Supplementary Information

Rhenium- and manganese-catalyzed insertion of acetylenes into β-keto esters: synthesis of 2-pyranones

Yoichiro Kuninobu,* Atsushi Kawata, Mitsumi Nishi, Hisatsugu Takata, Kazuhiko Takai*

Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima 3-1-1, Japan

General. All reactions were carried out under an argon atmosphere. Toluene was purchased from Wako Pure Chemical Industries and was dried and degassed before use. $[ReBr(CO)_3(thf)]_2$ was prepared by heating a THF solution of $ReBr(CO)_5$ at reflux temperature for 16 h. A manganese complex, $MnBr(CO)_5$, was prepared by stirring a cyclohexane solution of $Mn_2(CO)_{10}$ (Aldrich Co.) and Br_2 at 25 °C for 7 h, and resulting precipitates were collected and washed with hexane.

Ethyl 2-methyl-3-oxo-3-phenylpropionate (1d),¹ ethyl 2-acetyloct-7-ynoate $(7)^2$, and ethyl 2-acetyl-8-phenyloct-7-ynoate $(12)^2$ were prepared according to the literature method. Other β -keto esters (1a, 1b, 1c), acetylenes (2a-2k) were purchased from Wako Pure Chemical Industries, Tokyo Kasei Kogyo Co., and Aldrich Co., and used as received. Molecular sieves 4A in powder form were purchased from Nacalai tesque Inc., and used without further activation.

¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded using a JEOL JNM-LA400 spectrometer. Proton chemical shifts are reported relative to Me₄Si (CDCl₃) at δ 0.00 ppm or residual solvent peak (CDCl₃ at δ 7.26 ppm). Carbon chemical shifts are reported relative to CDCl₃ at δ 77.00 ppm. IR spectra were recorded on Nicolet Protégé 460.

Typical Procedure for Rhenium-Catalyzed Insertion of Acetylenes into β-Keto esters. A mixture of ethyl 2-methylacetoacetate (**1a**, 72.1 mg, 0.500 mmol), phenylacetylene (**2a**, 61.2 mg, 0.600 mmol), [ReBr(CO)₃(thf)]₂ (10.6 mg, 0.0125 mmol), and toluene (1.0 mL) was stirred at 80 °C for 24 h under argon atmosphere. After purification by silica gel column chromatography, β-keto esters **3a-5a** were obtained in 92% (**3a** : **4a** : **5a** = 11 : 85 : 4) yield.

(*E*)-Ethyl 2-methyl-5-oxo-3-phenylhex-2-enoate (4a). ¹H NMR (400 O Ph MHz, CDCl₃) δ 1.31 (t, J = 7.2 Hz, 3H), 1.83 (s, 3H), 2.17 (s, 3H), 3.87 (s, 2H), 4.21 (q, J = 7.2 Hz, 2H), 7.16-7.18 (m, 2H), 7.25-7.27 (m, CO₂Et 1H), 7.33-7.36 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 17.2, 29.7, 51.2, 60.4, 127.0, 127.3, 127.4, 127.7, 128.3, 144.7, 168.4, 204.8; IR (neat / cm⁻¹) 3057, 2982, 2926, 1717, 1701, 1491, 1356, 1259, 1129, 1027, 776, 704, 532; Anal. Calcd. for C₁₅H₁₈O₃: C, 73.15; H, 7.37. Found: C, 73.12; H, 7.53.

(*E*)-Ethyl 5-oxo-2-(2-phenylethyl)-3-phenylhex-2-enoate (4b) [Table 1, entry 1]. ¹H NMR (400 MHz, CDCl₃) δ 1.34 (t, J =7.2 Hz, 3H), 2.15 (s, 3H), 2.49 (t, J = 7.8 Hz, 2H), 2.66 (t, J = 7.9Hz, 2H), 3.81 (s, 2H), 4.24 (q, J = 7.2 Hz, 2H), 6.96-7.33 (m,

10H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 29.8, 33.1, 35.6, 51.5, 60.6, 125.8, 127.1, 127.4, 128.2, 128.4, 128.5, 132.4, 141.4, 144.9, 168.4, 204.7; IR (neat / cm⁻¹) 3062, 3026, 2979, 2927, 1732, 1701, 1599, 1496, 1456, 1356, 1252, 1172, 1026, 911, 701; Anal. Calcd. for C₂₂H₂₄O₃: C, 78.54; H, 7.19. Found: C, 78.44; H, 7.42.

