Diels-Alder Cycloaddition as a New Approach Toward Stable PC(*sp*³)P-Metalated Compounds

Clarite Azerraf, Alina Shpruhman and Dmitri Gelman* Institute of Chemistry The Hebrew University of Jerusalem Edmund Safra Campus, Givat Ram, 91904 Jerusalem, Israel Fax: (+) 972-2-6585279 dgelman@chem.ch.huji.ac.il

General Considerations. All manipulations were performed using standard Schlenk techniques under dry N₂. All reagents were purchased from the usual suppliers and used without further purification. 1,8-bis(diphenylphosphino)anthracene^[1] was synthesized according the previously published procedures. All reagents were weighed and handled in air. Flash column chromatography was performed with Merck ultra pure silica gel (230-400 mesh). All catalytic reactions were carried out under air in single use screw-capped tubes. Yields refer to isolated yields of compounds greater than 95% purity as determined proton Nuclear Magnetic Resonance spectroscopy (¹H-NMR) analysis. The CAS numbers of the known compound were listed. Spectroscopy data of the known compounds matches with the data reported in the corresponding reference. ¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker 400 MHz instrument with chemical shifts reported in ppm relative to the residual deuterated solvent or the internal standard tetramethylsilane. For the thermogravimetric analysis (TGA), a Mettler TC10A/TC15 TA controller and Mettler M3 thermobalance were used. Samples of 10-20 mg were weighed and heated to 30-500 °C at a rate of 10 °C/min. Diffraction data were collected with a Bruker APEX CCD instrument (MoK α radiation ($\lambda = 0.71073$ Å)). Crystals were mounted onto glass fibers using epoxy. Single crystal reflection data were collected on a Bruker APEX CCD X-ray diffraction system controlled by a Pentium-based PC running the SMART software package.^[2] The integration of data frames and refinement of cell structure were done by the SAINT+ program package.^[3] Refinement of the structure 4 on F^2 was carried out by the SHELXTL software package.^[4] For compound 5, solvent molecules were disordered and, therefore, were refined isotropically using SQUEEZE program.^[5]

1,8-Bis (diphenylphosphino)-9-anthrylpalladium(II) Chloride^[1] (1)

(CAS Registry No.: 131276-28-3).

The suspension of 500 mg (0.73 mmol) of 1,8-bis(diphenylphosphino)anthracene and 189.1 mg (0.73 mmol) of PdCl₂(CH₃CN)₂ in 20 ml of ethylene glycol monomethyl ether was heated at reflux for 2 hours under nitrogen. After cooling to RT, the green precipitate was filtered off, washed twice with methanol and dried in high vacuum to yield 442 mg (88%) of 1. ¹H NMR, 400 MHz (CDCl₃), δ : 7.40-7.50 (12H, m); 7.58 (2H, t, *J*=7.3 Hz); 7.77 (2H, dd, *J*=5.1, *J*=11.1 Hz); 7.96 (8H, m); 8.12 (2H, d, *J*=8.3 Hz); 8.33 (1H, s). ³¹P NMR, 400 MHz (CDCl₃), δ : 42.92 ¹³C NMR, 400 (CDCl₃), δ : 122.6, 125.9 (t, *J*=4.8 Hz), 128.8 (t, *J*=5.2 Hz), 130.7, 131.3 (t, *J*=22.5 Hz), 131.6 (d, *J*=7.3 Hz), 133.8 (t, *J*=7.3 Hz), 138.6, 146.5 (t, *J*=22.4 Hz). Anal. Calcd. For C₃₈H₂₇ClP₂Pd : C, 66.39; H, 3.96. Found: C, 66.28; H, 3.81.

1,8-Bis (diphenylphosphino)-9-anthrylnickel(II) Chloride^[1](2)

(CAS Registry No.: 131276-26-1).

The suspension of 500 mg (0.73 mmol) of 1,8-bis(diphenylphosphino)anthracene and 160.4 mg (0.73 mmol) of NiCl₂(dme) in 20 ml of ethylene glycol monomethyl ether was added 0.12 ml (0.73mmol) of diisopropylethylamine and the mixture heated at reflux for 2 hours under nitrogen. After cooling to room temperature the yellow precipitate was filtered off, washed twice with methanol and dried in high vacuum to yield 280 mg (60%) of **2**. ¹H NMR, 400 MHz (CDCl₃), δ : 7.40-7.45 (12H, m); 7.54 (2H, t, *J*=10.1 Hz); 7.68 (2H, dd, *J*=5.0, *J*=9.1 Hz); 7.95 (8H, m); 8.07 (2H, d, *J*=9.1 Hz); 8.24 (1H, s). ³¹P NMR, 400 MHz (CDCl₃), δ : 41.87 ¹³C NMR, 400 (CDCl₃), δ : 121.8, 126.1 (t, *J*=3.6 Hz), 128.6 (t, *J*=5.10 Hz), 129.1, 130.5, 131.1 (d, *J*=22.1 Hz), 133.7 (t, *J*=6.4 Hz), 139.0, 148.5. Anal. Calcd. for C₃₈H₂₇ClP₂Ni: C, 71.35; H, 4.25. Found: C, 71.29; H, 4.44.

1,8-Bis (diphenylphosphino)-9-anthrylplatinum(II) Chloride (3)

The suspension of 500 mg (0.73 mmol) of 1,8-bis(diphenylphosphino)anthracene and 254 mg (0.73 mmol) of PtCl₂(CH₃CN)₂ in 20 ml of ethylene glycol monomethyl ether was added 0.12 ml (0.73mmol) of diisopropylethylamine and the mixture heated at reflux for 2 hours under nitrogen. After cooling to room temperature the green precipitate was filtered off, washed twice with methanol and dried in high vacuum to yield 368 mg (65%) of **3**. ¹H NMR, 400 MHz (CDCl₃), δ : 7.45 (12H, m); 7.54 (2H, t, J=7.6 Hz); 7.8 (2H, dd, J=5.7, J=11.8 Hz); 7.96 (8H, m); 8.12 (2H, d, J=8.0 Hz); 8.37 (1H, s). ³¹P NMR, 400 MHz (CDCl₃), δ : 39.65 (t, J=1495.3 Hz). ¹³C NMR, 400 (CDCl₃), δ : 120.64, 126.1 (t, J=4.9 Hz), 128.7 (t, J=5.5 Hz), 130.8, 131.3 (d, J=27.4 Hz), 133.0 (t, J=7.7 Hz),133.8 (t, J=6.9 Hz), 138.6 (t, J=6.9 Hz), 145.5 (t, J=18.1 Hz). Anal. Calcd. For C₃₈H₂₇ClP₂Pt: C, 58.81; H, 3.51. Found: C, 58.64; H, 3.58.

Synthesis of complex 4

To the suspension of 200 mg (0.29 mmol) of **1** in 5 ml of diethylene glycol dimethyl ether (diglyme), 0.053 ml (0.44 mmol) of dimethyl acetylenedicarboxylate (DMAD) was added and the mixture heated at reflux for 24 hours under N₂. After cooling down to RT the solvent was removed by evaporation under reduced pressure. Addition of methanol results in the formation of a dark-green precipitate. The solid was filtered off, washed twice with methanol and dried in high vacuum to yield 154 mg (64%) of **4**. ¹H NMR, 400 MHz (CDCl₃), δ : 3.20 (3H, s); 3.61 (3H, s); 5.79 (1H, s); 7.23 (4H, m); 7.30 (4H, t, *J*=7.1 Hz); 7.39 (2H, t, *J*=7.8 Hz); 7.47 (6H, m); 7.55-7.61 (6H, m); 7.82 (4H, m). ³¹P NMR, 400 MHz (CDCl₃), δ : 41.88 ¹³C NMR, 400 (CDCl₃), δ : 50.5, 51.9 (d, *J*=45.85 Hz), 126.41,127.1, 128.33 (t, *J*=5.5 Hz),128.6, 128.7 (t, *J*=5.1 Hz),130.3, 130.5, 130.7, 130.9, 133.6 (q, *J*=8.1 Hz), 140.8, 145.4 (t, *J*=10.3Hz),162.4 (d, *J*=20.2 Hz), 164.1, 167.5. Anal. Calcd. for C₄₄H₃₃ClO₄P₂Pd : C, 63.71; H, 4.01. Found: C, 63.72; H, 4.22.

