One-Handed Helical Double Stranded Polybisnorbornenes

Hui-Chun Yang, Sherng-Long Lee, Chun-hsien Chen,* Nai-Ti Lin, Hsiao-Ching Yang, Bih-Yaw Jin, and Tien-Yau Luh*

Supplementary Information

Experimental Section

bis[4-(4-aza-tricyclo[5.2.1.0^{2,6}]dec-4-yl)benzoate] Ferrocene-(*R*,*R*)-1,1'-diethyl (*RR*-6a). To a solution of 5a (2.60 g, 10.3 mmol) in CH_2Cl_2 (43 mL) at 0 °C was added oxalyl chloride (2.1 mL, 24.3 mmol) and DMF (3 drops). The mixture was gradually warmed to rt and stirred for 1 h and evaporated in vacuo. Benzene was added to dissolve and the solvent was removed in vacuo to give the corresponding acid chloride 5b which was used for the next reaction without further purification. To a mixture of **RR-4a** (0.64 g, 2.3 mmol), NEt₃ (1.90 ml, 13.8 mmol) and a trace amount of DMAP in CH₂Cl₂ (95 mL) was added the freshly prepared acid chloride described above in CH₂Cl₂ (47 mL) at 0 °C. The mixture was stirred at rt for 17 h. Saturated NaHCO₃ (110 mL) was added and the solution was washed with water, brine (100 mL x 3) and then dried (MgSO₄). The solvent was removed in vacuo and the residue was chromatography on silica gel (EtOAc/Hexane 3/7) to give the residue which was recrystallized three times from CH_2Cl_2 /pentane (1/3) to get *RR***-6a** as a light yellow solid (0.52 g, 30%): mp 185-186 °C; $[\alpha]_D^{25} = -124.2$ (c = 0.01 g/mL, CHCl₃); IR: v (cm⁻¹) 2965, 2859, 1696, 1634, 1606, 1524, 1474, 1380, 1333, 1178, 1098, 1040, 827, 749; ¹H NMR (300 MHz, CDCl₃): δ 1.50-1.63 (m, 10 H, including a doublet 6H, J = 6.5 Hz), 2.93-2.98 (m, 8 H), 3.08-3.09 (m, 4 H), 3.26-3.34 (m, 4 H), 4.11 (m, 4 H), 4.22 (d, J = 1.7 Hz, 2 H), 4.32 (d, J = 1.7 Hz, 2 H), 5.95 (q, J = 6.5 Hz, 2 H), 6.15 (s, 4 H), 6.37 (d, J = 8.9 Hz, 4 H), 7.88 (d, J = 8.9 Hz, 4 H); ¹³C NMR (100 MHz, CDCl₃): δ 21.0, 45.4, 46.6, 50.4, 52.1, 66.8, 67.9, 68.2, 68.8, 69.0, 89.8, 110.8, 116.7, 131.3, 135.8, 150.3, 166.4; MS (FAB) m/z (rel intensity): 748.4 (M⁺, 28), 564.3 (38), 494.4 (17), 460.3 (18), 402.4 (24), 334.3 (10); HRMS (FAB). Calcd.

C₄₆H₄₈Fe⁵⁶N₂O₄: 748.2964; Found: 748.2952.

SS-6a was obtained in 25% in a manner similar as that described above from *SS*-4a: mp 186-188 °C; $[\alpha]_D^{25} = +123.2$ (c = 0.01 g/ml, CHCl₃); IR: v (cm⁻¹) 3091, 3056, 2963, 2849, 1692, 1605, 1527, 1473, 1380, 1332, 1270, 1178, 1097, 1069, 827, 769, 723, 489; ¹H NMR (400 MHz, CDCl₃): δ 1.50-1.62 (m, 10 H, including a doublet 6H, J = 6.5 Hz), 2.94-2.98 (m, 8 H), 3.08-3.09 (m, 4 H), 3.26-3.31 (m, 4 H), 4.12 (m, 4 H), 4.22 (s, 2 H), 4.31 (s, 2 H), 5.98 (q, J = 6.5 Hz, 2 H), 6.15 (s, 4 H), 6.38 (d, J = 8.8Hz, 4 H), 7.89 (d, J = 8.8 Hz, 4 H); ¹³C NMR (100 MHz, CDCl₃): δ 21.0, 45.4, 46.6, 50.4, 52.1, 66.8, 67.9, 68.2, 68.8, 69.0, 89.8, 110.8, 116.7, 131.3, 135.8, 150.3, 166.4; MS (FAB) m/z (rel intensity): 748.3 (M⁺, 32), 564.2 (41), 494.3 (17), 402.4 (24), 349.4 (38), 334.3(12); HRMS (FAB). Calcd. C₄₆H₄₈Fe⁵⁶N₂O₄: 748.2964; Found: 748.2964.