(*E*)-Ethyl 5-oxo-3-phenylhex-2-enoate (4c) [Table 1, entry 2]. ¹H O Ph NMR (400 MHz, CDCl₃) δ 1.30 (t, *J* = 7.2 Hz, 3H), 2.28 (s, 3H), 4.19 (q, *J* = 7.2 Hz, 2H), 4.22 (s, 2H), 6.31 (s, 1H), 7.35-7.38 (m, 3H), CO₂Et 7.39-7.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 29.8, 46.8, 60.1, 119.4, 126.5, 128.7, 129.2, 140.8, 152.1, 166.4, 204.7; IR (neat / cm⁻¹) 3060, 2981, 2935, 1707, 1625, 1577, 1447, 1178, 1040, 876, 767, 696, 546; Anal. Calcd. for C₁₄H₁₆O₃: C, 72.39; H, 6.94. Found: C, 72.26; H, 7.10.

(*E*)-Ethyl 2-methyl-5-oxo-3,5-diphenylpent-2-enoate (4d) [Table 1, entry 3]. ¹H NMR (400 MHz, CDCl₃) δ 1.17 (t, *J* = 7.2 Hz, 3H), 1.88 (s, 3H), 4.12 (q, *J* = 7.2 Hz, 2H), 4.50 (s, 2H), 7.23-7.48 (m, 8H), 7.94 (d, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.9,

O Ph CO₂Et

S3

17.3, 46.6, 60.3, 127.0, 127.1, 127.4, 127.85, 127.92, 128.2, 128.3, 128.4, 132.7, 144.7, 168.4, 196.2; IR (neat / cm⁻¹) 3080, 3060, 2981, 2928, 1732, 1707, 1598, 1492, 1448, 1365, 1332, 1128, 977, 755, 704, 621; Anal. Calcd. for C₂₀H₂₀O₃: C, 77.90; H, 6.54. Found: C, 77.91; H, 6.66.

(E)-Ethyl 3-(4-methoxyphenyl)-2-methyl-5-oxohex-2-enoate (4e) [Table 1, entry 4]. ¹H NMR (400 MHz, CDCl₃) δ 1.31 (t, J = 7.2 Hz, 3H), 1.86 (s, 3H), 2.16 (s, 3H), 3.80 (s, 3H), 3.86 (s, 2H), 4.20 (q, J = 7.2 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 7.11 (d, J = 8.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) & 14.1, 17.3, 29.6, 51.4, 55.1, 60.3, 113.6, 128.4, 128.9, 134.7, 144.3, 158.7, 168.6, 205.1; IR (neat / cm⁻¹) 2980,

2935, 2907, 2838, 1729, 1606, 1515, 1093, 1029, 838, 770, 602, 542; Anal. Calcd. for C₁₆H₂₀O₄: C, 69.54; H, 7.30. Found: C, 69.36; H, 7.42.

(*E*)-Ethyl 3-(4-methylphenyl)-2-methyl-5-oxohex-2-enoate (4f) **[Table 1, entry 5].** ¹H NMR (400 MHz, CDCl₃) δ 1.31 (t, J = 7.2 Hz, 3H), 1.84 (s, 3H), 2.16 (s, 3H), 2.34 (s, 3H), 3.86 (s, 2H), 4.21 (q, J = 7.2 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 17.3, 21.1, 29.7, 51.4, 60.4, 127.5, 127.6, 129.6, 137.1, 139.6, 144.7, 168.7, 205.0; IR (neat / cm⁻¹) 3022,

2982, 2926, 2871, 1728, 1623, 1512, 1447, 1042, 1021, 826, 769, 548, 519; Anal. Calcd. for C₁₆H₂₀O₃: C, 73.82; H, 7.74. Found: C, 73.74; H, 7.91.