Synthesis of complex 5

To the suspension of 200 mg (0.31 mmol) of **2** in 5 ml of diethylene glycol dimethyl ether (diglyme), 0.053 ml (0.47 mmol) of DMAD was added and the mixture heated at reflux for 24 h. After cooling to RT the solvent was removed by evaporation under reduced pressure. Addition of methanol to the mixture results in the formation of a dark-red precipitate. The solid was filtered off, washed twice with methanol and dried in high vacuum to yield 177 mg (73%) of **5**. ¹H NMR, 400 MHz (CDCl₃), δ : 3.65 (3H, s); 3.71 (3H, s); 5.58 (1H, s); 7.16 (2H, t, *J*=7.3 Hz); 7.23 (6H, t, *J*=7.5

Hz);7.41-7.46 (10H, m); 7.64 (4H, dd, J=5.8, J=12.6Hz); 7.74 (4H, dd, J=6.3, J=11.1Hz). ³¹P NMR, 400 MHz (CDCl₃), δ : 32.65 ¹³C NMR, 400 (CDCl₃), δ : 51.9, 52.2 (d, J=9.5 Hz), 125.88, 126.87 (t, J=2.6 Hz), 127.99, 128.3 (t, J=4.8 Hz), 128.6 (t, J=4.8 Hz), 130.1 (d, J=41.4 Hz), 131.6 (t, J=20.1 Hz),132.3 (m), 133.4, 144.1 (t, J=8.1 Hz), 146.4, 163.6 (t, J=23.1 Hz), 166.7 (d, J=76.7 Hz). Anal. Calcd. for C₄₄H₃₃ClNiO₄P₂: C, 67.59; H, 4.25 . Found: C, 67.68; H, 4.26.

Synthesis of complex 6

To the suspension of 200 mg (0.26 mmol) of **3** in 5 ml of Diethylene glycol dimethyl ether (diglyme), 0.047 ml (0.39 mmol) of DMAD was added and the mixture heated at reflux for 24 h. After cooling to room temp. the solvent was reduced by evaporation under reduced pressure. An addition of methanol to the mixture, results in a light grey precipitate. The solid was filtered off, washed twice with methanol and dried in high vacuum to yield 167 mg (81%) of **6**. ¹H NMR, 400 MHz (CDCl₃), δ : 3.07 (3H, s); 3.58 (3H, s); 5.82 (1H, s); 7.18-7.33 (8H, m); 7.38 (2H, t, *J*=6.5 Hz); 7.48-7.53 (8H, m); 7.59 (4H, dd, *J*=6.8, *J*=13.3Hz); 7.85 (4H, dd, *J*=6.8, *J*=13.3Hz). ³¹P NMR, 400 MHz (CDCl₃), δ : 42.37 (t, *J*=1578.2 Hz). ¹³C NMR, 400 (CDCl₃), δ : 50.3, 51.4 (d, *J*=69.7 Hz), 126.4, 126.9 (t, *J*=3.7 Hz),128.2 (t, *J*=5.1 Hz), 128.7 (t, *J*=5.5 Hz), 130.5 (d, *J*=28.7 Hz), 133.5 (t, *J*=6.6 Hz), 133.8 (t, *J*=7.7 Hz), 140.7, 145.5 (t, *J*=8.1 Hz), 163.3, 164.0, 167.8. Anal. Calcd. for C₄₄H₃₃ClO₄P₂Pt: C, 57.55; H, 3.62. Found: C, 57.67; H, 3.81.

References:

- 1. Haenel, M. W.; Jakubik, D.; Krueger, C.; Betz, P. Chem. Ber. 1991,124, 333.
- 2. SMART-NT, V. 5.6, Bruker AXS GMBH, Karlsruhe, Germany, 2002.
- 3. SAINT-NT, V. 5.0, Bruker AXS GMBH, Karlsruhe, Germany, 2002.
- 4. SHELXTL-NT, V. 6.1, Bruker AXS GMBH, Karlsruhe, Germany, 2002.
- 5. SQUEEZE v.d. Sluis, P.; Spek, A. L. Acta Crystallogr., Sect A 1990, 46, 194.

31P-NMR de	ecoupled	42.92		Ph ₂	P→Pd PF	Ph ₂			IMR
					CI 1			Current I NAME EXPNO PROCNO F2 - Acqu Date Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 d11 DELTA TD0 NUC1 PL1 SF01 CPDPRG2	Data Parameters exp131 2 1 1 1 1 1 1 1 1 1 1 1 1 1
								NUC2 PCPD2 PL2 PL12 PL13 SFO2	1H 100.00 usec 120.00 dB 17.30 dB 17.30 dB 400.1324710 MHz
							Por Berneration	 F2 - Proc SI SF WDW SSB	essing parameters 32768 161.9755956 MHz no 0
80	60	40	20	0	-20	-40	60	 LB GB PC	0.00 Hz 0 2.00

Scale: 20.24 ppm/cm, 3279 Hz/cm

13C-NMR 1H decoupled

77.03	
	ہ Ph ₂ P

Scale: 8.333 ppm/cm, 838.5 Hz/cm

Ni-PPh₂

C

Supplementary Material (ESI) for Chemical Communications

31P-NMR decoupled 41.88 CO₂Me MeO₂C Current Data Parameters NAME exp132 28 EXPNO PROCNO Ph₂P – Pd ⁻PPh₂ F2 - Acquisition Parameters CI Date 20080511 Time 16.16 INSTRUM spect PROBHD 5 mm Multinucl 4 zgpg30 65536 PULPROG TD SOLVENT Acetone NS 29 DS 4 SWH 64724.918 Hz FIDRES 0.987624 Hz AQ 0.5063156 sec 9195.2 7.725 usec 6.00 usec RG DW DE TE 298.0 K 2.00000000 sec 0.03000000 sec D1 d11 DELTA 1.89999998 sec TD0 1 ====== CHANNEL fl ======= NUC1 31P P1 6.92 usec -6.00 dB PL1 161.9674940 MHz SF01 ====== CHANNEL f2 ======= CPDPRG2 waltz16 NUC2 1H PCPD2 100.00 usec PL2 120.00 dB PL12 17.30 dB PL13 17.30 dB SFO2 400.1324710 MHz F2 - Processing parameters SI 32768 161.9755956 MHz SF WDW_ EM SSB 0 LB 1.00 Hz GB 0 PC 2.00 100 50 0 -50 -100 -150 -200 ppm

Scale: 20.24 ppm/cm, 3279 Hz/cm

1H-NMR

-50

-100

nical Communications y of Chemistry 2008	NMR	
CO ₂ Me	Current Data Parameters NAME expl35 EXPNO 2 PROCNO 1	
$\frac{MeO_2C}{h_2P} - Ni - PPh_2$	F2 - Acquisition Parameters Date 20080507 Time 12.15 INSTRUM spect PROBHD 5 mm Multinucl PULPROG zgpg30 TD 65536 SOLVENT Acetone NS 58 DS 4 SWH 64724.918 FIDRES 0.987624 AQ 0.5063156 RG 9195.2 DW 7.725 use DE 6.00 use	C BC BC
	TE 298.0 K D1 2.0000000 sed d11 0.03000000 sed DELTA 1.89999998 sed TD0 1	
	NUC1 31P P1 6.92 us PL1 -6.00 dB SF01 161.9674940 MH	ec z
	Embedded CHANNEL f2 f2 <thf2< th=""> f2 <thf2< th=""> f2 f2</thf2<></thf2<>	== ec z
*	F2 - Processing parameters SI 32768 SF 161.9755956 MH WDW EM SSB 0 LB 1.00 Hz GB 0	Z
-150 -200 Scale: 20.24 ppm/cm, 3279 H	ppm z/cm	