Polymer *RR*-7a. Under nitrogen atmosphere, a solution of $(Cy_3P)_2Cl_2Ru=CHPh$ (5 mg, 0.006 mmol) in CH₂Cl₂ (2 mL) was added to *RR*-6a (45 mg, 0.06 mmol) in CH₂Cl₂ (6 mL). The mixture was stirred at rt for 2 h, quenched with ethyl vinyl ether (2 mL), The solvent was removed in vacuo and the residue was poured into Et₂O (50 mL). The solid was collected and washed with Et₂O to afford *RR*-7a as a brown yellow solid (40 mg, 88%): Mn = 16,300; Mw = 23,200; PDI = 1.4.; IR: v (cm⁻¹) 2937, 2840, 1698, 1605, 1524, 1480, 1379, 1335, 1179, 1070, 950, 827, 767; ¹H NMR (400 MHz, CD₂Cl₂): δ 1.15-1.95 (br, 10 H), 2.40-3.55 (br, 16 H), 3.80-4.45 (br, 8 H), 5.050-5.65 (br, 4 H), 5.65-6.05 (br, 2 H), 6.20-6.85 (br, 4 H), 7.60-8.15 (br, 4 H); ¹³C NMR (125 MHz, CD₂Cl₂): δ 21.2, 37.1, 45.3, 47.4, 50.1, 67.4, 69.3, 90.4, 112.0, 118.0, 126.5, 129.1, 131.7, 151.6, 166.5. (Peaks at 126.5 and 129.1 belong to the end groups of the polymer).

Polymer *SS*-7a was obtained in 88% in a manner similar as that described above from *RR*-6a; Mn = 17,600; Mw = 26,100; PDI = 1.5; IR: ν (cm⁻¹) 2923, 2844, 1701, 1605, 1527, 1483, 1382, 1331, 1272, 1180, 1100, 1069, 964, 827, 770, 736, 698; ¹H NMR (400 MHz, CD₂Cl₂): δ 1.15-1.95 (br, 10 H), 2.45-3.55 (br, 16 H), 3.85-4.45 (br, 8 H), 5.10-5.65 (br, 4 H), 5.70-6.05 (br, 2 H), 6.25-6.85 (br, 4 H), 7.60-8.15 (br, 4 H);

2

¹³C NMR (125 MHz, CD₂Cl₂): δ 21.2, 37.1, 45.3, 47.4, 50.1, 67.4, 69.3, 90.4, 112.0, 118.0, 131.7, 151.6, 166.5. (Peaks at 126.5 and 129.1 belong to the end groups of the polymer).