(E)-Ethyl 3-(4-trifluoromethylphenyl)-2-methyl-5-oxohex-2-enoate (4g) [Table 1, entry 6]. ¹H NMR (400 MHz, CDCl₃) δ 1.32 (t, J = 7.2 Hz, 3H), 1.82 (s, 3H), 2.19 (s, 3H), 3.89 (s, 2H), 4.23 (q, J = 7.2Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 17.1, 29.7, 50.7, 60.6, 125.3, 127.5, 127.9, 128.7, 129.2, 143.2, 146.4, 168.0, 204.4; IR (neat / cm⁻¹) 2988, 2926,

1716, 1653, 1616, 1559, 1325, 1259, 1164, 1128, 1068, 1018, 852; Anal. Calcd. for C₁₆H₁₇F₃O₃: C, 61.14; H, 5.45. Found: C, 61.13; H, 5.47.

(E)-Ethyl 3-(4-bromophenyl)-2-methyl-5-oxohex-2-enoate (4h) **[Table 1, entry 7].** ¹H NMR (400 MHz, CDCl₃) δ 1.31 (t, J = 7.2 Hz, 3H), 1.82 (s, 3H), 2.17 (s, 3H), 3.85 (s, 2H), 4.21 (q, J = 7.2 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H); ¹³C NMR (100

OMe

ĊO₂Et

MHz, CDCl₃) δ 14.1, 17.1, 29.7, 50.8, 60.5, 129.0, 129.2, 131.1, 131.4, 141.4, 143.4, 168.1, 204.5; IR (neat / cm⁻¹) 2982, 2931, 1725, 1488, 1259, 1071, 1011, 834, 768, 730, 535; Anal. Calcd. for C₁₅H₁₇BrO₃: C, 55.40; H, 5.27. Found: C, 55.46; H, 5.16.

(2*E*)-Ethyl 3-cyclohexenyl-2-methyl-5-oxohex-2-enoate (4i) [Table 1, entry 8]. ¹H NMR (400 MHz, CDCl₃) δ 1.28 (t, *J* = 7.2 Hz, 3H), 1.57-1.60 (m, 2H), 1.63-1.67 (m, 2H), 1.92 (s, 3H), 1.96-1.99 (m, 2H), 2.05-2.08 (m, 2H), 2.17 (s, 3H), 3.61 (s, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 5.46 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 16.7, 21.9, 22.5,

24.8, 26.7, 29.5, 49.0, 60.2, 124.9, 125.7, 139.1, 147.2, 168.8, 205.4; IR (neat / cm⁻¹) 2982, 2931, 2858, 1725, 1707, 1355, 1265, 1118, 1028, 920, 769, 549; Anal. Calcd. for $C_{15}H_{22}O_3$: C, 71.97; H, 8.86. Found: C, 71.96; H, 8.86.

(Z)-Ethyl 2-methyl-3-(2-oxopropyl)tridec-2-enoate (4j) [Table 1, entry 9]. ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.8 Hz, 3H), 1.22 (t, J = 7.2 Hz, 3H), 1.25-1.30 (m, 16H), 1.94 (s, 3H), 2.11 (t, J =7.4 Hz, 3H), 2.19 (s, 3H), 3.58 (s, 2H), 4.14 (q, J = 7.2 Hz, 2H); ¹³C

NMR (100 MHz, CDCl₃, **3j** + **4j**) δ 13.96, 14.03, 14.1, 15.0, 22.6, 26.9, 27.7, 29.2, 29.26, 29.32, 29.35, 29.43, 29.46, 29.54, 29.6, 31.77, 31.84, 34.4, 35.9, 41.4, 49.0, 60.1, 60.4, 123.5, 125.3, 145.7, 158.8, 168.5, 173.2, 198.1, 205.7; IR (neat / cm⁻¹, **3j** + **4j**) 2956, 2926, 2855, 1734, 1707, 1616, 1465, 1354, 1098, 862, 768; Anal. Calcd. for C₁₉H₃₄O₃: C, 73.50; H, 11.04. Found: C, 73.50; H, 11.28.

