1-Phosphabarrelene Complexes of Palladium and their use in Suzuki- Miyaura Coupling Reactions.

Matthias Blug, Clément Guibert, Xavier-Fréderic Le Goff, Nicolas Mézailles*

and Pascal Le Floch*

Laboratoire Hétéroéléments et Coordination, Ecole Polytechnique, UMR 7653 CNRS,

91128 Palaiseau, France.

E-mail : pascal.lefloch@polytechnique.edu, FAX : +33 169 44 40

Contents

Experimental section	S2
References for prepared biaryls	S5
DFT-Data and CDA calculations	S 7

Experimental Section

General: All experiments were performed under an atmosphere of dry nitrogen or argon using standard schlenk and glove box techniques. Solvents were freshly distilled under nitrogen from Na (toluene), Na/benzophenone (THF, diethylether, hexanes), P_2O_5 (dichloromethane) and calcium hydride (acetonitrile). Nuclear magnetic resonance spectra were recorded on a Bruker Avance 300 spectrometer operating at 300 MHz for 1H, 75.5 MHz for 13C and 121.5 MHz for 31P. 1H and 13C chemical shifts are reported in ppm relative to Me₄Si as external standard. 31P shifts are relative to a 85% H₃PO₄ external reference. Coupling constants are given in hertz. The following abbreviations are used: br, broad; s, singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet; v, virtual. Elemental analyses were performed by the "Service d'analyse du CNRS", at Gif sur Yvette, France. High resolution mass spectra (EI-MS) were recorded with a JEOL GCmate instrument. [Pd(allyl)Cl]₂ was purchased from Strem. Phosphinine **1** and [(COD)PdCl₂] were prepared according to the following literature procedures:

N. Avarvari, P. Le Floch and F. Mathey, J. Am. Chem. Soc. 1996, 118, 11978

D. Drew, J. R. Doyle, in Inorganic Syntheses, Vol. 28 (Ed. R. J. Angelici), John Wiley and Sons, Inc, New Tork, 1990, 110.

Synthesis and characterization of Phosphabarrelene 2:

2-Bromofluorobenzene (0.57 mL, 5.21 mmol) was slowly added to a mixture of Phosphinine 1 (1.00 g, 3.72 mmol) and Magnesium turnings (135.7 mg, 5.58 mmol) in THF (20 mL) at room temperature. The reaction mixture is stirred during 4 h at room temperature. The solvent was evaporated and H_2O was added to the residue and extracted with CH_2Cl_2 (3 x 100 mL). After evaporation of the solvent the title compound was obtained as an off-white crystalline solid after recrystallization from MeOH.

Yield: 960.2 mg (2.79 mmol, 75 %),

Elemental composition (Found: C 66.4; H, 8.5. Calc. for C₁₉H₂₉PSi₂: C: 66.2; H: 8.5 %.)

¹H NMR(CDCl₃): δ 0.20(s, 18 H, SiMe₃), 2.20(s, 6H, Me), 4.95(s, 1H, C₄H), 7.05(t, ³*J*_{HH}= 7.0 Hz, 1H C₉H), 7.13(t, ³*J*_{HH}=7.2 Hz, 1H, C₁₀H), 7.36(d, ³*J*_{HH}= 7.2 Hz, 1H, C₁₁H), 7.60(t, ³*J*_{HH}=7.2 Hz, 1H C₈H).

¹³C NMR(CDCl₃): δ 0.5 (d+ sat ³*J*_{PC}=7.3 Hz, ¹*J*_{SiC}=52.8 Hz, SiMe₃), 24.2 (d, ³*J*_{PC}= 2.9 Hz, Me), 71.5 (d, ³*J*_{PC}= 9.4 Hz, C₄H), 123.7 (d, ³*J*_{PC}= 0.9 Hz, C₁₁H), 124.4 (d, ⁴*J*_{PC}=11.5 Hz, C₁₀H), 126.4 (d, ³*J*_{PC}=1.5 Hz, C₉H), 129.8 (d, ²*J*_{PC}= 36.1 Hz, C₈H), 135.9 (d, ¹*J*_{PC}=46.2 Hz, C₂,C₆), 143.1 (d, ²*J*_{PC}=20.3 Hz, C₁₂), 148.3(d, ¹*J*_{PC}=3.6 Hz, C₇), 167.3 (d, ²*J*_{PC}=4.4 Hz, C₃,C₅)

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008

³¹P NMR(CDCl₃): δ -60.1(s).

HRMS EI⁺: 344.1551 (calcd 344.1545 for C₁₉H₂₉PSi₂)

Single crystals were grown by recrystallization of **2** from methanol.

ORTEP-plot (50 % thermal ellipsoids) of the X-Ray-crystal structure of **2** (hydrogen atoms were omitted for clarity). Selected bond lengths [Å] and angles [°]:P1-C1: 1.863(2), P1-C6: 1.835(2) C1-C2: 1.342(2), C6-C11:1.400(3), Σ (CPC): 287.7

Synthesis and Characterization of Pd-complex 3:

A mixture of ligand **2** (34.5 mg, 0.10 mmol) and $[Pd(C_3H_5)Cl]_2$ (18.3 mg, 0.05 mmol) in CH₂Cl₂ (10 mL) was stirred for 15 min at room temperature . The color of the solution turned from light green to pale yellow. The title compound was obtained as an off-white solid after evaporation of the solvent.

Yield: 51.6 mg (0.098 mmol, 98 %).

Elemental composition (Found: C 49.95; H, 6.5. Calc. for C₂₂H₃₄PSi₂PdCl: C: 50.1; H: 6.5 %.)