Ferrocene-(R,R)- α , α '-dibenzvl bis[4-(4-aza-tricvclo[5.2.1.0^{2,6}]dec-4-vl)benzoate] (*RR*-6b). To a solution of 5a (5.00 g, 20.0 mmol) in CH_2Cl_2 (86 mL) at 0 °C was added oxalyl chloride (6.1 mL, 48.0 mmol) and DMF (3 drops). The mixture was gradually warmed to rt and stirred for 1 h and evaporated in vacuo. Benzene was added to dissolve and the solvent was removed in vacuo to give 5b which was used for the next reaction without further purification. To a mixture of **RR-4b** (1.79 g, 4.5 mmol), NEt₃ (3.8 ml, 27.0 mmol) and a trace amount of DMAP in CH₂Cl₂ (180 mL) was added the freshly prepared acid chloride described above in CH₂Cl₂ (90 mL) at 0 °C. The mixture was stirred at rt for 17 h. Saturated NaHCO₃ (220 mL) was added and the solution was washed with water, brine (100 mL x 3) and then dried (MgSO₄). The solvent was removed in vacuo and the residue was chromatography on silica gel (EtOAc/Hexane 1/1) to give the residue which was recrystallized three times from CH₂Cl₂/Et₂O (1/3) to get *RR***-6b** as a light yellow solid (0.66 g, 17%): mp 175-176 °C; $[\alpha]_{D}^{21} = -37.0$ (c = 0.01 g/mL, CHCl₃); IR: v (cm⁻¹) 3064, 3031, 2965, 2850, 1693, 1643, 1604, 1524, 1473, 1382, 1316, 1268, 1176, 1098, 1042, 970, 872, 826, 795, 765, 723, 698, 664, 429, 412, 404; ¹H NMR (400 MHz, CDCl₃): δ 1.48 (d, J = 8.0 Hz, 2 H), 1.59 (d, J = 8.0 Hz, 2 H), 2.93-2.96 (m, 8 H), 3.07 (brs, 4 H), 3.25-3.27 (m, 4 H), 4.07 (s, 6 H), 4.35 (s, 2 H), 6.14 (s, 4H), 6.38 (d, J = 8.4 Hz, 4 H), 6.81 (s, 2 H), 7.22-7.30 (m, 6 H), 7.38-7.40 (m, 4 H), 7.94 (d, J = 8.4 Hz, 4 H); ¹³C NMR (100 MHz, CDCl₃): δ 45.3, 46.6, 50.4, 52.0, 67.7, 68.5, 69.2, 69.3, 73.2, 89.4, 110.9, 116.2, 126.9, 127.6, 128.1, 131.4, 135.7, 141.0, 150.4, 165.8; MS (FAB) m/z (rel intensity): 872.4 (M⁺, 22), 770.3 (3), 618.4 (19), 564.3 (33), 497.3 (4), 464.3 (38), 460.3 (14), 360.3 (4); HRMS (FAB). Calcd. C₅₆H₅₂Fe⁵⁶N₂O₄: 872.3277; Found: 872.3277.

SS-6b was obtained in 15% in a manner similar as that described above from *SS*-4b: mp 173-174 °C; $[\alpha]_D^{20} = +39.0$ (c = 0.01 g/ml, CHCl₃); IR: v (cm⁻¹) 3063, 2964, 2850, 1697, 1604, 1524, 1474, 1381, 1317, 1267, 1177, 1098, 1042, 970, 827, 767, 723, 698, 504; ¹H NMR (400 MHz, CDCl₃): δ 1.49 (d, *J* = 8.0 Hz, 2 H), 1.60 (d, *J* = 8.0 Hz, 2 H), 2.93-2.96 (m, 8 H), 3.07 (brs, 4 H), 3.25-3.27 (m, 4 H), 4.07 (s, 6 H), 4.35 (s, 2 H), 6.14 (s, 4H), 6.39 (d, *J* = 8.4 Hz, 4 H), 6.81 (s, 2 H), 7.22-7.30 (m, 6 H), 7.38-7.40 (m, 4 H), 7.96 (d, *J* = 8.4 Hz, 4 H); ¹³C NMR (100 MHz, CDCl₃): δ 45.3, 46.6, 50.4, 52.0, 67.7, 68.5, 69.2, 69.3, 73.2, 89.4, 110.9, 116.2, 126.9, 127.6, 128.1, 131.4, 135.7, 141.0, 150.4, 165.8; MS (FAB) m/z (rel intensity): 872.2 (M⁺, 48), 618.3 (27), 564.3 (80), 492.4(17), 464.3 (100), 462.3 (12), 425.4(11), 396.3(27), 391.5(26), 349.5(61); HRMS (FAB). Calcd. C₅₆H₅₂Fe⁵⁶N₂O₄: 872.3277; Found: 872.3264; Anal. Calcd: C 77.06, H 6.00, N 3.21; found: C 76.74, H 6.01, N 3.25.