100

50

0

Table 1. Crystal data and structure refine	ement for Klarit8.				
Identification code	klarit8m	klarit8m			
Empirical formula	C48 H41 Cl Ni O5 P2				
Formula weight	853.91				
Temperature	173(1) K				
Wavelength	0.71073 Å				
Crystal system	Triclinic				
Space group	P-1				
Unit cell dimensions	a = 10.870(2) Å	α= 75.338(2)°.			
	b = 14.914(2) Å	$\beta = 72.595(2)^{\circ}.$			
	c = 17.181(3) Å	$\gamma = 77.101(3)^{\circ}.$			
Volume	2538.0(7) Å ³				
Z	2				
Density (calculated)	1.117 Mg/m ³				
Absorption coefficient	0.536 mm ⁻¹				
F(000)	888				
Crystal size	0.45 x 0.30 x 0.08 mm ³	0.45 x 0.30 x 0.08 mm ³			
Theta range for data collection	2.07 to 26.00°.	2.07 to 26.00°.			
Index ranges	-12<=h<=13, -17<=k<=	-12<=h<=13, -17<=k<=18, 0<=l<=21			
Reflections collected 26275					

Independent reflections	9920 [$R(int) = 0.0676$]
Completeness to theta = 26.00°	99.2 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9920 / 10 / 511
Goodness-of-fit on F ²	1.158
Final R indices [I>2sigma(I)]	R1 = 0.0802, wR2 = 0.2254
R indices (all data)	R1 = 0.0898, wR2 = 0.2347
Largest diff. peak and hole	2.018 and -0.654 e.Å ⁻³

	Х	У	Z	U(eq)
C(1)	4170(4)	3227(3)	3224(2)	14(1)
C(2)	3084(4)	1784(3)	4177(3)	20(1)
C(3)	2743(4)	3470(3)	3687(2)	16(1)
C(4)	2038(4)	4368(3)	3534(3)	17(1)
C(5)	742(4)	4534(3)	4009(3)	22(1)
C(6)	195(4)	3806(4)	4585(3)	24(1)
C(7)	892(4)	2888(3)	4691(3)	22(1)
C(8)	2168(4)	2722(3)	4221(3)	19(1)
C(9)	4864(4)	2641(3)	3886(2)	16(1)
C(10)	6039(4)	2805(3)	3929(3)	18(1)
C(11)	6657(5)	2205(3)	4522(3)	27(1)
C(12)	6059(5)	1463(3)	5059(3)	28(1)
C(13)	4888(5)	1293(3)	4997(3)	26(1)
C(14)	4286(4)	1884(3)	4405(3)	20(1)
C(15)	4096(4)	2496(3)	2754(3)	17(1)
C(16)	3543(4)	1758(3)	3244(3)	18(1)
C(17)	4593(4)	2702(3)	1827(3)	19(1)
C(18)	4040(7)	3590(5)	601(3)	52(2)
C(19)	3384(5)	942(3)	2967(3)	24(1)
C(20)	3503(9)	289(5)	1834(4)	62(2)
C(21)	2187(4)	5368(3)	1823(3)	22(1)
C(22)	2770(5)	5894(4)	1065(3)	35(1)
C(23)	2271(6)	6059(5)	378(4)	45(2)
C(24)	1168(6)	5687(5)	453(4)	43(1)
C(25)	581(6)	5169(5)	1203(4)	43(1)
C(26)	1085(5)	5001(4)	1887(3)	31(1)
C(27)	2803(5)	6226(3)	2946(3)	21(1)
C(28)	3787(5)	6431(3)	3206(3)	27(1)
C(29)	3639(6)	7268(4)	3459(3)	37(1)
C(30)	2521(6)	7919(4)	3438(3)	40(1)
C(31)	1522(6)	7724(4)	3193(4)	41(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for Klarit8. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(32)	1669(5)	6882(4)	2935(3)	32(1)
C(33)	8251(4)	3236(3)	2547(3)	20(1)
C(34)	8392(5)	2962(4)	1800(3)	35(1)
C(35)	9594(6)	2541(5)	1393(4)	46(2)
C(36)	10676(6)	2395(4)	1719(4)	44(1)
C(37)	10522(5)	2663(4)	2460(4)	39(1)
C(38)	9302(5)	3090(4)	2869(3)	27(1)
C(39)	6949(4)	4611(3)	3552(3)	19(1)
C(40)	7532(5)	5363(4)	3020(3)	32(1)
C(41)	7737(6)	6062(4)	3356(4)	37(1)
C(42)	7352(6)	6015(4)	4198(4)	38(1)
C(43)	6772(5)	5282(4)	4727(3)	36(1)
C(44)	6573(5)	4576(4)	4401(3)	27(1)
Cl(1)	6001(1)	5320(1)	1489(1)	28(1)
Ni(1)	4986(1)	4307(1)	2524(1)	14(1)
O(1)	5707(4)	2489(3)	1459(2)	39(1)
O(2)	3658(4)	3227(3)	1486(2)	35(1)
O(3)	3012(5)	248(3)	3434(2)	44(1)
O(4)	3654(4)	1064(3)	2146(2)	41(1)
P(1)	2997(1)	5103(1)	2661(1)	16(1)
P(2)	6629(1)	3742(1)	3087(1)	16(1)
O(5)	5387(12)	7958(10)	1167(8)	96(4)
C(45)	5828(13)	8551(12)	361(9)	84(5)
C(46)	7265(14)	8157(14)	143(11)	85(5)
C(47)	7626(18)	7543(19)	928(10)	143(10)
C(48)	6401(12)	7726(11)	1607(9)	63(4)
O(6)	2894(11)	-551(7)	7144(8)	83(3)
C(55)	1478(11)	-400(9)	7392(13)	90(6)
C(56)	1032(11)	640(9)	7140(10)	67(4)
C(57)	2237(9)	1097(7)	6974(7)	38(2)
C(58)	3235(11)	290(6)	7247(9)	53(3)

Table 3.	Bond lengths [Å] and angles [°] for	Klarit8.

C(1)-C(3)	1.525(6)
C(1)-C(9)	1.531(6)
C(1)-C(15)	1.540(5)
C(1)-Ni(1)	1.961(4)
C(2)-C(14)	1.519(6)
C(2)-C(8)	1.530(6)
C(2)-C(16)	1.538(6)
C(2)-H(2)	1.0000
C(3)-C(8)	1.388(6)
C(3)-C(4)	1.391(6)
C(4)-C(5)	1.403(6)
C(4)-P(1)	1.812(4)
C(5)-C(6)	1.379(7)
C(5)-H(5)	0.9500
C(6)-C(7)	1.405(7)
C(6)-H(6)	0.9500
C(7)-C(8)	1.384(6)
C(7)-H(7)	0.9500
C(9)-C(10)	1.379(6)
C(9)-C(14)	1.391(6)
C(10)-C(11)	1.403(6)
C(10)-P(2)	1.811(4)
C(11)-C(12)	1.395(7)
C(11)-H(11)	0.9500
C(12)-C(13)	1.391(7)
C(12)-H(12)	0.9500
C(13)-C(14)	1.388(6)
C(13)-H(13)	0.9500
C(15)-C(16)	1.343(6)
C(15)-C(17)	1.495(6)
C(16)-C(19)	1.474(6)
C(17)-O(1)	1.199(6)
C(17)-O(2)	1.325(6)
C(18)-O(2)	1.444(6)

C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-O(3)	1.204(6)
C(19)-O(4)	1.324(6)
C(20)-O(4)	1.451(6)
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-C(22)	1.388(7)
C(21)-C(26)	1.389(7)
C(21)-P(1)	1.821(4)
C(22)-C(23)	1.388(7)
C(22)-H(22)	0.9500
C(23)-C(24)	1.389(9)
C(23)-H(23)	0.9500
C(24)-C(25)	1.374(8)
C(24)-H(24)	0.9500
C(25)-C(26)	1.386(7)
C(25)-H(25)	0.9500
C(26)-H(26)	0.9500
C(27)-C(28)	1.392(7)
C(27)-C(32)	1.394(7)
C(27)-P(1)	1.812(4)
C(28)-C(29)	1.385(7)
C(28)-H(28)	0.9500
C(29)-C(30)	1.379(9)
C(29)-H(29)	0.9500
C(30)-C(31)	1.385(9)
C(30)-H(30)	0.9500
C(31)-C(32)	1.397(7)
C(31)-H(31)	0.9500
C(32)-H(32)	0.9500
C(33)-C(38)	1.367(6)
C(33)-C(34)	1.398(7)
C(33)-P(2)	1.822(4)