¹H NMR(CDCl₃): δ 0.22-0.34 (m, 18H, SiMe₃), 2.27 (s, 6H, Me), 2.98 (d, ³*J*_{HH}= 11.4 Hz, 1H, C₁₅H₂), 3.87 (dd, ³*J*_{HH}= 10.6 Hz, ²*J*_{PH}=13.3 Hz, 1H, C₁₃H₂), 4.40 (d, ³*J*_{HH}=5.3 Hz, 1H, C₁₅H₂), 4.87 (br, 2H, C₁₃H₂ and C₄H) 5.43-5.60 (m, C₁₄H), 7.13 (m, 2H,C₉H and C₁₀H), 7.30 (m, 1H, C₁₁H), 7.77 (m, 1H, C₈H),

¹³C NMR(CDCl₃): δ 2.53 (s, SiMe₃), 26.1 (d, ³*J*_{PC}= 9.1 Hz, Me), 51.6 (d, ²*J*_{PC}= 2.5 Hz, C₁₅H₂ of allyl), 70.1 (d, ²*J*_{PC}= 27.4 Hz, C₁₄H of allyl), 79.8 (d, ²*J*_{PC}= 32.4 Hz, C₁₃H₂ of allyl), 115.6 (d, ³*J*_{PC}= 5.7 Hz, C₄), 124.3 (d, ³*J*_{PC}=3.2 Hz, C₁₁H), 125.3 (d, ⁴*J*_{PC}=11.9 Hz, C₁₀H), 127.5 (d, ³*J*_{PC}= 2.0 Hz, C₉H), 129.5 (d, ²*J*_{PC}= 19.4 Hz, C₈H), 133.2 (dd, *J*_{PC}= 8.1 Hz, ¹*J*_{PC}=54.1 Hz, C₂,C₆), 139.2 (d, ²*J*_{PC}= 27.3 Hz, C₁₂), 146.9 (d, ¹*J*_{PC}=2.7 Hz, C₇), 169.9 (dd, ¹*J*_{PC}=6.6 Hz, ¹*J*_{PC}=11.1 Hz, C₃,C₅).

³¹P NMR(CDCl₃): δ -6.1 (s)

HRMS EI⁺: 526.0653 (calcd 526.0660 for C₂₂H₃₄PSi₂PdCl)

Single crystals were grown by slow evaporation of a solution of **3** in toluene.

Synthesis and Characterization of Pd-complex 4:

To a mixture of ligand **2** (69.0 mg, 0.20 mmol) and $[(COD)PdCl_2]$ (28.5 mg, 0.10 mmol) in acetonitrile (10 mL) cobaltocene (37.8 mg, 0.20 mmol) was added as a solid. The reaction mixture was stirred for 24 h at r.t.. The resulting dark-green suspension was taken to dryness and the residue was extracted with hexanes (10 mL). The product was isolated as a pale yellow solid after the evaporation of the solvent.

Yield: 71.6mg (0.09 mmol, 90 %)

Elemental composition (Found: C, 57.35; H, 6.4. Calc. for C₃₈H₅₈P₂Si₄Pd: C, 57.4; H, 6.5 %.)

¹H NMR(C₆D₆): δ 0.65(s, 18H, SiMe₃); 2.03(s, 6H, Me); 4.61(s, 1H, C₄H); 6.94(t, ³J_{HH}=7.3 Hz, 1H, C₁₀H), 7.05(t, ³J_{HH}=7.3 Hz, 1H, C₉H), 7.12(d, ³J_{HH}=7.3 Hz, 1H, C₁₁H), 8.85(*pseudo-*q, ³J_{HH}=7.5 Hz, 1H, C₈H).

¹³C NMR(C₆D₆): δ 2.0(*pseudo*-t, ΣJ_{PC} = 6.3 Hz, SiMe₃); 24.0(*pseudo*-t, ΣJ_{PC} = 7.5 Hz, CH₃); 70.3(*pseudo*-t, ΣJ_{PC} = 22.7 Hz, C₄) 123.2(s, C₁₁H), 124.3(*pseudo*-t, ΣJ_{PC} = 13.3 Hz, C₉H), 126.8(s, C₁₀H), 133.2(*pseudo*-t, ΣJ_{PC} =30.2 Hz, C₈H), 135.7(*pseudo*-t, ΣJ_{PC} = 15.8 Hz, C₂,C₆), 142.1(*pseudo*-t, ΣJ_{PC} = 20.7 Hz, C₁₂), 146.5(s, C₇) 166.9(*pseudo*-t, ΣJ_{PC} = 6.5 Hz, C₃,C₅).

³¹P -NMR: δ -28.8 (s)

Single crystals were grown from a concentrated solution of 4 in hexanes at -20 °C.

Supplementary Material (ESI) for Chemical Communications This journal is $\textcircled{\mbox{\scriptsize C}}$ The Royal Society of Chemistry 2008

Literature references for known biaryls:

4-Cyano-biphenyl, CAS-Registry-Nr.: 2920-38-9

Liu, L.; Zhang, Y.; Xin, B. J. Org. Chem. 2006, 71, 3994-3997.

2-Cyano-biphenyl, CAS-Registry-Nr.: 24973-49-7

Zapf, A.; Beller, M.; Chem Eur. J. 2000, 6, 1830-1833

4-Acetyl-biphenyl CAS-Registry-Nr.: 92-91-1

Liang, L-C.; Chien, PS.; Huang, M-H. Organometallics 2005, 24, 353-357.

4-Nitro-biphenyl CAS-Registry-Nr.: 86-00-0

Liu, L.; Zhang, Y.; Xin, B. J. Org. Chem. 2006, 71, 3994-3997.

Methyl 4-biphenylcarboxylate, CAS-Registry-Nr.: 720-75-2

Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P.; J. Org. Chem. 1999, 64, 3804-3805.

4-Trifluoromethyl-biphenyl CAS-Registry-Nr.: 398-36-7

Liu, L.; Zhang, Y.; Xin, B. J. Org. Chem. 2006, 71, 3994-3997.

Biphenyl, CAS-Registry-Nr.: 92-52-4

Pickett, T. E.; Richards, Tetrahedron Lett. 2001, 42, 3767-3769.

3-Methoxy-biphenyl CAS-Registry-Nr.: 2113-56-6

Zapf. A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed. 2000, 39, 4153-4155.

4-Methyl-biphenyl CAS-Registry-Nr.: 92-91-1

Liu, L.; Zhang, Y.; Xin, B. J. Org. Chem. 2006, 71, 3994-3997.

DFT Data

CDA calculations

Description of the method.