Polymer *RR*-7b. Under nitrogen atmosphere, a solution of $(Cy_3P)_2Cl_2Ru=CHPh$ (5 mg, 0.006 mmol) in CH₂Cl₂ (4 mL) was added to *RR*-6b (50 mg, 0.06 mmol) in CH₂Cl₂ (6 mL). The mixture was stirred at rt for 2 h, quenched with ethyl vinyl ether (2 mL), The solvent was removed in vacuo and the residue was poured into Et₂O (50 mL). The solid was collected and washed with Et₂O to afford *RR*-7b as a brown yellow solid (46 mg, 92%): Mn = 15,000; Mw = 19,800; PDI = 1.3; IR: v (cm-1) 3031, 2940, 2851, 1697, 1639, 1605, 1523, 1477, 1383, 1311, 1267, 1217, 1177, 1098, 1042, 970, 831, 770, 701, 505, 432; ¹H NMR (400 MHz, CDCl₃): δ 1.10-2.05 (br, 4 H), 2.35-3.65 (br, 16 H), 3.70-4.55 (br, 8 H), 4.80-5.75 (br, 4 H), 6.30-6.95 (br, 6 H), 7.00-7.60 (br, 10 H), 7.75-8.25 (br, 4 H); ¹³C NMR (125 MHz, CD₂Cl₂): δ 37.0, 45.5, 47.3, 50.1, 69.1, 73.9, 90.4, 112.0, 117.4, 127.3, 128.2, 128.8, 131.9, 142.0, 151.7, 166.1;

Polymer *SS*-7b was obtained in 69% in a manner similar as that described above from *SS*-6b as starting material.; Mn = 16,400; Mw = 23,700; PDI = 1.4; IR: v (cm-1) 3098, 3063, 3025, 2938, 2850, 1699, 1605, 1520, 1479, 1381, 1313, 1266, 1177, 1097, 1042, 965, 826, 766, 722, 697, 502; ¹H NMR (500 MHz, CD₂Cl₂): δ 1.10-2.05 (br, 4 H), 2.35-3.65 (br, 16 H), 3.90-4.55 (br, 8 H), 5.00-5.75 (br, 4 H), 6.30-6.95 (br, 6 H), 6.95-7.55 (br, 10 H), 7.75-8.25 (br, 4 H); ¹³C NMR (125 MHz, CD₂Cl₂): δ 37.0, 45.5, 47.3, 50.1, 69.1, 73.8, 90.4, 112.0, 117.4, 127.3, 128.2, 128.8, 131.9, 142.0, 151.7, 166.1; Anal. Calcd: C 77.06, H 6.00, N 3.21; found: C 75.62, H

4

6.03, N 3.17.

Methanolysis of RR-7b. Under nitrogen atmosphere, a mixture of RR-7b (118 mg, 0.14 mmol) in CHCl₃ (20 mL), 10% aq NaOH (4 mL) and MeOH (10 mL) was stirred at rt for 24 h. CH₂Cl₂ was added. The organic layer was separated and washed with H₂O. The organic layer was dried (MgSO₄) and the solvent was removed in vacuo and the residue was chromatography with EtOAc/Hexane (5/9.5) to give 7b as a light yellow solid (40 mg, 70%): mp 106-108 °C (lit.⁵: 104-106 °C); $[\alpha]_D^{23} = +64.0$ (c = 0.01 g/mL, EtOH); lit.⁵: $[\alpha]_D^{19} = +87.0$ (c = 0.11 g/mL, EtOH); The aqueous layer was acidified with 1N HCl and then yield grayish white 9 (30 mg, 44 %) which was used for the next reaction without further analyze. A mixture of MeI (0.11 mL, 1.8 mmol) was added a solution of 9 (30 mg, 0.12mmol) and CsF (27 mg, 0.18 mmol) suspension in DMF (2 mL) at rt for 24 h. Saturated NaHCO₃ aqueous solution (5 mL) was added and extracted with CH₂Cl₂. The solution was washed with water and then dried (MgSO₄). The solvent was removed in vacuo and the residue was precipitate with Et₂O to give 10 as a gravish white solid (23 mg, 72%): ¹H NMR (400 MHz): δ 1.28-1.45 (br, 1 H), 1.72-1.95 (br, 1H), 2.62-2.83 (br, 2H), 2.83-3.00 (br, 2H), 3.11-3.35 (br, 4 H), 3.72-3.92 (br, 3 H), 5.25-5.48 (br, 2 H), 6.38-6.58 (br, 2 H), 7.76-7.94 (br, 2H). (126.0, 128.5 belong to the end group of the polymer). 13 C NMR (100 MHz): δ 35.6, 36.1, 44.5, 46.4, 49.4, 51.4, 111.4, 116.9, 131.3, 131.6, 150.8, 167.4; GPC (THF): Mn, 5500; Mw, 6600; PDI, 1.2.

