11.9, 8.4 Hz, H14), 4.70 (1H, dd, J = 8.4, 2.4 Hz, H13), 4.81 (1H, d, J = 6.8 Hz, MOM), 4.84 (1H, d, J = 6.8 Hz, MOM), 5.21 (1H, dd, J = 2.2, 2.2 Hz, H11), 5.23 (1H, dd, J = 11.9, 2.4 Hz, H14), 5.93 (1H, d, J = 2.2 Hz, H12), 6.96 (1H, s, H5), 7.13-7.23 (14H, m, TBPS, TFBz), 7.61-7.92 (10H, m, TBPS, TFBz); ¹³C NMR (150 MHz, C₆D₆) δ 19.3, 19.7, 19.9, 27.0, 27.3, 38.8, 48.1, 56.1, 65.3, 68.9, 70.4, 78.6, 80.4, 82.9, 84.3, 85.0, 90.0, 91.9, 95.2, 98.8, 123.4, 124.2 (q, CF₃), 125.47, 125.49, 128.4, 128.6, 130.2, 130.26, 130.30, 130.5, 133.2, 133.3, 133.6, 133.7, 134.0, 134.5 (q, C-CF₃), 136.0, 136.1, 136.4, 136.5, 142.0, 163.6, 169.1, 177.7; HRMS (ESI), calcd for C₆₃H₆₇F₃NaO₁₁Si₂⁺ 1135.4066 (M+Na⁺), found 1135.4057.

15: $R_{\rm f} = 0.46$ (hexane/EtOAc = 5/1); $[\alpha]_{\rm D}^{25}$ +5.3 (*c* 0.27, CH₂Cl₂); FT-IR (film) v 2927, 2856, 1738, 1325, 1270, 1325, 1270, 1134, 1110, 1018, 703 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 1.00 (9H, s, Piv), 1.11 (9H, s, TBPS), 1.14 (9H, s, TBPS), 2.63 (1H, d, *J* = 1.2 Hz, H8), 3.26 (3H, s, MOM), 4.53 (1H, dd, *J* = 12.1, 6.3 Hz, H14), 4.53 (1H, d, *J* = 2.4 Hz, H10),

4.62 (1H, d, J = 7.0 Hz, MOM), 4.65 (1H, dd, J = 6.3, 3.9 Hz, H13), 4.72 (1H, d, J = 7.0 Hz, MOM), 4.86 (1H, dd, J = 12.1, 3.9 Hz, H14), 5.21 (1H, dd, J = 2.4, 2.4 Hz, H11), 6.03 (1H, d, J = 2.4 Hz, H12), 6.82 (1H, d, J = 1.2 Hz, H5), 6.93-7.01 (4H, m, TFBz), 7.13-7.20 (8H, m, TBPS), 7.58-7.80 (12H, m, TBPS, TFBz); ¹³C NMR (150 MHz, C₆D₆) δ 19.3, 19.7, 27.0, 27.2, 27.3, 38.8, 47.9, 56.5, 64.8, 69.5, 74.2, 78.7, 79.3, 83.1, 82.3, 84.0, 90.7, 92.2, 94.0, 98.2, 123.4, 125.40, 125.42, 128.6, 128.8, 130.16, 130.18, 130.2, 130.3, 130.5, 132.2, 132.8, 133.1, 133.60, 133.62, 134.0, 136.0, 136.1, 136.3, 136.4, 142.6, 163.0, 164.0, 177.5; HRMS (ESI), calcd for C₆₉H₆₈F₆NaO₁₁Si₂⁺ 1265.4097 (M+Na⁺), found 1265.4089.

The typical procedure of SmI₂ mediated reductive elimination (Table 1, entry 2)

A 0.1 M THF solution of SmI_2 was prepared from samarium and diiodomethane according to the procedure reported by Kagan³⁾. To a solution of **13** (4.2 mg, 3.7 µmol) in fleshly distilled THF (0.64 mL) was added a solution of SmI_2 (0.1 M, 90 µL, 9.1 µmol) at $-20 \,^{\circ}\text{C}$. After stirring for 10 min, the mixture was allowed for the exposure to open air and diluted by diethyl ether. The suspension was filtrated through pads of Celite and silica gel. Concentration under the reduced pressure and the silica gel flash chromatography (hexane/ethyl acetate) gave a mixture of enediyne **16** and aromatized product **17** in the ratio of 3:2 (2.3 mg, 72% as a combined yield).