In the CDA method the (canonical, natural, or Kohn Sham) molecular orbitals of the complex are expressed in terms of MOs of appropriately chosen fragments. In the cases studied, the Kohn-Sham orbitals of the calculations are formed in the CDA procedure as a linear combination of the MOs of the phosphine ligand and those of the remaining [Ni(CO)₃] fragment. In all cases, the ligands and the metal fragments were computed in the geometry of the complex. The orbital contributions are divided in four parts: (i) the mixing of the occupied MOs of the ligand and the unoccupied MOs of the metal fragment. This value (noted d) represents the $L \rightarrow M$ donation; (ii) the mixing of the unoccupied MOs of the ligand and the occupied MOs of the metal fragment. This value (noted b) accounts for the $M \rightarrow L$ back donation; (iii) the mixing of the occupied MOs of the ligand and the occupied MOs of the metal fragment. This term (noted r), which describes the repulsive polarization between the ligand and metal fragment, is negative because electronic charge is removed from the overlapping area of the occupied orbitals; (iv) the residual term (Δ) which results from the mixing of the unoccupied MOs of the two respective fragments. Usually this term is very close to zero for closed-shell interactions. This value constitutes an important probe to determine whether the bonding studied can be really classified as a donor-acceptor interaction following the Dewar-Chatt-Duncansson model. Important deviations from $\Delta = 0$ imply that the bond studied is more conventionally described as a normal covalent bond between two open shell fragments. A more detailed presentation of the CDA method and the interpretation of the results can be found in the literature. Compositions of molecular orbitals, overlap populations between molecular fragments, bond orders and density-of-states spectra were calculated using the AOMix program developed by I. Gorelski (version 6.23)¹

Ligand	d	b	d/b	b/(d+b)	r	Δ
PPh ₃	0,643	0,073	8,81	10,20	-0,142	-0,026
2	0,810	0,135	6,00	14,29	-0,141	-0,041
PF ₃	0,721	0,136	5,30	15,87	-0,081	-0,051
Structure opt	timization: G	aussian03 ² , B	3PW91 ³ /6-3	1G* (P, C, H, F,	O) Ni: Hay Wa	dt-ECP ⁴ with an

additional f-polarization function⁵:

References

- 1 Gorelsky, S. I. *AOMIX: Program for Molecular Orbital Analysis*, <u>http://www.sgchem.net/</u> York University: Toronto, Canada, 1997; Gorelsky, S. I. *J. Organomet. Chem.* 2001, **635**, 187.
- 2 Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, r., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.

Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

- Becke, A. D. J. Chem. Phys. 1993, 98, 5648; Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
- 4 Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
- 5 Ehlers, A. W.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. *Chem. Phys. Lett.* 1993, **208**, 111.

Optimized geometry, three lower frequencies, thermochemistry and CDA calculations for PPh₃Ni(CO)₃

Contor		Ntomia	Coor	dipatog (Apg	
Number	Number	Туре	X	Y	Z
1	15	0	078934	050429	.047745
2	6	0	093004	048710	1.888449
3	6	0	1.138604	089286	2.557702
4	6	0	-1.273812	010577	2.641496
5	6	0	1.188168	104966	3.949420
6	1	0	2.061712	100075	1.983591
7	6	0	-1.221135	016455	4.035159
8	1	0	-2.236888	.030925	2.140523
9	6	0	.007623	066231	4.691279
10	1	0	2.150312	136795	4.454137
11	1	0	-2.144565	.020108	4.607734
12	1	0	.046003	068157	5.777623
13	6	0	-1.777409	.502409	394398
14	6	0	-2.832868	389805	623898
15	6	0	-2.016784	1.880140	498800
16	6	0	-4.102227	.089056	947765
17	1	0	-2.662804	-1.460633	555768
18	6	0	-3.287363	2.355939	812642
19	1	0	-1.200689	2.580758	340718
20	6	0	-4.332594	1.460597	-1.040049
21	1	0	-4.911465	613778	-1.129588
22	1	0	-3.458142	3.426625	889738
23	1	0	-5.322153	1.831283	-1.294962
24	6	0	087986	-1.839728	383919
25	6	0	.144095	-2.195277	-1.721049
26	6	0	307438	-2.851155	.559020
27	6	0	.143718	-3.532632	-2.107753
28	1	0	.332433	-1.420055	-2.459749
29	6	0	295792	-4.191235	.170863