C(34)-C(35)	1.379(8)
C(34)-H(34)	0.9500
C(35)-C(36)	1.401(9)
C(35)-H(35)	0.9500
C(36)-C(37)	1.380(8)
C(36)-H(36)	0.9500
C(37)-C(38)	1.396(7)
C(37)-H(37)	0.9500
C(38)-H(38)	0.9500
C(39)-C(44)	1.382(7)
C(39)-C(40)	1.395(7)
C(39)-P(2)	1.825(4)
C(40)-C(41)	1.398(7)
C(40)-H(40)	0.9500
C(41)-C(42)	1.369(8)
C(41)-H(41)	0.9500
C(42)-C(43)	1.372(8)
C(42)-H(42)	0.9500
C(43)-C(44)	1.393(7)
C(43)-H(43)	0.9500
C(44)-H(44)	0.9500
Cl(1)-Ni(1)	2.2069(12)
Ni(1)-P(2)	2.1872(12)
Ni(1)-P(1)	2.1977(12)
O(5)-C(45)	1.4499(10)
O(5)-C(48)	1.4500(10)
C(45)-C(46)	1.5096(11)
C(45)-H(45A)	0.9900
C(45)-H(45B)	0.9900
C(46)-C(47)	1.5298(10)
C(46)-H(46A)	0.9900
C(46)-H(46B)	0.9900
C(47)-C(48)	1.5100(10)
C(47)-H(47A)	0.9900
C(47)-H(47B)	0.9900
C(48)-H(48A)	0.9900

C(48)-H(48B)	0.9900
O(6)-C(55)	1.4497(11)
O(6)-C(58)	1.4500(10)
C(55)-C(56)	1.5096(11)
C(55)-H(55A)	0.9900
C(55)-H(55B)	0.9900
C(56)-C(57)	1.5295(10)
C(56)-H(56A)	0.9900
C(56)-H(56B)	0.9900
C(57)-C(58)	1.5099(10)
C(57)-H(57A)	0.9900
C(57)-H(57B)	0.9900
C(58)-H(58A)	0.9900
C(58)-H(58B)	0.9900
C(3)-C(1)-C(9)	105.8(3)
C(3)-C(1)-C(15)	101.8(3)
C(9)-C(1)-C(15)	103.2(3)
C(3)-C(1)-Ni(1)	114.7(3)
C(9)-C(1)-Ni(1)	114.6(3)
C(15)-C(1)-Ni(1)	115.2(3)
C(14)-C(2)-C(8)	105.8(3)
C(14)-C(2)-C(16)	105.1(3)
C(8)-C(2)-C(16)	104.5(3)
C(14)-C(2)-H(2)	113.5
C(8)-C(2)-H(2)	113.5
C(16)-C(2)-H(2)	113.5
C(8)-C(3)-C(4)	122.2(4)
C(8)-C(3)-C(1)	115.6(4)
C(4)-C(3)-C(1)	122.0(4)
C(3)-C(4)-C(5)	118.0(4)
C(3)-C(4)-P(1)	110.1(3)
C(5)-C(4)-P(1)	131.7(4)
C(6)-C(5)-C(4)	119.8(4)
C(6)-C(5)-H(5)	120.1
C(4)-C(5)-H(5)	120.1

C(5)-C(6)-C(7)	121.5(4)
C(5)-C(6)-H(6)	119.2
C(7)-C(6)-H(6)	119.2
C(8)-C(7)-C(6)	118.8(4)
C(8)-C(7)-H(7)	120.6
C(6)-C(7)-H(7)	120.6
C(7)-C(8)-C(3)	119.3(4)
C(7)-C(8)-C(2)	128.5(4)
C(3)-C(8)-C(2)	112.1(4)
C(10)-C(9)-C(14)	121.7(4)
C(10)-C(9)-C(1)	122.4(4)
C(14)-C(9)-C(1)	115.7(4)
C(9)-C(10)-C(11)	119.3(4)
C(9)-C(10)-P(2)	110.8(3)
C(11)-C(10)-P(2)	129.6(4)
C(12)-C(11)-C(10)	119.0(4)
C(12)-C(11)-H(11)	120.5
C(10)-C(11)-H(11)	120.5
C(13)-C(12)-C(11)	121.1(4)
C(13)-C(12)-H(12)	119.4
C(11)-C(12)-H(12)	119.4
C(14)-C(13)-C(12)	119.6(4)
C(14)-C(13)-H(13)	120.2
C(12)-C(13)-H(13)	120.2
C(13)-C(14)-C(9)	119.3(4)
C(13)-C(14)-C(2)	128.5(4)
C(9)-C(14)-C(2)	112.1(4)
C(16)-C(15)-C(17)	128.4(4)
C(16)-C(15)-C(1)	114.4(4)
C(17)-C(15)-C(1)	117.2(4)
C(15)-C(16)-C(19)	126.0(4)
C(15)-C(16)-C(2)	114.9(4)
C(19)-C(16)-C(2)	119.1(4)
O(1)-C(17)-O(2)	125.6(4)
O(1)-C(17)-C(15)	124.1(4)
O(2)-C(17)-C(15)	110.0(4)

O(2)-C(18)-H(18A)	109.5
O(2)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
O(2)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
O(3)-C(19)-O(4)	123.3(4)
O(3)-C(19)-C(16)	123.9(4)
O(4)-C(19)-C(16)	112.8(4)
O(4)-C(20)-H(20A)	109.5
O(4)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
O(4)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(22)-C(21)-C(26)	118.8(4)
C(22)-C(21)-P(1)	117.9(4)
C(26)-C(21)-P(1)	123.1(4)
C(21)-C(22)-C(23)	121.2(5)
C(21)-C(22)-H(22)	119.4
C(23)-C(22)-H(22)	119.4
C(22)-C(23)-C(24)	119.1(5)
C(22)-C(23)-H(23)	120.4
C(24)-C(23)-H(23)	120.4
C(25)-C(24)-C(23)	120.0(5)
C(25)-C(24)-H(24)	120.0
C(23)-C(24)-H(24)	120.0
C(24)-C(25)-C(26)	120.8(5)
C(24)-C(25)-H(25)	119.6
C(26)-C(25)-H(25)	119.6
C(25)-C(26)-C(21)	120.1(5)
C(25)-C(26)-H(26)	120.0
C(21)-C(26)-H(26)	120.0
C(28)-C(27)-C(32)	119.0(4)
C(28)-C(27)-P(1)	119.6(4)
C(32)-C(27)-P(1)	121.3(4)

C(29)-C(28)-C(27)	120.7(5)
C(29)-C(28)-H(28)	119.7
C(27)-C(28)-H(28)	119.7
C(30)-C(29)-C(28)	120.1(5)
C(30)-C(29)-H(29)	120.0
C(28)-C(29)-H(29)	120.0
C(29)-C(30)-C(31)	120.2(5)
C(29)-C(30)-H(30)	119.9
C(31)-C(30)-H(30)	119.9
C(30)-C(31)-C(32)	119.9(5)
C(30)-C(31)-H(31)	120.1
C(32)-C(31)-H(31)	120.1
C(27)-C(32)-C(31)	120.1(5)
C(27)-C(32)-H(32)	119.9
C(31)-C(32)-H(32)	119.9
C(38)-C(33)-C(34)	120.1(4)
C(38)-C(33)-P(2)	121.6(4)
C(34)-C(33)-P(2)	118.2(3)
C(35)-C(34)-C(33)	119.8(5)
C(35)-C(34)-H(34)	120.1
C(33)-C(34)-H(34)	120.1
C(34)-C(35)-C(36)	120.3(5)
C(34)-C(35)-H(35)	119.9
C(36)-C(35)-H(35)	119.9
C(37)-C(36)-C(35)	119.4(5)
C(37)-C(36)-H(36)	120.3
C(35)-C(36)-H(36)	120.3
C(36)-C(37)-C(38)	120.0(5)
C(36)-C(37)-H(37)	120.0
C(38)-C(37)-H(37)	120.0
C(33)-C(38)-C(37)	120.4(5)
C(33)-C(38)-H(38)	119.8
C(37)-C(38)-H(38)	119.8
C(44)-C(39)-C(40)	119.4(4)
C(44)-C(39)-P(2)	122.5(3)
C(40)-C(39)-P(2)	118.0(4)