16: $R_{\rm f} = 0.36$ (hexane/EtOAc = 1/1); ¹H NMR (500 MHz, CDCl₃) δ 0.93 (9H, s, Piv), 1.06 (9H, s, TBPS), 1.15 (1H, s, TBPS), 3.06 (1H, d, J = 2.0 Hz, H8), 3.33 (3H, s, MOM), 4.10 (2H, m, H14), 4.40 (1H, m, H13), 4.47 (1H, d, J = 3.5 Hz, H10), 4.59 (2H, s, MOM), 5.08 (1H, dd, J = 3.5, 2.0 Hz, H11), 5.94 (1H, d, J = 2.0 Hz, H12), 5.96 (1H, brs, H5), 7.30-7.82 (20H, m, TBPS); HRMS (MALDI), calcd for C₅₃H₆₀NaO₇Si₂⁺ 887.3770 (M+Na⁺), found 887.1913.

The procedure for reductive elimination and cycloaromatization (Table 1, entry 3) To a solution of 13 (5.2 mg, 4.5 µmol) in fleshly distilled THF was added a solution

of SmI₂ (0.1 M, 136 μ L, 13.6 μ mol) at –15 °C. After stirring for 10 min, the mixture was allowed for the exposure to open air and diluted by diethyl ether. The suspension was filtrated through pads of Celite and silica gel and concentrated. The residue was dissolved in CH₂Cl₂ (0.3 mL), and 1,4-cyclohexadiene (0.3 mL) was added at room temperature. After stirring for 2.0 h, the mixture was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 20/1–5/1) to afford **17** (2.3 mg, 2.65 μ mol, 59%) as a colorless oil.

17: $R_{\rm f} = 0.59$ (hexane/EtOAc = 1/1); $[\alpha]_{\rm D}^{25}$ +116.6 (*c* 0.62, CH₂Cl₂); FT-IR (film) v 2932, 2858, 1734, 1152, 1111, 1033, 823, 704 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.12 (9H, s, Piv), 1.13 (9H, s, TBPS), 1.15 (9H, s, TBPS), 2.61 (1H, s, H8), 3.28 (3H, s, MOM), 4.03 (1H, dd, *J* = 12.0, 4.5 Hz, H14), 4.13 (1H, dd, *J* = 12.0, 7.5 Hz, H14), 4.43 (1H, d, *J* = 6.5 Hz, MOM), 4.53 (1H, d, *J* = 6.5 Hz, MOM), 4.74 (1H, dd, *J* = 7.5, 4.5 Hz, H13), 5.00 (1H, d, *J* = 4.0 Hz, H10), 5.54 (1H, d, *J* = 2.0 Hz, H12), 5.65 (1H, dd, *J* = 4.0, 2.0 Hz, H11), 7.11 (1H, d, *J* = 8.5 Hz, H5 or H6), 7.14 (1H, d, *J* = 8.5 Hz, H5 or H6), 7.19 (1H, s, H3), 7.33 (12H, m, TBPS), 7.82 (8H, m, TBPS) ; ¹³C NMR (125 MHz, CDCl₃) δ 19.4, 19.6, 26.7, 27.2, 27.26, 27.30, 29.9, 38.6, 55.7, 57.9, 67.5, 72.9, 75.5, 79.5, 88.6, 94.5, 123.0, 125.9, 126.9, 127.3, 127.7, 127.8, 127.9, 128.0, 129.8, 129.9, 130.0, 133.4, 134.0, 134.2, 134.5, 134.9, 135.4, 136.0, 136.1, 136.5, 138.8, 141.3, 145.2, 178.3; HRMS (ESI), calcd for C₅₃H₆₂NaO₇Si₂⁺ 889.3926 (M+Na⁺), found 889.3922.

Leet, J. E.; Schroeder, D. R.; Langley, D. R.; Colson, K. L.; Huang, S.; Klohr, S. E.; Lee,
 M. S.; Golik, J.; Hofstead, S. J.; Doyle, T. W.; Matson, J. A. J. Am. Chem. Soc. 1993, 115,
 8432.

2) Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7, 267.

3) a) Girard, P.; Namy, J. L.; Kagan, H. B. *J. Am. Chem. Soc.*, **1980**, *102*, 2693.
b) Namy, J. L.; Girard, P.; Kagan, H. B.; Caro, P. E. *Nouv. J. Chim.*, **1981**, *5*, 479.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

S40