30 31 32 33 34 35 36 37 38 39 40 41		1 6 1 1 6 6 8 8 8 8 8 28		0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 0 .3 4 0 1.0 1.8 3.0 .7 1.9 3.9 1.5	82828 73053 23776 61006 62495 68755 21787 40249 49427 81455 78187 86824	-2.59363 -4.53447 -3.79276 -4.96711 -5.57924 1.52617 2.61144 .07922 1.78250 3.56502 58774 1.13264	39 1 78 -1 58 -3 0 -1 48 -1 77 -2 42 -2 26 -3 03 -3 20 -3 45 - 46 -	.599385 .161116 .147660 .914254 .461014 .567918 .093536 .885156 .643691 .718095 .885501 .895722	
Freque Red. 1 Frc ce IR In	encies masses onsts ten		1 A 17.0483 6.6078 .0011 .0564				2 A 18.799 5.327 .001 .089	8 5 1 4		3 A 26.8268 4.1509 .0018 .1333	3 5 3 1
Atom 2	AN	Х	Y	Z		Х	Y	Z	Х	Y	Z
1	15	.00	.00	.02		.00	01	01	.00	01	.02
2	6	.00	.01	.03		.00	.00	.02	.02	.00	.02
3	6	.04	.01	02	-	03	03	.10	04	04	.14
4	6	04	.00	.09		.04	.03	04	.10	.04	10
5	6	.03	.01	01	-	03	02	.13	02	03	.15
67	L C	.07	.02	07	-	06	05	.14	10	07	.24
2 0	0	- 04	- 01	• ± ± 1 /		.04	.03	- 10	.12	.03	- 19
9	1 6	- 01	01	.14		.07	.05	10	.13	.00	19
10	1	.01	.01	- 05	-	- 06	- 04	.07	- 07	- 06	.05
11	1	08	01	.16		.08	.05	05	.18	.08	18
12	1	01	.00	.06		.01	.01	.09	.07	.02	. 04
13	6	.01	.03	01	-	01	.00	01	01	01	.02
14	6	.11	10	.00	-	12	.15	05	01	01	. 02
15	6	07	.19	05		.09	15	.03	01	01	.01
16	6	.12	08	03	-	14	.16	05	01	01	.02
17	1	.16	23	.02	-	19	.27	08	01	01	.02
18	6	05	.22	07		.07	14	.03	01	01	.02
19	1	14	.30	06		.17	27	.06	01	01	.01
20	6	.04	.08	07	-	04	.02	01	01	01	.02
21	1	.20	19	03	-	23	.28	08	01	01	.02
22	1	11	.35	10		.15	26	.07	01	01	.02
23	1	.05	.10	09	-	06	.02	.00	01	01	.02
24	6	01	02	.00		.01	03	02	01	.00	.02
25	6	.02	.01	.02	-	02	07	07	.08	.10	.12
26	6	05	05	03		.05	01	.03	13	09	10
27	6	.00	01	.01	-	02	09	08	.06	.10	.11
28	1	.05	.04	.05	-	05	09	10	.17	.18	.21
29	6	06	07	04		.05	03	.02	16	09	11
30	1	07	07	04		.08	.03	.07	20	17	18
31	6	03	04	02		.02	07	03	07	.01	01
32	1	.03	.01	.03	-	05	13	12	.13	.18	.19
33	1	09	10	06		.08	01	.05	26	16	21
34 25	⊥ ⊂	04	06	03		.02	09	04	09	.01	02
35	6	03	05	.13		.03	.00	.10	.02	.00	04
36	6	.00	13	10	-	UI	04	07	05	.00	03
ر د ۲	6	.03	. 12	04	-	02	.12	04	.04	.00	03
38	8	05	08	.20		.05	01	.18	.03	.01	05
39	8	.00	21	18	-	02	08	⊥⊥	09	.01	03
4U 41	8 20	.04	.20	0/	-	٤U	.20	05	.08	.02	05
41	∠0	.00	UI	.01		.00	. U L	UI	.00	01	02

HF=-1546.8856093

Sum of electronic and zero-point Energies= -1546.585086

Sum of electroni Sum of electroni Sum of electroni Electron donatio	ic and thermal ic and thermal ic and thermal on between fra	Energies= Enthalpies= Free Energies= gments (<0.001e	-1546.559657 -1546.558713 -1546.645668 for any omitted MO)
Alpha-spin MO	1->2 2->1		
HOMO -69 (# 30)	0.000 -0.004		
HOMO -66 (# 33)	-0.001 -0.002		
HOMO -62 (# 37)	-0.011 0.000		
HOMO -59 (# 40)	0.014 0.000		
HOMO -58 (# 41)	0.002 0.000		
HOMO -57 (# 42)	0.002 0.000		
HOMO -53 (# 46)	0.023 -0.001		
HOMO -52 (# 47)	0.001 0.000		
HOMO -51 (# 48)	0.002 0.000		
HOMO -47 (# 52)	0.008 -0.006		
HOMO -46 (# 53)	0.006 -0.001		
HOMO -45 (# 54)	0.000 0.002		
HOMO -44 (# 55)	0.000 0.002		
HOMO -43 (# 56)	0.004 0.000		
HOMO - 42 (# 57)	0.004 0.000		
HOMO - 41 (# 58)	0.009 0.000		
HOMO - 40 (# 59)	0.003 -0.001		
HOMO = 37 (# 62)	-0.008 -0.013		
HOMO = 34 (# 63)			
HOMO = 30 (# 69)			
HOMO = 29 (# 70)			
HOMO = 27 (# 72)	0.004 -0.003		
HOMO - 26 (# 73)	0.004 -0.003		
HOMO -25 (# 74)	0.002 0.000		
HOMO -24 (# 75)	-0.001 -0.003		
HOMO -23 (# 76)	-0.001 -0.003		
HOMO -20 (# 79)	0.021 0.003		
HOMO -19 (# 80)	0.004 0.000		
HOMO -18 (# 81)	0.004 0.000		
HOMO -17 (# 82)	0.006 0.000		
HOMO -16 (# 83)	0.004 0.000		
HOMO -15 (# 84)	0.001 0.000		
HOMO -14 (# 85)	0.001 0.000		
HOMO -13 (# 86)	0.001 0.001		
HOMO -12 (# 87)	0.002 0.001		
HOMO - 11 (# 88)	0.080 0.012		
HOMO - 10 (# 89)	-0.001 0.008		
HOMO = 9 (# 90)	0.000 0.008		
HOMO = 0 (# 91)	0.003 = 0.001		
HOMO = 7 (# 92)			
HOMO = 5 (# 94)	-0 006 -0 002		
$HOMO = 4 (\pm 95)$	0.002 0.002		
HOMO -3 (# 96)	0.002 0.000		
HOMO -2 (# 97)	-0.002 0.022		
HOMO -1 (# 98)	-0.002 0.022		
HOMO 0 (# 99)	0.130 0.007		
Total over OMOs	0.321 0.036		
======================================			