C(39)-C(40)-C(41)	119.4(5)
C(39)-C(40)-H(40)	120.3
C(41)-C(40)-H(40)	120.3
C(42)-C(41)-C(40)	120.3(5)
C(42)-C(41)-H(41)	119.9
C(40)-C(41)-H(41)	119.9
C(41)-C(42)-C(43)	120.8(5)
C(41)-C(42)-H(42)	119.6
C(43)-C(42)-H(42)	119.6
C(42)-C(43)-C(44)	119.5(5)
C(42)-C(43)-H(43)	120.2
C(44)-C(43)-H(43)	120.2
C(39)-C(44)-C(43)	120.6(5)
C(39)-C(44)-H(44)	119.7
C(43)-C(44)-H(44)	119.7
C(1)-Ni(1)-P(2)	87.39(12)
C(1)-Ni(1)-P(1)	86.60(12)
P(2)-Ni(1)-P(1)	146.64(5)
C(1)-Ni(1)-Cl(1)	165.57(12)
P(2)-Ni(1)-Cl(1)	96.04(5)
P(1)-Ni(1)-Cl(1)	97.86(5)
C(17)-O(2)-C(18)	116.3(4)
C(19)-O(4)-C(20)	115.5(4)
C(4)-P(1)-C(27)	107.1(2)
C(4)-P(1)-C(21)	106.7(2)
C(27)-P(1)-C(21)	104.1(2)
C(4)-P(1)-Ni(1)	103.07(15)
C(27)-P(1)-Ni(1)	113.83(16)
C(21)-P(1)-Ni(1)	121.16(15)
C(10)-P(2)-C(33)	105.2(2)
C(10)-P(2)-C(39)	107.3(2)
C(33)-P(2)-C(39)	103.7(2)
C(10)-P(2)-Ni(1)	103.60(14)
C(33)-P(2)-Ni(1)	124.92(15)
C(39)-P(2)-Ni(1)	110.97(14)
C(45)-O(5)-C(48)	109.5(12)

O(5)-C(45)-C(46)	100.9(12)
O(5)-C(45)-H(45A)	111.6
C(46)-C(45)-H(45A)	111.6
O(5)-C(45)-H(45B)	111.6
C(46)-C(45)-H(45B)	111.6
H(45A)-C(45)-H(45B)	109.4
C(45)-C(46)-C(47)	108.9(14)
C(45)-C(46)-H(46A)	109.9
C(47)-C(46)-H(46A)	109.9
C(45)-C(46)-H(46B)	109.9
C(47)-C(46)-H(46B)	109.9
H(46A)-C(46)-H(46B)	108.3
C(48)-C(47)-C(46)	103.0(14)
C(48)-C(47)-H(47A)	111.2
C(46)-C(47)-H(47A)	111.2
C(48)-C(47)-H(47B)	111.2
C(46)-C(47)-H(47B)	111.2
H(47A)-C(47)-H(47B)	109.1
O(5)-C(48)-C(47)	102.5(13)
O(5)-C(48)-H(48A)	111.3
C(47)-C(48)-H(48A)	111.3
O(5)-C(48)-H(48B)	111.3
C(47)-C(48)-H(48B)	111.3
H(48A)-C(48)-H(48B)	109.2
C(55)-O(6)-C(58)	104.1(11)
O(6)-C(55)-C(56)	106.9(11)
O(6)-C(55)-H(55A)	110.3
C(56)-C(55)-H(55A)	110.3
O(6)-C(55)-H(55B)	110.3
C(56)-C(55)-H(55B)	110.3
H(55A)-C(55)-H(55B)	108.6
C(55)-C(56)-C(57)	105.3(10)
C(55)-C(56)-H(56A)	110.7
C(57)-C(56)-H(56A)	110.7
C(55)-C(56)-H(56B)	110.7
C(57)-C(56)-H(56B)	110.7

H(56A)-C(56)-H(56B)	108.8
C(58)-C(57)-C(56)	103.5(9)
C(58)-C(57)-H(57A)	111.1
C(56)-C(57)-H(57A)	111.1
C(58)-C(57)-H(57B)	111.1
C(56)-C(57)-H(57B)	111.1
H(57A)-C(57)-H(57B)	109.0
O(6)-C(58)-C(57)	106.4(9)
O(6)-C(58)-H(58A)	110.5
C(57)-C(58)-H(58A)	110.5
O(6)-C(58)-H(58B)	110.5
C(57)-C(58)-H(58B)	110.5
H(58A)-C(58)-H(58B)	108.6

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	17(2)	14(2)	12(2)	-6(2)	-3(2)	-3(2)
C(2)	25(2)	18(2)	17(2)	-3(2)	-2(2)	-8(2)
C(3)	19(2)	22(2)	12(2)	-7(2)	-5(2)	-7(2)
C(4)	22(2)	19(2)	15(2)	-3(2)	-7(2)	-8(2)
C(5)	18(2)	26(2)	25(2)	-17(2)	-4(2)	-1(2)
C(6)	16(2)	37(3)	22(2)	-14(2)	0(2)	-7(2)
C(7)	22(2)	31(2)	16(2)	-7(2)	1(2)	-16(2)
C(8)	23(2)	24(2)	14(2)	-7(2)	-3(2)	-9(2)
C(9)	22(2)	14(2)	11(2)	-6(2)	-4(2)	-1(2)
C(10)	18(2)	19(2)	16(2)	-3(2)	-5(2)	-4(2)
C(11)	29(3)	30(3)	26(2)	-4(2)	-17(2)	-2(2)
C(12)	43(3)	20(2)	23(2)	0(2)	-19(2)	0(2)
C(13)	43(3)	17(2)	18(2)	0(2)	-8(2)	-8(2)
C(14)	27(2)	17(2)	16(2)	-7(2)	-5(2)	-3(2)
C(15)	18(2)	16(2)	18(2)	-6(2)	-6(2)	-1(2)
C(16)	20(2)	16(2)	19(2)	-7(2)	-4(2)	-5(2)
C(17)	22(2)	18(2)	19(2)	-8(2)	-4(2)	-2(2)
C(18)	72(5)	56(4)	19(3)	-2(3)	-13(3)	4(3)
C(19)	31(2)	17(2)	28(2)	-5(2)	-15(2)	-3(2)
C(20)	112(6)	41(4)	53(4)	-28(3)	-36(4)	-11(4)
C(21)	26(2)	20(2)	20(2)	-5(2)	-11(2)	1(2)
C(22)	34(3)	48(3)	24(3)	6(2)	-13(2)	-17(2)
C(23)	45(3)	64(4)	24(3)	7(3)	-14(2)	-15(3)
C(24)	45(3)	59(4)	30(3)	-3(3)	-23(3)	-7(3)
C(25)	40(3)	61(4)	38(3)	-9(3)	-18(3)	-21(3)
C(26)	32(3)	43(3)	23(2)	-3(2)	-10(2)	-16(2)
C(27)	28(2)	15(2)	17(2)	-3(2)	-5(2)	-3(2)
C(28)	32(3)	24(2)	26(2)	-10(2)	-6(2)	-3(2)
C(29)	46(3)	32(3)	38(3)	-14(2)	-11(3)	-10(2)
C(30)	64(4)	28(3)	31(3)	-15(2)	-3(3)	-13(3)
C(31)	48(3)	25(3)	44(3)	-11(2)	-13(3)	8(2)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for Klarit8. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

C(32)	32(3)	30(3)	37(3)	-10(2)	-14(2)	2(2)
C(33)	16(2)	24(2)	22(2)	-5(2)	-3(2)	-6(2)
C(34)	27(3)	53(3)	28(3)	-17(2)	-11(2)	-2(2)
C(35)	34(3)	67(4)	40(3)	-29(3)	-6(3)	2(3)
C(36)	27(3)	49(4)	49(4)	-21(3)	1(3)	4(2)
C(37)	20(2)	50(3)	50(3)	-14(3)	-13(2)	-4(2)
C(38)	21(2)	32(3)	32(3)	-11(2)	-10(2)	-4(2)
C(39)	16(2)	21(2)	23(2)	-6(2)	-8(2)	-3(2)
C(40)	32(3)	34(3)	37(3)	-9(2)	-11(2)	-13(2)
C(41)	44(3)	30(3)	47(3)	-10(2)	-14(3)	-18(2)
C(42)	39(3)	35(3)	54(4)	-24(3)	-23(3)	-3(2)
C(43)	40(3)	44(3)	32(3)	-19(2)	-13(2)	-4(2)
C(44)	26(2)	30(3)	28(3)	-10(2)	-5(2)	-8(2)
Cl(1)	30(1)	30(1)	23(1)	7(1)	-5(1)	-13(1)
Ni(1)	14(1)	14(1)	13(1)	-2(1)	-4(1)	-4(1)
O(1)	31(2)	55(3)	24(2)	-10(2)	0(2)	-3(2)
O(2)	33(2)	42(2)	22(2)	-5(2)	-9(2)	6(2)
O(3)	80(3)	22(2)	37(2)	-2(2)	-18(2)	-23(2)
O(4)	74(3)	28(2)	30(2)	-13(2)	-15(2)	-17(2)
P(1)	19(1)	15(1)	17(1)	-4(1)	-6(1)	-3(1)
P(2)	15(1)	19(1)	16(1)	-4(1)	-5(1)	-4(1)

