Supporting Information

High-Valent Manganese(V)-Oxo Porphyrin Complexes in Hydride Transfer Reactions

Jung Yoon Lee, ${ }^{a}$ Yong-Min Lee, ${ }^{a}$ Hiroaki Kotani, ${ }^{b}$ Wonwoo Nam* ${ }^{*}$ and Shunichi Fukuzumi* ${ }^{b}$
${ }^{\text {a }}$ Department of Chemistry and Nano Science, Centre for Biomimetic Systems, Ewha Womans University, Seoul 120-750, Korea
${ }^{\mathrm{b}}$ Department of Material and Life Science, Graduate School of Engineering, Osaka University, SORST, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan

E-mail: fukuzumi@chem.eng.osaka-u.ac.jp, wwnam@ewha.ac.kr

Experimental Section

Materials. Commercially available reagents, such as Mn (Prop)Cl (Porp = TPFPP, TDFPP and TDCPP; Frontier Scientific Inc., Logan, UT, USA), 1-benzyl-1,4-dihydronicotinamide (BNAH), 9-phenyl-10-methylacridinium ion ($\mathrm{Acr}^{+}-\mathrm{Ph}$), 10-methylacridone, acridine, methyl iodide (MeI), NaBH_{4}, LiAlD_{4} and NaBD_{4}, were the best available purity and were used without further purification unless otherwise noted. Acetonitrile (MeCN), dichloromethane, and ether were dried according to the literature procedures ${ }^{1}$ and distilled under Ar prior to use. m-Chloroperbenzoic acid (m-CPBA) was purified by washing with phosphate buffer (pH 7.4) followed by water and then dried under reduced pressure.

9,10-Dihydro-10-methylacridine $\left(\mathrm{AcrH}_{2}\right)$ was prepared by reducing 10 -methylacridinium iodide (AcrH I^{-}) with NaBH_{4} in methanol and purified by recrystallization from ethanol. ${ }^{2}$ For the preparation of $\mathrm{AcrH}^{+} \mathrm{I}^{-}$, acridine was treated with MeI in acetone, and then the mixture was refluxed for 7 days. 9-Alkyl-9,10-dihydro-10-methylacridine ($\mathrm{AcrHR} ; \mathrm{R}=\mathrm{Me}, \mathrm{Et}$) was prepared by the reduction of $\mathrm{AcrH}^{+} \mathrm{I}^{-}$with the corresponding Grignard reagents (RMgX) and purified by recrystallization from ethanol. ${ }^{2}$ The dideuterated compound, [9, $9^{\prime}-{ }^{2} \mathrm{H}_{2}$]-10-methylacridine $\left(\mathrm{AcrD}_{2}\right)$, was prepared from 10-methylacridone by reduction with LiAlD_{4} in ether. ${ }^{2}$ The dideuterated compound, 1-benzyl-1,4-dihydro[4, $\left.4^{\prime}-{ }^{2} \mathrm{H}_{2}\right]$ nicotinamide (BNAH-4,4'- d_{2}), was prepared from monodeuterated compound (BNAH-4- d_{1}) by three cycles of oxidation with p-chloranil in dimethylformamide and reduction with dithionite in deuterium oxide. ${ }^{3,4}$

Instrumentation. UV-vis spectra were recorded on a Hewlett Packard 8453 spectrophotometer equipped with a circulating water bath or a Hi-Tech Scientific SF-61 multimixing cryogenic stopped-flow instrument equipped with a Hi -Tech Scientific KinetaScan diode array rapid scanning unit. Product analysis was performed with a Thermo Finnigan (Austin, Texas, USA) FOCUS DSQ (dual stage quadrupole) mass spectrometer interfaced with Finnigan FOCUS gas chromatograph (GC-MS). ${ }^{1} \mathrm{H}$ NMR was also measured with a Bruker 9503DPX-250 (250 MHz) FT-NMR spectrometer for the product analysis. ${ }^{1} \mathrm{H}$-NMR measurements were carried out in CDCl_{3} at $25^{\circ} \mathrm{C}$. Detailed experimental conditions are described in footnote of Fig. S3.