Repulsion and residue (Delta) terms between fragments

Alpha	-spi	n N	10	1<->2	Delta
HOMO	-69	(#	30)	-0.002	0.000
HOMO	-66	(#	33)	-0.002	0.000
HOMO	-62	(#	37)	0.000	0.000
HOMO	-59	(#	40)	0.002	0.000
HOMO	-58	(#	41)	0.000	0.000
HOMO	-57	(#	42)	0.000	0.000
HOMO	-53	(#	46)	0.006	-0.001
HOMO	-52	(#	47)	0.001	0.000
HOMO	-51	(#	48)	0.001	0.000
HOMO	-47	(#	52)	0.022	0.000
HOMO	-46	(#	53)	-0.013	0.000
HOMO	-45	(#	54)	0.001	0.000
HOMO	-44	(#	55)	0.001	0.000
HOMO	-43	(#	56)	0.002	0.000
HOMO	-42	(#	57)	0.002	0.000
HOMO	-41	(#	58)	0.002	0.000
HOMO	-40	(#	59)	0.039	0.000
HOMO	-37	(#	62)	-0.021	-0.001
HOMO	-34	(#	65)	-0.004	0.000
HOMO	-31	(#	68)	-0.009	-0.001
HOMO	-30	(#	69)	0.004	0.000
HOMO	-29	(#	70)	0.004	0.000
HOMO	-27	(#	72)	0.005	0.000
HOMO	-26	(#	73)	0.004	0.000
HOMO	-25	(#	74)	-0.007	0.000
HOMO	-24	(#	75)	-0.004	0.000
HOMO	-23	(#	76)	-0.006	0.000
HOMO	-20	(#	79)	0.001	-0.002
HOMO	-19	(#	80)	0.000	0.000
HOMO	-18	(#	81)	0.000	0.000
HOMO	-17	(#	82)	0.001	0.000
HOMO	-16	(#	83)	0.002	0.000
HOMO	-15	(#	84)	0.000	0.000
HOMO	-14	(#	85)	0.000	0.000
HOMO	-13	(#	86)	0.007	0.000
HOMO	-12	(#	87)	0.006	0.000
HOMO	-11	(#	88)	0.018	-0.009
HOMO	-10	(#	89)	-0.005	0.000
HOMO	- 9	(#	90)	-0.005	0.000
HOMO	- 8	(#	91)	-0.002	-0.001
HOMO	-7	(#	92)	-0.001	-0.001
HOMO	-6	(#	93)	-0.001	-0.001
HOMO	-5	(#	94)	-0.016	0.000
HOMO	-4	(#	95)	0.001	0.000
HOMO	-3	(#	96)	0.000	0.000
HOMO	-2	(#	97)	-0.035	0.001
HOMO	-1	(#	98)	-0.035	0.001
HOMO	0	(#	99)	-0.108	-0.007
Total	ove	r (MOs	-0.142	-0.026

Optimized geometry, three lower frequencies, thermochemistry and CDA calculations for 2Ni(CO)₃

Center	Atomic	Atomic	Coord	linates (Ang	stromg)
Number	Number	Туре	X	Y	Z
1	6	0	.711185	.258254	2.991561
2	6	0	3.037995	1.693896	2.394182
3	6	0	1.558012	.684792	4.019145
4	1	0	186290	305417	3.225226
5	6	0	2.713917	1.402141	3.722059
6	1	0	3.944156	2.248430	2.158729
7	1	0	1.310395	.453127	5.051764
8	1	0	3.370078	1.733974	4.522777
9	6	0	1.457521	683190	783809
10	6	0	.039512	1.751955	656452
11	6	0	2.540925	.123734	777544
12	6	0	1.275060	2.295115	680426
13	6	0	2.445776	1.494657	099026
14	1	0	3.380606	2.046710	239596
15	14	0	1.395399	-2.378531	-1.652047
16	14	0	-1.551826	2.379570	-1.483259
17	6	0	2.193576	1.265521	1.375204
18	6	0	1.026920	.554364	1.668761
19	15	0	.039582	.070484	.182220
20	6	0	2.168690	-3.694018	534970
21	1	0	3.204811	-3.447492	275000
22	1	0	1.609040	-3.803466	.400501
23	1	0	2.172696	-4.669757	-1.036885
24	6	0	2.316900	-2.333113	-3.315585
25	1	0	1.926417	-3.140125	-3.948630
26	1	0	2.146799	-1.390111	-3.847998
27	1	0	3.398452	-2.483791	-3.236682

28	6		0	36	6714	-2.881539	-2.	091445
29	1		0	-1.00	1000	-3.018273	-1.	213092
30	1		0	84	9324	-2.145497	-2.	744567
31	1		0	33	3609	-3.833836	-2.	636394
32	6		0	-1.42	2046	4.069612	-2.	333866
33	1		0	67	2376	4.102431	-3.	131780
34	1		0	-2.39	6950	4.263132	-2.	801372
35	1		0	-1.23	3233	4.895846	-1.	639270
36	6		0	-2.95	2560	2.540328		229896
37	1		0	-3.22	1024	1.579619		216477
38	1		0	-2.67	9218	3.224442		582249
39	1		0	-3.84	6031	2.945315	'	721798
40	6		0	-1.99	0029	1.150903	-2.	852700
41	1		0	-2.95	0987	1.416235	-3.	310865
42	1		0	-1.22	7872	1.169442	-3.	641249
43	1		0	-2.07	1501	.122556	-2.	490134
44	6		0	3.90	8951	183630	-1.	315040
45	1		0	4.00	9185	-1.206330	-1.	677119
46	1		0	4.17	4618	.499997	-2.	133244
47	1		0	4.65	4368	031967		522319
48	6		0	1.68	9918	3.640717	-1.	201814
49	1		0	.85	7039	4.248862	-1.	547036
50	1		0	2.21	2681	4.195433		410310
51	1		0	2.40	5087	3.528863	-2.	029002
52	28		0	-1.81	3591	-1.075185		859244
53	6		0	-1.19	5867	-2.618620	1.	532408
54	6		0	-2.59	2807	121028	2.	170212
55	6		0	-3.03	5110	-1.375645		423420
56	8		0	84	1947	-3.614221	1.	990903
57	8		0	-3.14	3946	.424273	3.	021079
58	8		0	-3.87	7680	-1.607078	-1.	172791
		1			2			3
		A			A			A
Frequenci	es	3.171	7		33.121	11		37.4948
Red. mass	ses	3.020	5		4.755	57		5.1727
Frc const	S	.000	0		.003	31		.0043
IR Inten		.010	6		.028	39		.0063
Atom AN	Х	Y	Z	Х	Y	Z	Х	Y
1 6	.03	03	01	04	.12	.00	.01	02
2 6	.01	.01	02	02	.08	03	.03	05
3 6	.04	03	02	06	.17	.00	.03	05
4 1	.04	05	01	05	.14	.02	.01	01