Circular dichroism measurements. CD spectra were taken on a JASCO J-815 spectropolarimeter in a 1.0 cm cell. All spectroscopic experiments were conducted at 25 °C. Stock solutions containing monomers or polymers in CHCl₃ (Spectrometric grade) were prepared. The absorbances of monomers **6** and the corresponding polymers **7** were adjusted to be the same for the CD measurements.

Electronic Supplementary Material for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Figure S1 Absorption spectra of (a) 6a (dotted line) and 7a (solid line) and (b) 6b (dotted line) and 7b (solid line)

Figure S2 CD curves of *SS*-7**b** in CH₂Cl₂ (21 mg/L, or 2.4×10^{-5} M monomer units) measured at different temperatures.

Characterization by SPM (scanning probe microscopy). Measurements of STM (Scanning Tunneling Microscopy) were carried out with a NanoScope IIIa controller equipped with a Quadrex and a low current converter suitable for operation under conditions of high tunneling impedance (Veeco Metrology Group/Digital Instruments, Santa Barbara, CA, USA). The typical bias voltage and tunneling current for STM imaging ranged from 0.15 to 1.5 V and from 10 to 300 pA, respectively. Commercially available Pt/Ir tips (PT, Nanotips, Digital Instruments) were employed. The microscope was housed in a chamber where dry N₂ was purging throughout the

experiments and the humidity was lower than 2%.

The deposition solution was $0.1-\mu M$ **3** in CHCl₃ or C₂H₄Cl₂. Samples for SPM characterization were prepared by placing a drop of the deposition solution on freshly cleaved HOPG (highly oriented pyrolytic graphite, MikroMasch, Spain) with a Pasteur pipette. To remove trace amount of solvent, the sample was subjected to vacuum dry (~30 min, 120 mTorr) prior to imaging.

Molecular mechanics and dynamics simulations. The three dimensional structures of polymers RR-7d and SS-7d were constructed using a molecular modeling procedure, both the optimal interactions in a pair of monomers and the tacticity of polymerization^[7] (by varying both the monomer conformation and tacticity of the backbone of polymer) being considered. Molecular dynamics simulations were carried out to explore the global conformations and molecular interaction mechanism of polymers RR-7d and SS-7d using universal force field.^[19] With an extensive exploration of potential surface, isotactic polymers RR-7d and SS-7d with double bonds in trans configuration would be more stable in the supercoil structures than in helix or ladder structures. The relevant structural parameters (Table S1) are closely matched with the STM image of polymers RR-7d and SS-7d (Figure 1). It is noteworthy that the counter-clockwise oriented stacking of the chiral monomeric units leading to the secondary structures of RR-7d would be relatively more stable than the clockwise one by 3.7 kcal/mol per monomer (Figure S2). In a similar manner, SS-7d would preferentially have the clockwise supercoil structure.

	RR	SS
Stereochemistry	Isotactic_syn	Isotactic_syn
Chiral sense	counter-clockwise	clockwise
Mean number per turn	12	12
Fe-Fe distance	~ 7.0 Å	~ 7.0 Å
Project distance to Z axis	~ 4.2 Å	~ 4.2 Å
Pitch per turn	~ 51 Å	~ 51 Å
Diameter	~ 31 Å	~ 31 Å

Table S1. Structura	l parameters	of optimized	polymers	<i>RR</i> -7d	and SS-7	d
---------------------	--------------	--------------	----------	---------------	----------	---

Electronic Supplementary Material for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Figure S3. ¹H NMR spectrum of 6a.

Electronic Supplementary Material for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Figure S4. ¹H NMR spectrum of 7a.

Figure S6. ¹H NMR spectrum of 7b.