Electronic Supporting Information for

Synthesis, Structure and Reactions of a Trianion Equivalent, Trilithiostannane

Tomoyuki Tajima, ^a Masatoshi Ikeda, ^a Masaichi Saito, * ^a Kazuya Ishimura^b, and Shigeru Nagase^b

^aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Saitama-city, Saitama 338-8570, Japan

Fax: +81 48 858 3698; Tel: +81 48 858 9029; E-mail: masaichi@chem.saitama-u.ac.jp

^bDepartment of Theoretical Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan.

Experimental

General Procedure. All reactions were carried out under an argon atmosphere. THF, diethyl ether and THF- d_8 used in the synthesis or NMR analyses were distilled from sodium benzophenone ketyl under an argon atmosphere followed by redistillation from potassium mirror using trap-to-trap technique. ¹H (400 MHz), ¹³C (101 MHz), ⁷Li (156 MHz) and ¹¹⁹Sn (149 MHz) spectra were recorded on a Bruker DPX-400 or a DRX-400 spectrometer. ¹H and ¹³C NMR chemical shifts were recorded in ppm relative to tetramethylsilane (0 ppm) and were referenced internally with respect to the residual proton impurity (CDCl₃: 7.25 ppm, C₆D₆: 7.15 ppm THF- d_8 : 1.73 ppm) and the ¹³C resonance of the solvent (CDCl₃: 77.0 ppm, C₆D₆: 128.0 ppm THF- d_8 : 67.4 ppm), respectively. The multiplicities of signals in ¹³C NMR are given in parentheses. ⁷Li NMR chemical shifts were referenced with lithium chloride ($\delta = 0$ ppm) as an external

standard. ¹¹⁹Sn NMR chemical shifts were referenced with tetramethylstannane ($\delta = 0$ ppm) as an external standard. The ⁿ*J*(C,Sn) couplings were observed in the ¹³C NMR spectra as satellite signals. Preparative gel permeation chromatography (GPC) was carried out on an LC-918 (Japan Analytical Ind. Co., Ltd.) with JAIGEL-1H column. Wet column chromatography (WCC) was carried out with Kanto Silica gel 60N (SiO₂). Preparative thin layer chromatography (PTLC) was carried out with Merck Kieselgel 60 (SiO₂). Melting point was determined on a Mitamura Riken Kogyo MEL-TEMP apparatus and was uncorrected. IR spectra were measured at room temperature on a JASCO FT/IR-460 plus. Elemental analysis was carried out at the Microanalytical Laboratory of Molecular Analysis and Life Science Center, Saitama University.

Preparation of ArSn(SiHMe₂)₃ **2.** A THF (12 mL) solution of 1,2-dibromoethane (0.58 mL, 6.71 mmol) was heated under reflux in the presence of Mg powder (385 mg, 15.8 mmol) for 30 min. To the mixture was added of Me₂SiHCl (1.5 mL, 13.5 mmol) and the resulting mixture was heated under reflux for 30 min. The resulting mixture was treated with a THF (10 mL) solution of ArSnCl₃^[S1] (700 mg, 0.99 mmol) and heated under reflux for 24 h. After the removal of volatile substances, materials insoluble in dichloromethane were removed by filtration. After concentration of the filtrate, the residue was subjected to WCC (hexane : ethyl acetate = 20 : 1) followed by GPC to afford ArSn(SiHMe₂)₃ 2 (180 mg, 23%) and ArH (136 mg, 28%). **2**: mp 154-156 °C(dichloromethane+ethanol). ¹H NMR (400 MHz, CDCl₃): δ –0.02 (d, $J_{\rm HH}$ = 5 Hz, $J_{\rm SnH}$ = 13, 23 Hz, 18H), 0.96 (d, $J_{\rm HH}$ = 7 Hz, 12H), 1.28 (d, $J_{\rm HH}$ = 7 Hz, 24H), 2.75 (sept, $J_{\rm HH}$ = 7 Hz, 4H), 2.91 (sept, $J_{\rm HH}$ = 7 Hz, 2H), 3.47 (sept, $J_{\rm HH}$ = 7 Hz, $J_{\rm SnH}$ = 80 Hz, 3H), 6.94 (d, $J_{\rm HH} = 8$ Hz, 2H), 7.02 (s, 4H), 7.20 (t, $J_{\rm HH} = 8$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ – 1.41 (q, J_{SnC} = 33, 43 Hz), 23.62 (d), 24.11 (q), 25.69 (q), 30.55 (d), 34.42 (d), 121.34 (d, $J_{\text{SnC}} = 56$ Hz), 125.26 (d), 130.43 (d, $J_{\text{SnC}} = 34$ Hz), 140.54 (s), 141.75 (s), 146.10 (s), 147.88 (s), 148.89 (s, J_{SnC} =31 Hz); ¹¹⁹Sn NMR (150 MHz, CDCl₃): δ -434.8. Anal. Calcd for C₄₂H₇₀Si₃Sn: C, 64.84; H, 9.07. Found: C, 64.62; H, 9.17.