	X	у	Z	U(eq)
H(2)	2670	1231	4529	24
H(5)	244	5145	3935	26
H(6)	-672	3929	4917	29
H(7)	494	2391	5078	26
H(11)	7471	2304	4557	32
H(12)	6458	1067	5473	34
H(13)	4502	775	5358	31
H(18A)	4662	4023	483	78
H(18B)	3267	3925	409	78
H(18C)	4451	3069	310	78
H(20A)	4103	-273	2006	93
H(20B)	3703	450	1224	93
H(20C)	2602	166	2059	93
H(22)	3526	6147	1015	42
H(23)	2678	6422	-138	54
H(24)	820	5790	-14	52
H(25)	-180	4923	1253	51
H(26)	677	4635	2400	38
H(28)	4568	5992	3209	32
H(29)	4309	7394	3647	44
H(30)	2436	8502	3593	48
H(31)	738	8162	3201	49
H(32)	995	6755	2751	39
H(34)	7662	3066	1574	41
H(35)	9690	2350	888	55
H(36)	11508	2115	1434	52
H(37)	11246	2556	2691	46
H(38)	9203	3281	3374	33
H(40)	7788	5399	2435	39
H(41)	8144	6571	2998	45

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for Klarit8.

H(42)	7489	6497	4420	46
H(43)	6507	5255	5310	43
H(44)	6175	4065	4765	32
H(45A)	5679	9219	401	101
H(45B)	5393	8485	-48	101
H(46A)	7785	8675	-80	102
H(46B)	7459	7778	-289	102
H(47A)	7840	6872	891	172
H(47B)	8378	7732	1022	172
H(48A)	6276	7162	2055	76
H(48B)	6424	8256	1850	76
H(55A)	1158	-610	8002	109
H(55B)	1137	-757	7111	109
H(56A)	319	874	7591	80
H(56B)	715	778	6632	80
H(57A)	2541	1377	6377	46
H(57B)	2051	1590	7305	46
H(58A)	4124	378	6899	64
H(58B)	3210	246	7836	64

Table 1. Crystal data and structure refinement for Alina2.

Identification code	elena21m	
Empirical formula	C44 H33 Cl O4 P2 Pd	
Formula weight	829.49	
Temperature	173(1) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 8.3159(5) Å	α= 90°.
	b = 11.2104(7) Å	β= 90°.
	c = 38.813(2) Å	$\gamma = 90^{\circ}.$
Volume	3618.4(4) Å ³	
Z	4	
Density (calculated)	1.523 Mg/m ³	
Absorption coefficient	0.720 mm ⁻¹	
F(000)	1688	
Crystal size	0.19 x 0.16 x 0.11 mm ³	

Theta range for data collection	2.10 to 27.00°.
Index ranges	-10<=h<=10, -14<=k<=14, -49<=l<=49
Reflections collected	40630
Independent reflections	7909 [R(int) = 0.0515]
Completeness to theta = 27.00°	100.0 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7909 / 0 / 471
Goodness-of-fit on F ²	1.161
Final R indices [I>2sigma(I)]	R1 = 0.0376, $wR2 = 0.0818$
R indices (all data)	R1 = 0.0395, wR2 = 0.0826
Absolute structure parameter	-0.02(2)
Largest diff. peak and hole	0.926 and -0.767 e.Å ⁻³

	Х	у	Z	U(eq)
C(1)	8317(4)	9156(3)	9064(1)	15(1)
C(2)	9196(4)	10339(3)	9617(1)	18(1)
C(3)	9275(4)	10287(3)	8992(1)	17(1)
C(4)	9479(4)	10754(3)	8669(1)	18(1)
C(5)	10399(4)	11795(3)	8626(1)	24(1)
C(6)	11061(4)	12340(3)	8913(1)	25(1)
C(7)	10740(4)	11914(3)	9247(1)	22(1)
C(8)	9820(4)	10895(3)	9284(1)	18(1)
C(9)	9261(4)	8421(3)	9327(1)	17(1)
C(10)	9472(4)	7207(3)	9302(1)	20(1)
C(11)	10325(5)	6603(3)	9560(1)	27(1)
C(12)	10916(5)	7231(3)	9839(1)	30(1)
C(13)	10636(4)	8457(3)	9872(1)	25(1)
C(14)	9780(4)	9045(3)	9617(1)	20(1)
C(15)	6906(4)	9638(3)	9283(1)	17(1)
C(16)	7362(4)	10241(3)	9567(1)	18(1)
C(17)	5248(4)	9339(3)	9160(1)	20(1)
C(18)	3513(5)	9691(4)	8690(1)	46(1)
C(19)	6282(4)	10768(3)	9828(1)	18(1)
C(20)	3574(5)	11128(3)	9981(1)	29(1)
C(21)	6929(4)	10962(3)	8159(1)	24(1)
C(22)	6255(5)	10714(4)	7838(1)	33(1)
C(23)	5076(5)	11457(4)	7708(1)	40(1)
C(24)	4549(6)	12426(4)	7894(1)	47(1)
C(25)	5180(6)	12658(4)	8217(1)	49(1)
C(26)	6387(5)	11932(4)	8343(1)	35(1)
C(27)	9829(4)	9674(3)	7992(1)	24(1)
C(28)	10654(5)	8596(4)	7982(1)	36(1)
C(29)	11830(5)	8407(4)	7736(1)	47(1)
C(30)	12183(6)	9284(5)	7501(1)	53(1)
C(31)	11374(6)	10359(5)	7510(1)	47(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\mathring{A}^2x \ 10^3)$ for Alina2. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(32)	10199(5)	10552(4)	7756(1)	32(1)
C(33)	7215(4)	5368(3)	9073(1)	20(1)
C(34)	5662(5)	5665(3)	9186(1)	32(1)
C(35)	4631(5)	4796(4)	9309(1)	39(1)
C(36)	5133(5)	3624(4)	9323(1)	36(1)
C(37)	6656(5)	3311(3)	9214(1)	32(1)
C(38)	7696(5)	4183(3)	9091(1)	27(1)
C(39)	10116(4)	5915(3)	8671(1)	23(1)
C(40)	9774(5)	5138(3)	8402(1)	30(1)
C(41)	10994(6)	4784(4)	8179(1)	41(1)
C(42)	12512(6)	5242(4)	8216(1)	43(1)
C(43)	12875(6)	6003(4)	8482(1)	47(1)
C(44)	11670(5)	6348(4)	8709(1)	34(1)
Cl(1)	6671(1)	7216(1)	8138(1)	33(1)
O(1)	4474(3)	8503(2)	9256(1)	32(1)
O(2)	4869(3)	10057(2)	8898(1)	29(1)
O(3)	6733(3)	11165(2)	10098(1)	30(1)
O(4)	4747(3)	10719(2)	9732(1)	26(1)
P(1)	8394(1)	9933(1)	8338(1)	18(1)
P(2)	8501(1)	6569(1)	8925(1)	18(1)
Pd(1)	7702(1)	8226(1)	8627(1)	15(1)

Table 3. Bond	lengths [Å] a	and angles	[°] for	Alina2.