Red.	masses		3.0205	5		4.755	7		5.172	7
Frc	consts		.0000)		.003	1		.0043	3
IR I	inten		.0106	5		.028	9		.0063	3
Atom	n AN	Х	Y	Z	Х	Y	Z	Х	Y	Z
1	6	.03	03	01	04	.12	.00	.01	02	03
2	6	.01	.01	02	02	.08	03	.03	05	04
3	6	.04	03	02	06	.17	.00	.03	05	03
4	1	.04	05	01	05	.14	.02	.01	01	03
5	6	.03	01	02	04	.15	02	.04	06	04
6	1	.00	.02	02	01	.06	04	.03	05	04
7	1	.05	05	02	08	.23	.01	.04	05	03
8	1	.03	01	02	06	.19	02	.05	08	04
9	6	.02	.02	02	.00	03	.03	02	.00	04
10	6	01	.00	.00	.03	01	04	01	.02	.00
11	6	.00	.04	03	.01	05	.03	02	.00	05
12	6	02	.02	.00	.04	04	07	01	.01	01
13	6	01	.03	01	.02	03	02	01	01	03
14	1	02	.04	02	.03	04	03	01	01	04
15	14	.02	.00	.02	02	03	.02	.00	04	.04
16	14	02	01	.01	.01	.04	.03	03	.07	.06
17	6	.01	.01	02	.00	.03	02	.01	02	03
18	6	.02	01	01	01	.06	01	.01	02	03
19	15	.01	.00	01	.00	.01	.00	01	.00	02
20	6	14	.00	.13	09	07	.01	.02	.03	.11
21	1	15	05	.18	09	11	.04	.02	.06	.10
22	1	21	.06	.10	11	07	.00	.02	.08	.12
23	1	16	02	.16	11	06	01	.03	.00	.17
24	6	.18	13	.10	.03	03	.05	.01	12	.04
25	1	.07	03	.04	.01	.01	.01	.00	14	.07
26	1	.45	08	.11	.10	01	.07	.05	14	.00

27	1	.14	38	.22	.02	09	.08	.01	15	.06
28	6	.02	.10	11	03	.04	05	.02	09	.06
29	1	06	.21	15	05	.01	07	.03	12	.06
30	1	.13	.09	19	.01	.08	02	02	11	.06
31	1	01	.06	04	03	.06	09	.04	09	.06
32	6	04	01	.01	02	.08	.11	04	.13	.19
33	1	03	.00	.01	10	.10	.04	08	.18	.15
34	1	04	03	.00	06	.15	.23	07	.18	.25
35	1	06	01	.00	.09	.03	.15	.00	.07	.24
36	6	02	02	.01	.07	.00	.10	02	01	.08
37	1	02	02	.01	.09	01	.09	11	06	07
38	1	02	01	.01	.11	02	.10	.03	17	.20
39	1	02	02	.01	.04	.01	.16	.02	.15	.14
40	6	01	01	.01	06	.10	01	05	.15	.00
41	1	02	03	.02	06	.14	.03	05	.18	.01
42	1	02	.00	.00	08	.11	03	05	.17	.00
43	1	.01	02	.01	07	.09	04	06	.13	05
44	6	.00	.07	05	.02	09	.06	02	.01	07
45	1	.00	.09	11	.01	11	.11	03	.02	09
46	1	.00	.12	01	.04	14	.04	03	.03	06
47	1	.00	.02	04	.01	07	.07	01	01	07
48	6	04	.03	.02	.07	08	14	.00	.01	.00
49	1	05	.03	.04	.10	09	22	.00	.02	.02
50	1	04	.03	.02	.06	03	17	.02	01	.00
51	1	05	.05	.01	.10	15	11	01	.01	01
52	28	.01	01	01	.02	02	01	.00	.00	03
53	6	04	03	02	.04	03	06	.01	.05	.07
54	6	.04	.00	.01	02	12	.03	05	.04	08
55	6	02	.03	.01	.02	.01	02	.07	08	08
56	8	09	04	02	.06	04	08	.02	.09	.15
57	8	.06	.00	.02	06	20	.06	08	.06	12
58	8	04	.05	.02	.02	.04	03	.13	14	13

HF=-2172.357671

Sum	of	electronic	and	zero-po:	int Energies=	-2171.904992
Sum	of	electronic	and	thermal	Energies=	-2171.867604
Sum	of	electronic	and	thermal	Enthalpies=	-2171.866659
Sum	of	electronic	and	thermal	Free Energies=	-2171.976100

Electron donation between fragments (<0.001e for any omitted MO)

Alpha-	spin	MC	D	1->2	2->1
HOMO	-94	(#	29)	0.002	0.000
HOMO	-88	(#	35)	0.000	-0.006
HOMO	-79	(#	44)	-0.001	-0.002
HOMO	-75	(#	48)	-0.003	0.000
HOMO	-74	(#	49)	0.002	0.000
HOMO	-73	(#	50)	0.001	0.000
HOMO	-72	(#	51)	0.009	0.000
HOMO	-70	(#	53)	0.017	0.000
HOMO	-69	(#	54)	0.008	0.000
HOMO	-68	(#	55)	0.008	0.000
HOMO	-67	(#	56)	0.003	0.000
HOMO	-66	(#	57)	0.001	0.000
HOMO	-65	(#	58)	0.004	0.000
HOMO	-64	(#	59)	0.001	0.000
HOMO	-63	(#	60)	0.006	0.000
HOMO	-62	(#	61)	0.005	0.000
HOMO	-61	(#	62)	0.007	0.000
HOMO	-60	(#	63)	0.010	-0.001
HOMO	-59	(#	64)	0.008	-0.001
HOMO	-58	(#	65)	0.005	-0.003