Kinetic and Reactivity Studies. All reactions were followed by monitoring UV-vis spectral changes of reaction solutions with a Hewlett Packard 8453 spectrophotometer equipped with an Optostat ${ }^{\text {DN }}$
variable-temperature liquid nitrogen cryostat (Oxford instruments) or with a Hi-Tech Scientific SF-61 multimixing cryogenic stopped-flow instrument equipped with a Hi-Tech Scientific KinetaScan diode array rapid scanning unit at $25{ }^{\circ} \mathrm{C}$. Manganese (V)-oxo porphyrin complexes, $\left[\mathrm{Mn}^{\mathrm{V}}(\mathrm{O})_{2}(\mathrm{TPFPP})\right]^{-}(\mathbf{1})$, $\left[\mathrm{Mn}^{\mathrm{V}}(\mathrm{O})_{2}(\mathrm{TDFPP})\right]^{-}(2)$, and $\left[\mathrm{Mn}^{\mathrm{V}}(\mathrm{O})_{2}(\mathrm{TDCPP})\right]^{-}$(3), were prepared by reacting manganese(III) porphyrin chlorides $(0.2 \mathrm{mM})$ with 6 equiv of m-CPBA in the presence of tetra- n-butylammonium hydroxide (20 equiv) in a solvent mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) at $25{ }^{\circ} \mathrm{C}$. Subsequently, appropriate amounts of substrates were added to the reaction solutions. After the completion of reactions, pseudo-first-order fitting of the kinetic data allowed us to determine $k_{\text {obs }}$ values. Product analysis was performed with $\left[\mathrm{Mn}^{\mathrm{V}}(\mathrm{O})_{2}(\text { TPFPP })\right]^{-}(1 \mathrm{mM})$ and substrates $(50 \mathrm{mM})$, by injecting the reaction solutions directly into GC-MS. Products were identified by comparing retention times and mass patterns to those of known authentic samples. For NMR measurement, pure product of the completed reaction of $\left[\mathrm{Mn}^{\mathrm{V}}(\mathrm{O})_{2}(\mathrm{TPFPP})\right]^{-}$and AcrH_{2} at $25^{\circ} \mathrm{C}$ was obtained after column chromatography, which was packed with silicagel 60 .

References

[1] W. L. F. Armarego and C. L. L. Chai, Purification of Laboratory Chemicals, 5th ed., ButterworthHeiemann, Oxford, 2003.
[2] a) S. Fukuzumi, S. Koumitsu, K. Hironaka and T. Tanaka, J. Am. Chem. Soc., 1987, 109, 305; b) S. Fukuzumi, Y. Tokuda, T. Kitano, T. Okamoto and J. Otera, J. Am. Chem. Soc., 1993, 115, 8960.
[3] a) A. G. Anderson, Jr. and G. Berkelhammer, J. Am. Chem. Soc., 1958, 80, 992; b) D. Mauzerall and F. H. Westheimer, J. Am. Chem. Soc., 1955, 77, 2261.
[4] W. Caughey and K. A. Schellenberg, J. Org. Chem., 1966, 31, 1978.

Table S1. Second-Order Rate Constants, k_{2}, Determined in Hydride Transfer from NADH Analogues to $\left[\mathrm{Mn}{ }^{\mathrm{V}}(\mathrm{O})_{2}(\mathrm{Porp})\right]^{-}$at $25^{\circ} \mathrm{C}$.

Entry	NADH analogue	$k_{2}\left(\left[\mathrm{Mn}^{\mathrm{V}}(\mathrm{O})_{2}(\mathrm{Porp})\right]^{-}\right), \mathrm{M}^{-1} \mathrm{~s}^{-1}$			$\begin{gathered} k_{2}\left(\mathrm{Cl}_{4} \mathrm{Q}\right),{ }^{a} \\ \mathrm{M}^{-1} \mathrm{~s}^{-1} \end{gathered}$	$k_{\mathrm{d}}{ }^{\text {b }} \mathrm{s}^{-1}$
		Porp $=$ TPFPP	Porp $=$ TDFPP	Porp $=$ TDCPP		
1	BNAH	1.3×10^{3}	6.2×10^{2}	5.9×10	1.0×10^{3}	2.4×10
2	BNAH-4,4'- d_{2}	1.3×10^{2}	7.7×10	1.0×10	1.9×10^{2}	1.8×10
3	AcrH2	1.5×10	3.9	1.3	1.5×10	6.4
4	AcrD_{2}	1.0	2.0×10^{-1}	1.3×10^{-1}	1.7	7.1×10^{-1}
5	AcrHMe	2.7×10^{-1}	1.1×10^{-1}	6.4×10^{-2}	9.4×10^{-1}	1.1
6	AcrHPh	1.7×10^{-1}	6.5×10^{-2}	5.6×10^{-2}	6.6×10^{-1}	4.1
7	AcrHEt	9.3×10^{-2}	5.1×10^{-2}	5.4×10^{-2}	4.6×10^{-1}	4.9×10^{-1}