1.523(5)
1.528(4)
1.546(4)
2.057(3)
1.525(5)
1.530(5)
1.541(5)
1.0000
1.371(5)
1.398(5)
1.405(5)
1.819(3)
1.384(5)
0.9500
1.408(5)
0.9500
1.382(5)
0.9500
1.376(5)
1.393(5)
1.401(5)
1.821(4)
1.381(5)
0.9500
1.400(5)
0.9500
1.386(5)
0.9500
1.347(4)
1.498(5)
1.476(4)
1.196(4)
1.335(4)
1.446(5)

C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-O(3)	1.198(4)
C(19)-O(4)	1.332(4)
C(20)-O(4)	1.448(4)
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-C(26)	1.376(5)
C(21)-C(22)	1.394(5)
C(21)-P(1)	1.815(3)
C(22)-C(23)	1.382(5)
C(22)-H(22)	0.9500
C(23)-C(24)	1.376(6)
C(23)-H(23)	0.9500
C(24)-C(25)	1.383(7)
C(24)-H(24)	0.9500
C(25)-C(26)	1.381(6)
C(25)-H(25)	0.9500
C(26)-H(26)	0.9500
C(27)-C(32)	1.381(5)
C(27)-C(28)	1.390(5)
C(27)-P(1)	1.820(4)
C(28)-C(29)	1.384(6)
C(28)-H(28)	0.9500
C(29)-C(30)	1.371(6)
C(29)-H(29)	0.9500
C(30)-C(31)	1.380(7)
C(30)-H(30)	0.9500
C(31)-C(32)	1.383(6)
C(31)-H(31)	0.9500
C(32)-H(32)	0.9500
C(33)-C(38)	1.389(4)
C(33)-C(34)	1.404(5)
C(33)-P(2)	1.813(3)

C(34)-C(35)	1.383(6)
C(34)-H(34)	0.9500
C(35)-C(36)	1.380(6)
C(35)-H(35)	0.9500
C(36)-C(37)	1.380(6)
C(36)-H(36)	0.9500
C(37)-C(38)	1.390(5)
C(37)-H(37)	0.9500
C(38)-H(38)	0.9500
C(39)-C(44)	1.388(6)
C(39)-C(40)	1.391(5)
C(39)-P(2)	1.818(4)
C(40)-C(41)	1.390(6)
C(40)-H(40)	0.9500
C(41)-C(42)	1.370(7)
C(41)-H(41)	0.9500
C(42)-C(43)	1.374(6)
C(42)-H(42)	0.9500
C(43)-C(44)	1.389(6)
C(43)-H(43)	0.9500
C(44)-H(44)	0.9500
Cl(1)-Pd(1)	2.3694(9)
P(1)-Pd(1)	2.2908(9)
P(2)-Pd(1)	2.2874(9)
C(3)-C(1)-C(9)	107.6(3)
C(3)-C(1)-C(15)	102.0(2)
C(9)-C(1)-C(15)	102.2(2)
C(3)-C(1)-Pd(1)	113.6(2)
C(9)-C(1)-Pd(1)	113.9(2)
C(15)-C(1)-Pd(1)	116.3(2)
C(8)-C(2)-C(14)	106.2(3)
C(8)-C(2)-C(16)	105.1(3)
C(14)-C(2)-C(16)	104.2(3)
C(8)-C(2)-H(2)	113.5
C(14)-C(2)-H(2)	113.5

C(16)-C(2)-H(2)	113.5
C(4)-C(3)-C(8)	121.0(3)
C(4)-C(3)-C(1)	123.5(3)
C(8)-C(3)-C(1)	115.3(3)
C(3)-C(4)-C(5)	119.5(3)
C(3)-C(4)-P(1)	113.0(3)
C(5)-C(4)-P(1)	127.4(3)
C(6)-C(5)-C(4)	119.3(3)
C(6)-C(5)-H(5)	120.3
C(4)-C(5)-H(5)	120.3
C(5)-C(6)-C(7)	121.0(3)
C(5)-C(6)-H(6)	119.5
C(7)-C(6)-H(6)	119.5
C(8)-C(7)-C(6)	118.7(3)
C(8)-C(7)-H(7)	120.6
C(6)-C(7)-H(7)	120.6
C(7)-C(8)-C(3)	119.9(3)
C(7)-C(8)-C(2)	127.9(3)
C(3)-C(8)-C(2)	112.1(3)
C(10)-C(9)-C(14)	120.8(3)
C(10)-C(9)-C(1)	123.6(3)
C(14)-C(9)-C(1)	115.3(3)
C(9)-C(10)-C(11)	119.6(3)
C(9)-C(10)-P(2)	112.8(3)
C(11)-C(10)-P(2)	127.5(3)
C(12)-C(11)-C(10)	119.5(3)
C(12)-C(11)-H(11)	120.3
C(10)-C(11)-H(11)	120.3
C(11)-C(12)-C(13)	120.9(3)
C(11)-C(12)-H(12)	119.5
C(13)-C(12)-H(12)	119.6
C(14)-C(13)-C(12)	119.1(3)
C(14)-C(13)-H(13)	120.5
C(12)-C(13)-H(13)	120.5
C(13)-C(14)-C(9)	119.9(3)
C(13)-C(14)-C(2)	127.8(3)

C(9)-C(14)-C(2)	112.2(3)
C(16)-C(15)-C(17)	129.3(3)
C(16)-C(15)-C(1)	114.3(3)
C(17)-C(15)-C(1)	116.4(3)
C(15)-C(16)-C(19)	126.2(3)
C(15)-C(16)-C(2)	114.6(3)
C(19)-C(16)-C(2)	119.2(3)
O(1)-C(17)-O(2)	125.7(3)
O(1)-C(17)-C(15)	124.8(3)
O(2)-C(17)-C(15)	109.0(3)
O(2)-C(18)-H(18A)	109.5
O(2)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
O(2)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
O(3)-C(19)-O(4)	124.1(3)
O(3)-C(19)-C(16)	123.9(3)
O(4)-C(19)-C(16)	111.9(3)
O(4)-C(20)-H(20A)	109.5
O(4)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
O(4)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(26)-C(21)-C(22)	119.2(3)
C(26)-C(21)-P(1)	121.6(3)
C(22)-C(21)-P(1)	119.0(3)
C(23)-C(22)-C(21)	119.5(4)
C(23)-C(22)-H(22)	120.3
C(21)-C(22)-H(22)	120.3
C(24)-C(23)-C(22)	120.7(4)
C(24)-C(23)-H(23)	119.7
C(22)-C(23)-H(23)	119.7
C(23)-C(24)-C(25)	120.2(4)
C(23)-C(24)-H(24)	119.9

C(25)-C(24)-H(24)	119.9
C(26)-C(25)-C(24)	119.0(4)
C(26)-C(25)-H(25)	120.5
C(24)-C(25)-H(25)	120.5
C(21)-C(26)-C(25)	121.4(4)
C(21)-C(26)-H(26)	119.3
C(25)-C(26)-H(26)	119.3
C(32)-C(27)-C(28)	119.4(4)
C(32)-C(27)-P(1)	121.5(3)
C(28)-C(27)-P(1)	118.9(3)
C(29)-C(28)-C(27)	120.1(4)
C(29)-C(28)-H(28)	119.9
C(27)-C(28)-H(28)	119.9
C(30)-C(29)-C(28)	119.9(4)
C(30)-C(29)-H(29)	120.0
C(28)-C(29)-H(29)	120.0
C(29)-C(30)-C(31)	120.4(4)
C(29)-C(30)-H(30)	119.8
C(31)-C(30)-H(30)	119.8
C(30)-C(31)-C(32)	119.9(4)
C(30)-C(31)-H(31)	120.1
C(32)-C(31)-H(31)	120.1
C(27)-C(32)-C(31)	120.3(4)
C(27)-C(32)-H(32)	119.9
C(31)-C(32)-H(32)	119.9
C(38)-C(33)-C(34)	118.5(3)
C(38)-C(33)-P(2)	123.8(3)
C(34)-C(33)-P(2)	117.7(3)
C(35)-C(34)-C(33)	120.7(4)
C(35)-C(34)-H(34)	119.6
C(33)-C(34)-H(34)	119.6
C(36)-C(35)-C(34)	119.8(4)
C(36)-C(35)-H(35)	120.1
C(34)-C(35)-H(35)	120.1
C(35)-C(36)-C(37)	120.5(4)
C(35)-C(36)-H(36)	119.8