HOMO	-57	(#	66)	-0.	001	0.003
HOMO	-56	(#	67)	-0.	002	0.002
HOMO	-55	(#	68)	Ο.	002	0.000
HOMO	-54	(#	69)	Ο.	002	0.000
HOMO	-53	(#	70)	Ο.	001	-0.001
HOMO	-52	(#	71)	Ο.	004	-0.001
HOMO	-51	(#	72)	Ο.	002	-0.011
HOMO	-49	(#	74)	0.	003	0.000
номо	-48	(#	75)	0.	002	-0.001
номо	-47	(#	76)	0	000	0 003
HOMO	-45	(<u>#</u>	78)	0	000	0 001
HOMO	-44	(<u>#</u>	79)	0	001	0 002
номо	-43	(#	80)	-0	001	0 001
	-42	(#	00) 01)	0.	001	0.001
номо	-42	(#	01)	0.	002	0.001
	-40	(#	03)	0.	004	0.001
	- 29	(# /#	04) 05)	0.	001	-0.007
HOMO	-30	(# (#	07)	0.	002	-0.003
HOMO	-36	(#	87)	0.	002	0.000
HOMO	-35	(#	88)	0.	003	0.000
HOMO	-34	(#	89)	0.	003	0.001
HOMO	-33	(#	90)	0.	002	0.000
НОМО	-32	(#	91)	0.	001	0.000
HOMO	-31	(#	92)	0.	002	0.000
HOMO	-30	(#	93)	0.	005	0.001
HOMO	-29	(#	94)	0.	005	0.000
HOMO	-28	(#	95)	0.	003	0.000
HOMO	-27	(#	96)	Ο.	008	0.000
HOMO	-26	(#	97)	Ο.	001	0.000
HOMO	-25	(#	98)	Ο.	002	0.000
HOMO	-24	(#	99)	Ο.	003	0.000
HOMO	-21	(#1	L02)	Ο.	005	0.000
HOMO	-20	(#1	L03)	Ο.	003	0.000
HOMO	-18	(#1	L05)	Ο.	001	0.000
HOMO	-17	(#1	L06)	Ο.	011	0.001
HOMO	-15	(#1	L08)	Ο.	073	0.012
HOMO	-12	(#1	L11)	Ο.	005	0.000
HOMO	-11	(#1	L12)	Ο.	004	0.001
HOMO	-10	(#1	L13)	Ο.	004	0.000
HOMO	-9	(#1	L14)	Ο.	003	0.001
HOMO	- 8	(#1	L15)	-0.	003	0.006
НОМО	-7	(#1	116)	-0.	004	0.004
номо	-6	(#1	117)	0	001	-0 001
номо	- 4	(#1	119)	0	005	0 000
HOMO	- 3	(±-	120)	0	012	0 023
номо	-2	(#-	121)	0.	002	0.025
HOMO	_ 1	(#-	1221	۰ ۱	000	0.011
HOMO	0	(#-	1221	۰ ۱	124	
	=	·#-				0.012
Total	ove	er (DMOs	0.	405	0.068
		====	====:	====	====	=======
Total	ALPH	IA+I	BETA	0.	810	0.135

Repulsion and residue (Delta) terms between fragments

Alpha-	spin	n MC	1<->2	Delta	
HOMO	-94	(#	29)	0.000	0.000
HOMO	-88	(#	35)	-0.002	0.000
HOMO	-79	(#	44)	-0.003	0.000
HOMO	-75	(#	48)	0.000	0.000
HOMO	-74	(#	49)	0.000	0.000

HOMO	-73	(# 50)	0.000	0.000
HOMO	-72	(# 51)	0.002	0.000
HOMO	-70	(# 53)	0.002	0.000
HOMO	-69	(# 54)	0.001	0.000
номо	-68	(# 55)	0.000	0.000
номо	-67	(# 56)	0.001	0.000
номо	-66	(# 57)	0.000	0.000
номо	-65	(# 58)	0 001	0 000
номо	-64	(# 50)	0.001	0.000
номо	-63	(# 5)	0.001	0.000
	-62	$(\# \ 60)$	0.001	0.000
номо	-02 61	(# 01)	0.001	0.000
HOMO	-01	(# 02)	0.002	0.000
HOMO	-60	(+ 03)	0.016	0.000
HOMO	-59	(# 64)	0.011	0.000
HOMO	-58	(# 65)	-0.009	-0.001
HOMO	-57	(# 66)	0.001	0.000
НОМО	-56	(# 67)	0.001	-0.001
HOMO	-55	(# 68)	0.000	0.000
HOMO	-54	(# 69)	0.003	0.000
HOMO	-53	(# 70)	0.000	-0.001
HOMO	-52	(# 71)	0.014	0.000
HOMO	-51	(# 72)	0.018	0.000
HOMO	-49	(# 74)	0.008	0.000
HOMO	-48	(# 75)	0.000	0.000
HOMO	-47	(# 76)	0.014	0.000
HOMO	-45	(# 78)	0.008	0.000
HOMO	-44	(# 79)	0.018	0.000
HOMO	-43	(# 80)	0.004	0.000
HOMO	-42	(# 81)	0.000	0.000
HOMO	-40	(# 83)	-0.019	0.000
HOMO	-39	(# 84)	0.001	-0.001
HOMO	-38	(# 85)	-0.001	-0.001
номо	-36	(# 87)	-0.006	0.000
номо	-35	(# 88)	-0.008	0.000
НОМО	-34	(# 89)	-0.007	0.000
номо	-33	(# 90)	-0.004	0.000
HOMO	-32	(# 91)	-0 001	0 000
HOMO	-31	(# 92)	-0 002	0 000
номо	-30	(# 92)	-0 011	0.000
номо	-29	(# JJ) (# Q/)	-0 014	0.000
	_ 20	(# J=) (# QE)	-0.014	0.000
номо	-20	(# 95) (# 96)	-0.006	0.000
номо	-27	(# 90)	0.000	0.000
номо	-20 25	(+ 97)	-0.002	0.000
HOMO	-25	(# 90)	-0.002	0.000
HOMO	-24	(# 99) (#100)	-0.003	0.000
HOMO	-21	(#10Z)	-0.006	0.000
HOMO	-20	(#103)	-0.003	0.000
HOMO	-18	(#105)	0.000	0.000
НОМО	-17	(#106)	0.002	-0.001
НОМО	-15	(#108)	0.025	-0.013
HOMO	-12	(#111)	0.007	-0.001
HOMO	-11	(#112)	0.005	0.000
HOMO	-10	(#113)	0.001	0.000
HOMO	- 9	(#114)	0.007	0.000
HOMO	- 8	(#115)	-0.016	0.000
HOMO	-7	(#116)	-0.013	-0.001
HOMO	-6	(#117)	-0.001	0.000
HOMO	-4	(#119)	0.000	0.000
HOMO	- 3	(#120)	-0.043	-0.002
HOMO	-2	(#121)	-0.026	0.000