Preparation of ArSn(SiHMe₂)₃ 2 in the presence of triethylamine. A THF (5.0 mL) solution of 1,2-dibromoethane (0.40 mL, 4.68 mmol) was heated under reflux in the presence of Mg powder (250 mg, 10.7 mmol) for 30 min. To the mixture was added a THF solution (50 mL) of Me₂SiHCl (1.1 mL, 9.03 mmol) and the resulting mixture was heated under reflux for 30 min. The resulting mixture was treated with a THF (10 mL) solution of ArSnCl₃^[S1] (760 mg, 1.08 mmol) in the presence of triethylamine (1.0 mL) at room temperature. After the solution was stirred for 14 h under reflux, the reaction mixture was cooled to room temperature. After the removal of volatile substances, materials insoluble in hexane were removed by filtration. After concentration of the filtrate, the residue was subjected to GPLC to afford ArSn(SiHMe₂)₃ **2** (429 mg, 51%).

Generation of ArSnLi₃ 4a, quenched by H_2O . Methyllithium (0.92 N solution in diethyl ether, 0.30 mL, 0.28 mmol) was added to a THF solution (3.5 mL) of ArSn(SiHMe₂)₃ 2 (36 mg, 0.046 mmol) at room temperature. After the reaction mixture was kept at the same temperature, H_2O (0.1 mL) was added to the reaction mixture. After the removal of volatile substances, materials insoluble in dichloromethane were removed by filtration. After concentration of the filtrate, the residue was recrystallized from dichloromethane and ethanol to give $ArSnH_3^{[S1]}$ 3a (25 mg, 90%).

Generation of ArSnLi₃ 4a, quenched by D₂O. Methyllithium (1.14 N solution in diethyl ether, 0.42 mL, 0.48 mmol) was added to a THF solution (3.0 mL) of ArSn(SiHMe₂)₃ 2 (62 mg, 0.080 mmol). After the reaction mixture was stirred for 2 h, D₂O (0.3 mL) was added to the reaction mixture at room temperature. After the removal of volatile substances, materials insoluble in hexane were removed by filtration. After the filtrate was dried over anhydrous MgSO₄, the filtrate was concentrated. The resulting residue was subjected to PTLC to give ArSnD₃ 3b (35 mg, 72%) (D content: 99%). 3b: mp 154.8 °C(dec.). ¹¹⁹Sn NMR (150 MHz, C₆D₆): δ –389.1 (sept, ¹J_{SnD} = 297 Hz); IR (KBr) 1315.2 cm⁻¹ (Sn–D).

Generation of ArSnLi₃ 4a, quenched by iodomethane. Methyllithium (0.92 N solution in diethyl ether, 0.50 mL, 0.47 mmol) was added to a THF solution (4.0 mL) of

ArSn(SiHMe₂)₃ 2 (61 mg, 0.078 mmol) at room temperature. After the reaction mixture was kept at the same temperature, iodomethane (0.5 mL, 8.03 mmol) was added to the After the removal of volatile substances, materials insoluble in reaction mixture. dichloromethane were removed by filtration. After concentration of the filtrate, the residue was recrystallized from dichloromethane and methanol to give ArSnMe₃ 5 (46 5: mp 123-126 °C(dichloromethane+methanol). ¹H NMR (400 MHz, mg, 92%). CDCl₃): δ –0.63 (s, J_{SnH} = 52, 55 Hz, 9H), 1.04 (d, J_{HH} = 7 Hz, 12H), 1.19 (d, J_{HH} = 7 Hz, 12H), 1.28 (d, $J_{\text{HH}} = 7$ Hz, 12H), 2.67 (sept, $J_{\text{HH}} = 7$ Hz, 4H), 2.92 (sept, $J_{\text{HH}} = 7$ Hz, 2H), 7.02 (s, 4H), 7.10 (d, $J_{\rm HH}$ = 8 Hz, 2H), 7.28 (t, $J_{\rm HH}$ = 8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ –6.66 (q, J_{SnC} = 327, 343 Hz,), 22.84 (q), 24.26 (q), 25.75 (q), 30.36 (d), 34.42 (d), 120.56 (d), 126.48 (d, $J_{\text{SnC}} = 9$ Hz), 129.12 (d, $J_{\text{SnC}} = 39$ Hz), 139.29 (s, $J_{\text{SnC}} = 19$ Hz), 143.05 (s), 146.52 (s), 148.01 (s), 148.16 (s); ¹¹⁹Sn NMR (150 MHz, CDCl₃): δ –55.1. Anal. Calcd for C₃₉H₅₈Sn: C, 72.56; H, 9.06. Found: C, 72.59; H, 9.36.