(*E*)-Ethyl 2-methyl-5-oxo-3-(2-phenylethyl)hex-2-enoate (4k) [Table 1, entry 10]. ¹H NMR (400 MHz, CDCl₃) δ 1.27 (t, *J* = 7.2 Hz, 3H), 1.89 (s, 3H), 2.18 (s, 3H), 2.48 (t, *J* = 7.9 Hz, 2H), 2.69 (t, *J* = 8.0 Hz, 2H), 3.58 (s, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 7.16-7.19 (m, 3H), 7.26-7.29 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 15.0,

O CO₂Et

29.7, 33.0, 37.8, 49.1, 60.3, 124.2, 126.0, 126.1, 128.2, 128.4, 144.2, 168.4, 205.7; IR (neat / cm⁻¹) 3086, 3062, 2981, 2937, 1721, 1617, 1496, 1454, 1356, 1190, 1103, 1029, 862, 748, 701; Anal. Calcd. for $C_{17}H_{22}O_3$: C, 74.42; H, 8.08. Found: C, 74.32; H, 8.21.

Intramolecular Reaction of Ethyl 2-acetyloct-7-ynoate (7). A mixture of ethyl 2-acetyloct-7-ynoate (7, 105.1 mg, 0.500 mmol), 2,6-diisopropylphenylisocyanide (4.7 mg, 0.0250 mmol), powder MS4A (10.6 mg, 100wt%-Re cat.), $[ReBr(CO)_3(thf)]_2$ (10.6 mg, 0.0125 mmol), and toluene (1.0 mL) was heated at 100 °C for 24 h under argon

atmosphere. After purification by silica gel column chromatography, compounds **8** and **9** were obtained in 84% and 7% isolated yields, respectively.

Ethyl 2-(2-oxopropyl)cyclohex-1-enecarboxylate (8). ¹H NMR CO₂Et (400 MHz, CDCl₃) δ 1.27 (t, J = 7.2 Hz, 3H), 1.61-1.65 (m, 4H), 2.14-2.15 (m, 2H), 2.19 (s, 3H), 2.34-2.36 (m, 2H), 3.56 (s, 2H), 4.14 (q, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 21.96, 21.99, 26.1, 29.6, 33.4, 50.1, 59.9, 127.1, 143.9, 167.9, 205.7; IR (neat / cm⁻¹) 2980, 2936, 2862, 1717, 1637, 1356, 1233, 1076, 1052, 764, 684, 589; Anal. Calcd. for C₁₂H₁₈O₃: C, 68.54; H, 8.63. Found: C, 68.27; H, 8.41.

Typical Procedure for the Synthesis of 2-Pyranone Derivatives from β -Keto Esters and Acetylenes [Table 2]

Rhenium-Catalyzed Reaction of β-Keto Esters with Terminal Acetylenes. A mixture of ethyl 2-methylacetoacetate (**1a**, 72.1 mg, 0.500 mmol), phenylacetylene (**2a**, 61.2 mg, 0.600 mmol), [ReBr(CO)₃(thf)]₂ (10.6 mg, 0.0125 mmol), powdered MS4A (21.2 mg, 200wt%-Re cat.), and toluene (1.0 mL) was heated at 80 °C under argon atmosphere. After 24 h, tetrabutylammonium fluoride (1.0 M in THF, 50 µL, 0.0500 mmol) was added. The reaction mixture was stirred at 25 °C for 8 h. After purification by silica gel column chromatography, 3,6-dimethyl-4-phenylpyran-2-one (**6a**) was obtained in 95% isolated yield.

Rhenium-Catalyzed Reaction of \beta-keto Esters with Internal Acetylenes. A mixture of ethyl 2-methylacetoacetate (**1a**, 72.1 mg, 0.500 mmol), diphenylacetylene (**2i**, 106.9 mg, 0.600 mmol), [ReBr(CO)₃(thf)]₂ (10.6 mg, 0.0125 mmol), powdered MS4A (21.2 mg, 200wt%-Re cat.), and toluene (1.0 mL) was heated at 150 °C under argon atmosphere for 24 h. After purification by silica gel column chromatography, 3,6-dimethyl-4,5-diphenylpyran-2-one (**6g**) was obtained in 98% isolated yield.