${ }^{a}$ Detailed discussion on the linear correlation observed in hydride-transfer reactions by high-valent metal-oxo species and $\mathrm{Cl}_{4} \mathrm{Q}$ will be presented in elsewhere: S. Fukuzumi, H. Kotani, Y.-M. Lee, W. Nam, unpublished results. ${ }^{b}$ Taken from reference 12 in the text.

Fig. S1 Plot of $\log k_{2}$ for the reactions of NADH analogues with $\left[\mathrm{Mn}(\mathrm{V})(\mathrm{O})_{2}(\mathrm{TPFPP})\right]^{-}(\mathbf{1})$ (black circles), $\left[\mathrm{Mn}(\mathrm{V})(\mathrm{O})_{2}(\mathrm{TDFPP})\right]^{-}(2)$ (red circles), and $\left[\mathrm{Mn}(\mathrm{V})(\mathrm{O})_{2}(\mathrm{TDCPP})\right]^{-}$(3) (blue circles) vs $\log k_{d}$ for the deprotonation of AcrHR^{++}in MeCN at 298 K .

Fig. S2 (a) UV-vis spectral change of 10 -methylacridinium $\left[\mathrm{AcrH}^{+}\right](0.05 \mathrm{mM})$ (red line) to 9-hydroxy-9,10-dihydro-10-methylacridine $[\mathrm{AcrH}(\mathrm{OH})]$ (black line) upon addition of 20 equiv tetra- n-butylammonium hydroxide to a solution of $\mathrm{AcrH}^{+}(0.05 \mathrm{mM})$ in a solvent mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ at $25^{\circ} \mathrm{C}$. The disappearance of AcrH^{+}was $\mathrm{k}_{\mathrm{obs}}>10^{8} \mathrm{~s}^{-1}$. (b) UV-vis spectral changes showing the conversion of $\operatorname{AcrH}(\mathrm{OH})(0.05 \mathrm{mM}$; black line) to 10-methylacridone $[\operatorname{Acr}(\mathrm{O})]$ (blue line) in a solvent mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) at $25{ }^{\circ} \mathrm{C}$. The $\operatorname{AcrH}(\mathrm{OH})$ species did not react with $\left[\mathrm{Mn}^{\mathrm{V}}(\mathrm{O})_{2}(\text { Porp })\right]^{-}$, but were slowly converted to $\operatorname{Acr}(\mathrm{O})$ in air. Inset shows time course of the formation of $\operatorname{Acr}(\mathrm{O})$ monitored at 399 nm .

Fig. S3 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (250 MHz) of the authentic reference samples and the products obtained from the completed reaction of $\left[\mathrm{Mn}^{\mathrm{V}}(\mathrm{O})_{2}(\text { TPFPP })\right]^{-}$and 10-methyl-9,10dihydroacridine $\left(\mathrm{AcrH}_{2}\right)$ in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$. (a) and (b) show ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the authentic samples, AcrH_{2} and 10-methyl-acridone $(\mathrm{Acr}(\mathrm{O}))$, respectively. Pure product of the completed reaction of $\left[\mathrm{Mn}^{\mathrm{V}}(\mathrm{O})_{2}(\mathrm{TPFPP})\right]^{-}$and AcrH_{2} at $25{ }^{\circ} \mathrm{C}$ was obtained after column chromatography, which was packed with silicagel 60. (c) shows ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the unreacted AcrH_{2} obtained from the first fraction, which was eluted by $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$. (d) shows ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the product obtained from the second fraction, which was eluted by $90 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 10% acetone. This spectrum is completely matched with that of $\operatorname{Acr}(\mathrm{O})$ authentic sample.