Generation of ArSnLi₃ 4a, quenched by bromoethane. Methyllithium (1.09 N solution in diethyl ether, 0.70 mL, 0.76 mmol) was added to a THF solution (3.0 mL) of ArSn(SiHMe₂)₃ **2** (62 mg, 0.080 mmol) at room temperature. After the reaction mixture was kept at the same temperature for 1 h, bromoethane (0.4 mL, 5.36 mmol) was added to the reaction mixture. After the removal of volatile substances, materials insoluble in hexane were removed by filtration and concentration of the filtrate gave ArSnEt₃ **6** (49 mg, 89%) was obtained. **6**: mp 143.0-143.5 °C(hexane). ¹H NMR (400 MHz, CDCl₃): δ 0.09 (q, *J*_{HH} = 8 Hz, 6H), 0.69 (t, *J*_{HH} = 8 Hz, *J*_{SnH} = 28 Hz, 9H), 0.95 (d, *J*_{HH} = 7 Hz, 12H), 1.12 (d, *J*_{HH} = 7 Hz, 12H), 1.21 (d, *J*_{HH} = 7 Hz, 12H), 2.61 (sept, *J*_{HH} = 7 Hz, 4H), 2.86 (sept, *J*_{HH} = 7 Hz, 2H), 6.95 (s, 4H), 7.01 (d, *J*_{HH} = 8 Hz, 2H), 7.17 (t, *J*_{HH} = 8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 3.92 (t), 11.41 (q, *J*_{SnC} = 33 Hz), 22.91 (q), 24.23 (q), 25.85 (q), 31.59 (d), 34.50 (d), 120.47 (d), 125.98 (d), 129.37 (d, *J*_{SnC} = 36, 42 Hz), 139.88 (s), 144.85 (s), 146.49 (s), 147.93 (s), 148.21 (s); ¹¹⁹Sn NMR (150 MHz, CDCl₃): δ -56.6. Anal. Calcd for C₄₂H₆₄Sn: C, 73.36; H, 9.38. Found: C, 73.44; H, 9.46.

NMR Measurement of ArSnLi₃ 4a. In a glovebox, THF- d_8 was added to a mixture of MeLi-Et₂O powder (186 mg, 1.94 mmol) and ArSn(SiHMe₂)₃ **2** (125 mg, 0.16 mmol) in a 5 mm glass NMR tube. After the mixture was degassed by freeze-pump-thaw cycles and sealed, the reaction was monitored by NMR spectroscopy. **4a**: ¹¹⁹Sn NMR (150 MHz, THF- d_8): δ –443; ⁷Li NMR (156 MHz, THF- d_8): δ 1.08.

Generation of ArSnK₃ 4b, quenched by iodomethane. Potassium *t*-butoxide (0.157 N solution in THF, 4 mL, 0.63 mmol) was added to a THF solution (2.0 mL) of ArSn(SiHMe₂)₃ 2 (49 mg, 0.063 mmol) at room temperature. After the reaction mixture was kept at the same temperature for 1 h, iodomethane (0.5 mL, 8.03 mmol) was added to the reaction mixture. After the removal of volatile substances, materials insoluble in dichloromethane were removed by filtration. After concentration of the filtrate, the residue was recrystallized from dichloromethane and methanol to give ArSnMe₃ 5 (38 mg, 92%).

NMR Measurement of ArSnK₃ 4b. THF (1 mL) and C₆D₆ (0.2 mL) were added to a mixture of potassium *t*-butoxide (49 mg, 0.44 mmol) and ArSn(SiHMe₂)₃ **2** (55 mg, 0.069 mmol) in a 5 mm glass NMR tube. After the mixture was degassed by freezepump-thaw cycles and sealed, the reaction was monitored by NMR spectroscopy. **4a**: ¹¹⁹Sn NMR (150 MHz, THF-C₆D₆): δ -473.

References

[S1] M. Saito, H. Hashimoto, T. Tajima and M. Ikeda, J. Organomet. Chem., 2007, 692, 2729.

Theoretically optimized coordinates of ArSnLi₃ (cartesian coordinate in angstrom) at the B3LYP/LanL2DZPD(Sn),6-31+G(d) (C, H, Li) level.