Manganese-Catalyzed Reaction of β -keto Esters with Terminal Acetylenes. A mixture of ethyl 2-methylacetoacetate (1a, 72.1 mg, 0.500 mmol), phenylacetylene (1a, 61.2 mg, 0.600 mmol), and MnBr(CO)₅ (6.9 mg, 0.0250 mmol) was heated at 80 °C under argon atmosphere. After 24 h, tetrabutylammonium fluoride (1.0 M in THF, 50 μ L, 0.050 mmol) was added. The reaction mixture was stirred at 50 °C for 2 h. After purification by silica gel column chromatography, 3,6-dimethyl-4-phenylpyran-2-one

(6a) was obtained in 96% isolated yield.

3,6-Dimethyl-4-phenylpyran-2-one (6a) [Table 2, entry 1]. ¹H NMR (400 MHz, CDCl₃) & 2.04 (s, 3H), 2.26 (s, 3H), 5.98 (s, 1H), 7.26-7.30 (m, 2H), 7.40-7.45 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) & 13.68, 19.47, 106.56, 118.01, 127.77, 128.46, 128.66, 137.64, 152.08, 157.73, 164.82; IR (Nujol / cm⁻¹) 3086, 3062, 3027, 2921, 2859, 1733, 1718, 1653, 1457, 1379, 1041, 896; Anal. Calcd. For C₁₃H₁₂O₂: C, 77.98; H, 6.04. Found: C, 77.86; H, 5.93.

4-(4-Methoxyphenyl)-3,6-dimethylpyran-2-one (6b) [Table 2, entry 2]. ¹H NMR (400 MHz, CDCl₃) δ 2.06 (s, 3H), 2.24 (s, 3H), 3.85 (s, 3H), 5.98 (s, 1H), 6.97 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.81, 19.47, 55.26, 106.61, 113.83, 117.39, 129.39, 129.84, 151.62, 157.48, 159.88, 164.89; IR (Nujol / cm⁻¹) 3060, 2999, 2924, 2854, 1706, 1606, 1336, 1253, 1175, 955, 765, 600; Anal. Calcd. For C₁₄H₁₄O₃: C, 73.03; H, 6.13. Found: C, 73.31; H,

6.39.

3,6-Dimethyl-4-(4-trifluoromethylphenyl)pyran-2-one (6c) **[Table 2, entry 3].** ¹H NMR (400 MHz, CDCl₃) δ 2.01 (s, 3H), 2.27 (s, 3H), 5.93 (s, 1H), 7.41 (d, J = 8.1 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.70, 19.59, 105.89, 118.79, 122.41, 125.57 (CF3), 128.26, 130.95, 141.28,

150.50, 158.35, 164.31; IR (Nujol / cm⁻¹) 3074, 3049, 2853, 1709, 1647, 1410, 1159, 1017, 956, 842, 762, 677, 617, 570; Anal. Calcd. For C₁₄H₁₁F₃O₂: C, 62.69; H, 4.13. Found: C, 62.55; H, 4.03.

4-Cyclohex-1-enyl-3,6-dimethylpyran-2-one (6d) [Table 2, entry **4].** ¹H NMR (400 MHz, CDCl₃) δ 1.64-1.68 (m, 2H), 1.73-1.77 (m, 2H), 2.01 (s, 3H), 2.08-2.12 (m, 2H), 2.14-2.18 (m, 2H), 2.20 (s, 3H), 5.65 (m, 1H), 5.82 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 13.16, 19.19, 21.48, 22.21, 24.74, 27.39, 105.07, 116.39, 127.81, 135.01,

154.71, 157. 31, 164.78; IR (neat / cm⁻¹) 3028, 2991, 2927, 2858, 1716, 1650, 1558, 1447, 1368, 1330, 1184, 1052, 929, 766, 708, 672; HRMS (ESI) Calcd for C₁₃H₁₆O₂Na ([M+Na]⁺): 227.1048, Found: 227.1062.