HOMO	-1	(‡	122)	-0.	025	0.	000
HOMO	0	(‡	123)	-0.	.100	-0.	009
Total	ove	er	OMOs	-0.	.141	-0.	041

Optimized geometry, three lower frequencies, thermochemistry and CDA calculations for $PF_3Ni(CO)_3$

Center	Atomic	Ato	mic	Coordinates (Angstroms)						
Number	Number	Ту	ре		Х	Y	-	Z		
1	15		0	62	27195	.429112	-1.	224908		
2	6		0	78	30673	.211253	1.	974463		
3	6		0	1.88	37648	.649491		754303		
4	6		0	.55	53923	-1.993336		508218		
5	8		0	-1.44	16989	.462528	2.	871092		
6	8		0	.72	21495	-3.125764	•	483839		
7	8		0	2.89	95633	1.176824	•	884584		
8	28		0	.29	95792	199391		574051		
9	9		0	91	L7412	635726	-2.	368628		
10	9		0	.07	.078317 1.528879			-2.128866		
11	9		0	-2.07	72101	1.088305	-1.	173374		
		1			2			3		
		A			A			A		
Frequencies		10.0805			58.485	6		59.4638	3	
Red. masses		18.0835		16.0158			15.9981			
Frc consts		.0011			.0323			.0333		
IR Inten		.0000			.029	6		.0293	3	
Atom AN	Х	Y	Z	Х	Y	Z	Х	Y	Z	
1 15	.00	.00	.00	.00	.01	06	.00	06	.00	
2 6	.00	14	02	.25	.01	03	02	.17	.03	
3 6	.00	.05	.13	11	.07	.14	.22	.00	.08	
4 6	.00	.09	11	14	10	.11	21	.04	09	
5 8	.00	23	03	.57	.04	15	04	.38	.06	

Supplementary Material (ESI) for Chemical Communications This journal is $\textcircled{\mbox{\scriptsize C}}$ The Royal Society of Chemistry 2008

6	8	.00	.15	19	31	25	.20	47	.03	24
7	8	.01	.08	.21	24	.18	.29	.50	06	.21
8	28	.00	.00	.00	.00	.00	.06	.00	.05	.00
9	9	.00	33	.39	.11	.01	16	.15	16	01
10	9	01	17	48	.07	.01	17	17	16	01
11	9	.00	.50	.09	19	.01	16	.02	17	01

HF=-1151.7102687

Sum	of	electronic	and	zero-poi	int Energies=	-1151.675873
Sum	of	electronic	and	thermal	Energies=	-1151.662699
Sum	of	electronic	and	thermal	Enthalpies=	-1151.661755
Sum	of	electronic	and	thermal	Free Energies=	-1151.719083

Electron donation between fragments (<0.001e for any omitted MO)

Alpha-	snir	n MC	2	1->2	2->1	
HOMO	-40	(#	11)	0 001	0 000	
HOMO	-36	(#	15)	0 000	-0 003	
HOMO	-33	(#	18)	-0 001	-0 001	
HOMO	-32	(#	19)	0 047	-0 001	
HOMO	-31	(#	20)	0 005	0 000	
HOMO	-30	(#	$(21)^{-1}$	0.005	0.000	
HOMO	-26	(#	25)	0 036	-0 001	
HOMO	-25	(#	26)	0.001	-0.006	
HOMO	-22	(#	29)	0.004	0.000	
HOMO	-21	(#	30)	0.003	0.000	
HOMO	-20	(#	31)	0.012	0.000	
HOMO	-19	(#	32)	-0.004	-0.021	
HOMO	-18	(#	33)	0.004	-0.004	
HOMO	-17	(#	34)	0.004	-0.004	
HOMO	-14	(#	37)	-0.002	-0.003	
HOMO	-10	(#	41)	0.001	-0.001	
HOMO	- 9	(#	42)	0.001	-0.001	
HOMO	- 8	(#	43)	0.009	0.001	
HOMO	-7	(#	44)	0.009	0.001	
HOMO	-5	(#	46)	0.116	0.024	
HOMO	-4	(#	47)	-0.001	0.013	
HOMO	-3	(#	48)	-0.001	0.013	
HOMO	-2	(#	49)	-0.002	0.028	
HOMO	-1	(#	50)	-0.002	0.028	
HOMO	0	(#	51)	0.114	0.008	
Total	ove	er (OMOs	0.360	0.068	
TotalALPHA+BETA 0.721 0.136						

Repulsion and residue (Delta) terms between fragments

Alpha-spin MO 1<->2 Delta HOMO -40 (# 11) 0.000 0.000 HOMO -36 (# 15) -0.001 0.000 HOMO -33 (# 18) -0.002 0.000 HOMO -32 (# 19) 0.001 -0.002 HOMO -31 (# 20) 0.000 0.000 HOMO -30 (# 21) 0.000 0.000 HOMO -26 (# 25) 0.012 -0.001 HOMO -25 (# 26) 0.016 0.000 HOMO -22 (# 29) 0.002 0.000

HOMO	-20	(#	31)	0.013	0.000
HOMO	-19	(#	32)	-0.026	-0.001
HOMO	-18	(#	33)	0.000	-0.005
HOMO	-17	(#	34)	0.000	-0.005
HOMO	-14	(#	37)	-0.005	0.000
HOMO	-10	(#	41)	0.004	0.000
HOMO	-9	(#	42)	0.004	0.000
HOMO	- 8	(#	43)	-0.005	0.000
HOMO	-7	(#	44)	-0.005	0.000
HOMO	-5	(#	46)	0.031	-0.035
HOMO	-4	(#	47)	-0.006	0.001
HOMO	-3	(#	48)	-0.006	0.001
HOMO	-2	(#	49)	-0.011	0.004
HOMO	-1	(#	50)	-0.011	0.004
HOMO	0	(#	51)	-0.097	-0.010
Total	ove	er (OMOs	-0.081	-0.051