Geometry A

C 0 1.246300 0.450314 2.256852

C 0	0.036807	0.578737	2.943415
C 0	-1.153854	0.445288	2.227884
C 0	-1.143316	0.192974	0.848494
C 0	0.069746	0.062130	0.105577
C 0	1.259332	0.196909	0.879823
Sn 0	0.091620	-0.321098	-2.167669
C 0	-2.467366	0.052678	0.149342
C 0	-3.109666	1.189120	-0.409598
C 0	-3.071927	-1.227637	0.008793
C 0	-4.311399	1.017146	-1.122889
C 0	-4.272376	-1.346639	-0.712819
C 0	-4.908215	-0.239310	-1.298204
C 0	-2.537057	2.593551	-0.229501
C 0	-2.557380	3.437994	-1.515625
C 0	-3.269130	3.319158	0.918939
C 0	-6.214596	-0.383489	-2.069848
C 0	-6.066985	-1.294427	-3.303548
C 0	-7.356314	-0.870871	-1.156693
C 0	-2.454384	-2.468117	0.651142
C 0	-3.157806	-2.777091	1.989505
C 0	-2.452161	-3.703171	-0.266300
C 0	2.568241	0.044327	0.165048
C 0	3.226174	1.180497	-0.380122
C 0	3.162068	-1.243518	0.038909
C 0	4.371352	0.980152	-1.188709
C 0	4.313371	-1.391317	-0.769581
C 0	4.897869	-0.298222	-1.435375
C 0	2.771457	2.603289	-0.043681
C 0	2.796227	3.579178	-1.236700
C 0	3.620663	3.169447	1.116010
C 0	2.637207	-2.438826	0.839264
C 0	3.453695	-2.600494	2.140844
C 0	2.620031	-3.769360	0.062031
C 0	6.157490	-0.459513	-2.278474
C 0	6.027733	-1.554129	-3.352567
C 0	7.389877	-0.709596	-1.384228
Li 0	2.354864	-1.799545	-2.051553
Li 0	-2.580988	-0.358211	-2.187858
Li 0	2.387229	1.040717	-2.522208
H 0	2.186776	0.545203	2.797786
H 0	0.022950	0.775504	4.011909
H 0	-2.106641	0.537619	2.747545

H 0	-4.794323	1.886631	-1.560475
Η0	-4.718698	-2.330144	-0.824397
Η0	-1.490896	2.476239	0.064415
Η0	-2.053778	4.395097	-1.335157
Η0	-2.028591	2.925121	-2.326488
Η0	-3.576712	3.669588	-1.849922
Η0	-3.190185	2.759915	1.857199
Η0	-2.835448	4.313426	1.079983
Η0	-4.334502	3.450281	0.690820
Η0	-6.485335	0.618042	-2.430406
Η0	-7.010286	-1.345374	-3.859819
Η0	-5.294255	-0.920632	-3.986228
Η0	-5.795190	-2.317263	-3.016894
Η0	-7.484727	-0.208200	-0.293985
Η0	-8.302969	-0.900799	-1.708722
Η0	-7.159415	-1.880574	-0.777605
Η0	-1.411798	-2.225089	0.870550
Η0	-3.089686	-1.930578	2.680881
Η0	-4.220256	-3.004784	1.835990
Η0	-2.694517	-3.646240	2.471751
Η0	-3.464213	-4.071319	-0.477960
Η0	-1.951281	-3.482409	-1.215373
Η0	-1.909524	-4.522088	0.220877
Η0	4.894440	1.840415	-1.603265
Η0	4.787392	-2.367198	-0.846589
Η0	1.736000	2.538129	0.300364
Η0	2.134292	3.243738	-2.051115
Η0	2.418138	4.559458	-0.924899
Η0	3.805514	3.737019	-1.637256
Η0	4.677345	3.247555	0.831891
H 0	3.271006	4.170413	1.396566
H 0	3.555286	2.527587	2.000034
H 0	1.605283	-2.211528	1.118373
H 0	3.058247	-3.427199	2.743385
H 0	4.507560	-2.813848	1.923656
Η0	3.410579	-1.689869	2.746239
H 0	1.986005	-3.707905	-0.836901
H 0	3.623300	-4.105411	-0.228698
H 0	2.186250	-4.559458	0.685519
H 0	6.318742	0.494555	-2.799041
Η0	6.931172	-1.592721	-3.972230
Η0	5.897947	-2.546463	-2.903550