OMe

4-Decvl-3,6-dimethylpyran-2-one (6e) [Table 2, entry 5]. ^{1}H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.2Hz, 3H), 1.23-1.37 (m, 14H), 1.45-1.54 (m, 2H), 2.02 (s, 3H), 2.19 (s, 3H), 2.38 (t, *J* = 7.5Hz, C10H21 2H), 5.83 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 11.68, 13.92, 19.30, 22.50, 28.34, 29.14, 29.24, 29.28, 29.34, 29.39, 31.72, 32.83, 106.10, 117.30, 154.06, 157.39, 164.51; IR (neat / cm⁻¹) 2953, 2924, 2854, 1717, 1653, 1575, 1465, 1370, 1181, 1052, 982, 765; Anal. Calcd. For C₁₇H₂₈O₂: C, 77.22; H, 10.67. Found: C, 77.13; H, 10.86.

¹H NMR 3-Methyl-4,6-diphenylpyran-2-one (6f) [Table 2, entry 6]. (400 MHz, CDCl₃) δ 2.09 (s, 3H), 6.63 (s, 1H), 7.33-7.49 (m, 8H), 7.78-7.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.90, 104.27, 119.52, 125.05, 127.74, 128.48, 128.65, 128.70, 130.12, 131.30, 137.64,

151.91, 156.13, 163.71; IR (Nujol / cm⁻¹) 3083, 3023, 2921, 2859, 1710, 1718, 1151, 1049, 923, 833, 687, 634; HRMS (ESI) Calcd for C₁₈H₁₄O₂Na ([M+Na]⁺): 285.0891, Found: 285.0914.

3,6-Dimethyl-4,5-diphenylpyran-2-one (6g) [Table 2, entry 7]. ^{1}H NMR (400 MHz, CDCl₃) δ 1.92 (s, 3H), 2.12 (s, 3H), 6.86-6.90 (m, 4H), 7.12-7.17 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 14.30, 18.45, 119.23, 119.39, 127.06, 127.48, 127.81, 127.92, 128.17, 130.43, 135.23, 136.50, 154.00, 155.64, 163.95; IR (nujol / cm⁻¹) 3086, 3062, 3027, 2921, 2859,

1718, 1653, 1258, 1073, 1002, 923, 769, 701; Anal. Calcd. For C₁₉H₁₆O₂: C, 82.58; H, 5.84. Found: C, 82.46; H, 5.90.

3-methyl-4,5,6-triphenylpyran-2-one (6h) [Table 2, entry 8]. ^{1}H NMR (400 MHz, CDCl₃) δ 1.99 (s, 3H), 6.81-6.84 (m, 2H), 6.90-6.92 (m, 2H), 7.01-7.06 (m, 3H), 7.15-7.22 (m, 6H), 7.23-7.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.63, 119.36, 121.10, 127.05, 127.52, 127.81, 127.90, 127.99, 128.26, 129.11, 131.15, 132.68, 135.12,

136.53, 154.59, 163.48 (two signals are overlapped); IR (Nujol / cm^{-1}) 3059, 2924, 2853, 1706, 1612, 1338, 1168, 1066, 915, 847, 775, 760, 702, 591; HRMS (ESI) Calcd for $C_{24}H_{18}O_2Na$ ([M+Na]⁺): 361.1205, Found: 361.1170.

3,5,6-Trimethyl-4-phenylpyran-2-one (6i) [Table 2, entry 9]. ^{1}H NMR (400 MHz, CDCl₃) δ 1.63 (s, 3H), 1.81 (s, 3H), 2.28 (s, 3H), 7.05-7.08 (m, 2H), 7.37-7.41 (m, 1H), 7.44-7.48 (m, 2H); ¹³C NMR (100

Ρh

MHz, CDCl₃) δ 14.03, 14.27, 17.56, 110.76, 119.52, 127.12, 127.88, 128.63, 137.12, 154.02, 155.37, 164.17; IR (neat / cm⁻¹) 3058, 3023, 2924, 2872, 1716, 1642, 1557, 1444, 1385, 1311, 1176, 1144, 1058, 862, 763, 704; Anal. Calcd. For C₁₄H₁₄O₂: C, 78.48; H, 6.59. Found: C, 78.62; H, 6.64.