C(37)-C(36)-H(36)	119.8
C(36)-C(37)-C(38)	119.9(4)
C(36)-C(37)-H(37)	120.1
C(38)-C(37)-H(37)	120.1
C(33)-C(38)-C(37)	120.7(4)
C(33)-C(38)-H(38)	119.7
C(37)-C(38)-H(38)	119.7
C(44)-C(39)-C(40)	119.2(3)
C(44)-C(39)-P(2)	119.4(3)
C(40)-C(39)-P(2)	120.5(3)
C(41)-C(40)-C(39)	119.8(4)
C(41)-C(40)-H(40)	120.1
C(39)-C(40)-H(40)	120.1
C(42)-C(41)-C(40)	120.1(4)
C(42)-C(41)-H(41)	119.9
C(40)-C(41)-H(41)	119.9
C(41)-C(42)-C(43)	120.8(4)
C(41)-C(42)-H(42)	119.6
C(43)-C(42)-H(42)	119.6
C(42)-C(43)-C(44)	119.5(4)
C(42)-C(43)-H(43)	120.3
C(44)-C(43)-H(43)	120.3
C(39)-C(44)-C(43)	120.5(4)
C(39)-C(44)-H(44)	119.7
C(43)-C(44)-H(44)	119.7
C(17)-O(2)-C(18)	116.0(3)
C(19)-O(4)-C(20)	116.4(3)
C(21)-P(1)-C(4)	106.34(16)
C(21)-P(1)-C(27)	105.05(16)
C(4)-P(1)-C(27)	106.04(16)
C(21)-P(1)-Pd(1)	123.29(12)
C(4)-P(1)-Pd(1)	101.67(11)
C(27)-P(1)-Pd(1)	113.07(13)
C(33)-P(2)-C(39)	108.00(16)
C(33)-P(2)-C(10)	107.25(15)
C(39)-P(2)-C(10)	105.43(17)

C(33)-P(2)-Pd(1)	126.36(12)
C(39)-P(2)-Pd(1)	105.58(11)
C(10)-P(2)-Pd(1)	102.50(11)
C(1)-Pd(1)-P(2)	85.55(9)
C(1)-Pd(1)-P(1)	85.29(9)
P(2)-Pd(1)-P(1)	148.53(3)
C(1)-Pd(1)-Cl(1)	173.14(10)
P(2)-Pd(1)-Cl(1)	96.96(3)
P(1)-Pd(1)-Cl(1)	95.68(3)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	18(2)	15(2)	13(2)	-5(1)	-3(1)	3(1)
C(2)	22(2)	17(2)	16(2)	-1(1)	-1(1)	1(1)
C(3)	13(2)	16(2)	21(2)	2(1)	4(1)	4(1)
C(4)	17(2)	18(2)	17(2)	-3(1)	2(1)	3(1)
C(5)	31(2)	21(2)	20(2)	7(2)	7(2)	2(2)
C(6)	24(2)	19(2)	31(2)	2(2)	2(2)	-2(2)
C(7)	23(2)	21(2)	21(2)	-7(1)	-4(1)	1(2)
C(8)	19(2)	18(2)	17(2)	-2(1)	1(1)	2(1)
C(9)	15(2)	22(2)	13(2)	4(1)	3(1)	2(1)
C(10)	20(2)	20(2)	20(2)	0(1)	-1(1)	1(1)
C(11)	37(2)	16(2)	28(2)	6(2)	-2(2)	2(2)
C(12)	37(2)	28(2)	26(2)	9(2)	-12(2)	3(2)
C(13)	31(2)	25(2)	19(2)	2(1)	-6(1)	-3(2)
C(14)	22(2)	22(2)	15(2)	3(1)	0(1)	1(1)
C(15)	20(2)	13(2)	17(2)	2(1)	2(1)	0(1)
C(16)	21(2)	16(1)	18(2)	3(1)	3(1)	1(1)
C(17)	20(2)	23(2)	16(2)	-8(1)	0(1)	4(1)
C(18)	30(2)	64(3)	44(3)	-4(2)	-16(2)	9(2)
C(19)	24(2)	10(2)	20(2)	1(1)	2(1)	-1(1)
C(20)	25(2)	34(2)	29(2)	-5(2)	6(2)	7(2)
C(21)	24(2)	28(2)	19(2)	9(1)	-4(1)	2(2)
C(22)	37(2)	33(2)	30(2)	3(2)	-8(2)	1(2)
C(23)	35(2)	51(3)	34(2)	14(2)	-15(2)	-3(2)
C(24)	39(3)	42(3)	61(3)	20(2)	-15(2)	12(2)
C(25)	57(3)	35(2)	57(3)	8(2)	0(2)	21(2)
C(26)	44(2)	34(2)	27(2)	-5(2)	-5(2)	11(2)
C(27)	26(2)	32(2)	12(2)	-1(1)	3(1)	0(2)
C(28)	38(2)	36(2)	33(2)	-5(2)	12(2)	3(2)
C(29)	47(3)	49(3)	46(3)	-14(2)	17(2)	5(2)
C(30)	38(3)	84(4)	36(2)	-10(2)	19(2)	-9(3)
C(31)	47(3)	66(3)	28(2)	8(2)	11(2)	-18(3)

Table 4. Anisotropic displacement parameters (Å²x 10³) for Alina2. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(32)	29(2)	42(2)	26(2)	4(2)	1(2)	-8(2)
C(33)	29(2)	17(2)	14(1)	2(1)	-2(1)	-4(2)
C(34)	37(2)	22(2)	36(2)	3(2)	3(2)	4(2)
C(35)	29(2)	38(2)	50(3)	9(2)	6(2)	-2(2)
C(36)	41(2)	31(2)	35(2)	8(2)	-2(2)	-12(2)
C(37)	49(2)	18(2)	29(2)	8(2)	-1(2)	-1(2)
C(38)	28(2)	24(2)	28(2)	1(1)	0(2)	7(2)
C(39)	29(2)	17(2)	22(2)	4(1)	6(2)	6(1)
C(40)	36(2)	24(2)	29(2)	-2(2)	4(2)	6(2)
C(41)	66(3)	33(2)	24(2)	-4(2)	6(2)	23(2)
C(42)	43(3)	49(2)	36(2)	8(2)	19(2)	24(2)
C(43)	34(2)	57(3)	51(3)	10(2)	9(2)	8(2)
C(44)	30(2)	38(2)	34(2)	1(2)	1(2)	5(2)
Cl(1)	35(1)	40(1)	22(1)	-15(1)	-4(1)	-3(1)
O(1)	27(1)	26(2)	43(2)	0(1)	3(1)	-7(1)
O(2)	24(1)	35(2)	29(1)	4(1)	-7(1)	4(1)
O(3)	32(2)	36(2)	23(1)	-11(1)	5(1)	0(1)
O(4)	23(1)	34(2)	20(1)	-4(1)	3(1)	4(1)
P(1)	23(1)	19(1)	14(1)	2(1)	0(1)	2(1)
P(2)	24(1)	13(1)	19(1)	0(1)	2(1)	1(1)
Pd(1)	18(1)	15(1)	13(1)	-1(1)	0(1)	1(1)

	X	у	Z	U(eq)
H(2)	9512	10792	9828	22
H(5)	10566	12120	8403	29
H(6)	11743	13013	8884	30
H(7)	11147	12320	9444	26
H(11)	10497	5767	9543	33
H(12)	11521	6826	10010	36
H(13)	11027	8881	10066	30
H(18A)	3728	8904	8591	69
H(18B)	3346	10271	8505	69
H(18C)	2547	9652	8834	69
H(20A)	3694	10674	10195	44
H(20B)	2489	11010	9889	44
H(20C)	3745	11978	10027	44
H(22)	6602	10040	7710	40
H(23)	4625	11298	7488	48
H(24)	3749	12937	7801	57
H(25)	4789	13306	8350	59
H(26)	6854	12107	8560	42
H(28)	10410	7989	8144	43
H(29)	12393	7669	7729	56
H(30)	12988	9152	7332	63
H(31)	11624	10964	7347	57
H(32)	9644	11292	7762	39
H(34)	5315	6472	9178	38
H(35)	3581	5006	9384	47
H(36)	4425	3027	9408	43
H(37)	6994	2503	9224	38
H(38)	8745	3966	9017	32
H(40)	8710	4850	8370	36
H(41)	10776	4224	8002	49

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for Alina2.

H(42)	13324	5031	8055	52
H(43)	13941	6291	8511	57
H(44)	11911	6884	8891	41