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

5.172094 -1.365329 -4.011909 H0H 0 8.302969 -0.755768 -1.989497 7.510529 H 0 0.088619 -0.643858 7.297526 -1.658016 -0.841942 H 0 Geometry **B** C 0 2.201000 0.156000 1.200000 C 0 2.913000 0.193000 0.000000 C 0 0.031000 0.087000 0.000000 C 0 0.799000 0.099000 1.204000 Sn 0 -2.264000 0.397000 0.000000 C 0 0.117000 0.033000 2.545000 C 0 -0.290000 1.222000 3.208000 C 0 -0.140000 -1.2280003.154000 C 0 -0.982000 1.123000 4.429000 C 0 -0.835000 -1.272000 4.377000 5.029000 C 0 -1.277000 -0.110000 C 0 0.047000 2.602000 2.645000 C 0 -1.099000 3.622000 2.769000 C 0 1.329000 3.147000 3.312000 C00.357000 -2.529000 2.524000 C 0 1.711000 -2.9400003.144000 C 0 -0.647000 -3.693000 2.622000 C 0 -2.011000 -0.170000 6.364000 C 0 -3.322000 -0.976000 6.285000 C 0 -1.097000 -0.713000 7.482000 -3.414000 -1.999000 Li 0 0.000000 Li 0 -2.236000 -0.143000 2.665000 C 0 2.201000 0.156000 -1.200000 C 0 0.799000 0.099000 -1.204000 C 0 0.117000 0.033000 -2.545000 C 0 -0.290000 1.222000 -3.208000 C 0 -0.140000 -1.228000 -3.154000 C 0 -0.982000 1.123000 -4.429000 C 0 -0.835000 -1.272000 -4.377000 C 0 -1.277000 -0.110000 -5.029000 C 0 0.047000 2.602000 -2.645000 C 0 -1.099000 3.622000 -2.769000 C 0 1.329000 3.147000 -3.312000 C 0 0.357000 -2.529000 -2.524000

C 0	1.711000	-2.940000	-3.144000
C 0	-0.647000	-3.693000	-2.622000
C 0	-2.011000	-0.170000	-6.364000
C 0	-3.322000	-0.976000	-6.285000
C 0	-1.097000	-0.713000	-7.482000
Li 0	-2.236000	-0.143000	-2.665000
Η0	2.741000	0.172000	2.145000
Η0	3.999000	0.242000	0.000000
Η0	-1.310000	2.032000	4.926000
Η0	-1.038000	-2.238000	4.828000
Η0	0.252000	2.471000	1.579000
H 0	-2.021000	3.234000	2.322000
Η0	-0.829000	4.542000	2.236000
Η0	-1.299000	3.902000	3.811000
Η0	1.182000	3.291000	4.390000
Η0	1.599000	4.117000	2.876000
Η0	2.177000	2.467000	3.173000
Η0	0.521000	-2.329000	1.462000
H 0	2.089000	-3.851000	2.663000
Η0	1.605000	-3.145000	4.218000
Η0	2.464000	-2.155000	3.021000
Η0	-1.629000	-3.401000	2.231000
H 0	-0.776000	-4.050000	3.652000
Η0	-0.286000	-4.542000	2.030000
H 0	-2.276000	0.863000	6.629000
H 0	-3.845000	-0.952000	7.249000
H 0	-3.133000	-2.028000	6.037000
H 0	-3.999000	-0.568000	5.524000
H 0	-1.612000	-0.678000	8.449000
H 0	-0.176000	-0.125000	7.563000
H 0	-0.814000	-1.756000	7.291000
H 0	2.741000	0.172000	-2.145000
H 0	-1.310000	2.032000	-4.926000
H 0	-1.038000	-2.238000	-4.828000
H 0	0.252000	2.471000	-1.579000
H 0	-2.021000	3.234000	-2.322000
H 0	-0.829000	4.542000	-2.236000
H 0	-1.299000	3.902000	-3.811000
H 0	1.182000	3.291000	-4.390000
H 0	1.599000	4.117000	-2.876000
H 0	2.177000	2.467000	-3.173000
Η0	0.521000	-2.329000	-1.462000

H0	2.089000	-3.851000	-2.663000
H 0	1.605000	-3.145000	-4.218000
H 0	2.464000	-2.155000	-3.021000
H 0	-1.629000	-3.401000	-2.231000
H 0	-0.776000	-4.050000	-3.652000
H 0	-0.286000	-4.542000	-2.030000
H 0	-2.276000	0.863000	-6.629000
H 0	-3.845000	-0.952000	-7.249000
H 0	-3.133000	-2.028000	-6.037000
H 0	-3.999000	-0.568000	-5.524000
H 0	-1.612000	-0.678000	-8.449000
H 0	-0.176000	-0.125000	-7.563000
H 0	-0.814000	-1.756000	-7.291000