3,6-Dimethyl-4,5-dipentylpyran-2-one (6j) [Table 2, entry 10]. ¹H NMR (400 MHz, CDCl₃) δ 0.90-0.94 (m, 6H), 1.33-1.40 (m, 12H), 2.06 (s, 3H), 2.22 (s, 3H), 2.27 (t, *J* = 8.0 Hz, 2H), 2.41 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.43, 13.83, 13.88, 17.23, 22.45, 22.30, 27.03, 28.46, 29.70, 29.95, 31.75, 32.06, 115.81, 118.47,

Ρh

154.19, 154.97, 164.07; IR (neat / cm⁻¹) 2957, 2928, 2859, 1709, 1636, 1555, 1465, 1380, 1318, 1185, 1060, 917, 768, 733; Anal. Calcd. For $C_{17}H_{28}O_2$: C, 77.22; H, 10.67. Found: C, 77.36; H, 10.89.

6-Methyl-4,5-diphenylpyran-2-one (6k) [Table 2, entry 11]. ¹H NMR (400 MHz, CDCl₃) δ 2.19 (s, 3H), 6.24 (s, 1H), 6.97-7.00 (m, 4H), 7.14-7.17 (m, 2H), 7.20-7.24 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 18.81, 111.88, 118.22, 127.46, 127.86, 128.22, 128.59, 130.55, 134.52, 136.77, 158.42, 159.77, 162.24 (one signal is overlapped); IR (Nujol /

cm⁻¹) 3056, 2922, 2853, 1719, 1254, 1147, 1073, 1002, 924, 896, 859, 769, 702; HRMS (ESI) Calcd for $C_{18}H_{14}O_2Na$ ([M+Na]⁺): 285.0891, Found: 285.0903.

Intramolecular Reaction of Ethyl 2-acetyl-8-phenyloct-7-ynoate (12). A mixture of ethyl 2-acetyl-8-phenyloct-7-ynoate (12, 143.2 mg, 0.500 mmol), $[ReBr(CO)_3(thf)]_2$ (10.6 mg, 0.0125 mmol), powdered MS4A (10.6 mg, 100wt%-Re cat.), and toluene (2.0 mL) was heated at 150 °C for 24 h under argon atmosphere. After purification by silica gel column chromatography, 3-Methyl-4-phenyl-5,6,7,8-tetrahydro-1*H*-2-benzopyran-1-one (13) was obtained in 95% isolated yield.

3-Methyl-4-phenyl-5,6,7,8-tetrahydro-1*H***-2-benzopyran-1-one** (13). ¹H NMR (400 MHz, CDCl₃) δ 1.59-1.63 (m, 2H), 1.67-1.72 (m, 2H), 2.00 (s, 3H), 2.06 (t, *J* = 6.1 Hz, 2H), 2.51 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 17.96, 21.41, 21.57, 23.45, 28.34, 119.36, 119.83, 127.79, 128.66, 129.94, 134.90, 151.55, 154.60, 163.35; IR (Nujol / cm⁻¹) 3086, 3053, 3028, 2948, 2857, 1716, 1495, 1285, 1153, 1038, 948, 855, 770, 728, 694; HRMS (ESI) Calcd for $C_{16}H_{16}O_2Na$ ([M+Na]⁺): 263.1048, Found: 263.1035.

References

- Wierenga, W.; Skulnick, H. I.; Stringfellow, D. A.; Weed, S. D.; Renis, H. E.; Eidson, E. E. J. Med. Chem. 1980, 23, 237.
- 2. Cruciani, P.; Stammler, R. Aubert, C.; Malacria, M. J. Org. Chem. 1996, 61, 2699.