Supplementary Information

Modular Chiral Dendritic monodentate phosphoramidite ligands for Rh(I)-Catalyzed Asymmetric Hydrogenation: Unprecedented Enhancement of Enantioselectivity

Feng Zhang,^{*a*, *b*} Yong Li,^{*a*} Zhi-Wei Li,^{*a*} Yan-Mei He,^{*a*} Shou-Fei Zhu,^{*c*} Qing-Hua Fan,^{*a*,*} Qi-Lin Zhou^{*c*,*}

^a Beijing National Laboratory for Molecular Sciences, Center for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. fanqh@iccas.ac.cn

^b Graduate School of Chinese Academy of Sciences, Beijing 100080, P. R. China

^c State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China. qlzhou@nankai.edu.cn

Table of Contents

1.	General information	S2
2.	The synthesis of dendrons 5G ₁ -5G ₃	S2
3.	General procedure for the synthesis of chiral dendritic monodentate phosphoramidite ligands 1-4	\$4
4.	Preparation of Rh/1 catalysts and their ³¹ P NMR spectra	S8
5.	General procedure for the Rh-catalyzed asymmetric hydrogenation and catalyst recycling using Rh/1c as catalyst	89
6.	¹ H NMR, ¹³ C NMR and MS spectra of dendrons 5G ₁ -5G ₃	S10
	Figure S1. ¹ H NMR ¹³ C NMR and MS spectra of dendron 5G ₁	S10
	Figure S2. ¹ H NMR, ¹³ C NMR and MS spectra of dendron 5G ₂	S12
	Figure S3. ¹ H NMR, ¹³ C NMR and MS spectra of dendron 5G ₃	S14
7.	¹ H NMR, ¹³ C NMR, ³¹ P NMR and MS spectra of the chiral dendritic ligands -	S16
	Figure S4. ¹ H NMR and ¹³ C NMR spectra of 1AG ₀	S16
	Figure S5. ¹ H NMR, ¹³ C NMR, ³¹ P NMR and MS spectra of 1AG₁	S17
	Figure S6. ¹ H NMR, ¹³ C NMR, ³¹ P NMR and MS spectra of 1AG₂	S19
	Figure S7. ¹ H NMR, ¹³ C NMR, ³¹ P NMR and MS spectra of 1AG₃	S21
	Figure S8. ¹ H NMR, ¹³ C NMR, ³¹ P NMR and MS spectra of 2BG₂	S23
	Figure S9. ¹ H NMR, ¹³ C NMR, ³¹ P NMR and MS spectra of 3CG₂	S25
	Figure S10. ¹ H NMR, ¹³ C NMR, ³¹ P NMR and MS spectra of 4DG ₀	S27
	Figure S11. ¹ H NMR, ¹³ C NMR, ³¹ P NMR and MS spectra of 4DG ₁	S29
	References	S31

1. General Information

Unless otherwise noted, all experiments were carried out under an inert atmosphere of dry nitrogen by using standard Schlenk-type techniques, or performed in a nitrogen-filled glovebox. ¹H NMR, ¹³C NMR and ³¹P NMR spectra were recorded on a Bruker Model Avance DMX 300 or 400 Spectrometer (¹H 300 MHz, ¹³C 75 MHz and ³¹P 162 MHz, respectively). Chemical shifts (δ) are given in ppm and are referenced to residual solvent peaks (¹H and ¹³C NMR) or to an external standard (85% H₃PO₄, ³¹P NMR). MALDI-TOF mass spectra were obtained on a BIFLEX III instrument with α -cyano-4-hydroxycinnamic acid (CCA) as the matrix. Melting points were uncorrected. All enantiomeric excess values were obtained from GC analysis with a Chrompack CHIR-L-VAL chiral column. All solvents were dried using standard, published methods and were distilled under a nitrogen atmosphere before use. All other chemicals were used as received from Aldrich or Acros without further purification. Dendrons G_nCH₂NH₂¹ and G_nCH₂Br², and chiral diol **7b**³, **7c**⁴ were synthesized according to the published methods.

2. The synthesis of dendrons 5G₁-G₃

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Scheme S1. The synthesis of dendrons 5G₁-5G₃

Synthesis of 5G₁: To a suspension of G₁CH₂NH₂ (1.276 g, 4 mmol) and NaH (0.15 g, 6 mmol) in THF (10 mL) was added dropwise a solution of G₁CH₂Br (1.719 g, 4.5 mmol) in THF (20 mL) at 0 °C over 10 min and then stirred for 24 h at room temperature under a nitrogen atmosphere. The reaction was followed by TLC. After quenching with saturated aq. ammonium chloride, the solution was extracted with dichloromethane twice. The combined organic layer was washed with brine, and dried over anhydrous Na₂SO₄. The solvent was evaporated and the resulting residue was purified by flash column chromatography to afford the secondary amine **5G**₁ as a white solid (2.13 g, 86% yield). ¹H NMR (300 MHz, CDCl₃) δ = 3.77 (s, 4H), 5.06 (s, 8H), 6.56-6.65 (m, 6H), 7.33-7.46 (m, 20H). ¹³C NMR (75 MHz, CDCl₃) δ = 53.2, 70.1, 100.8, 107.2, 107.9, 127.6, 128.0, 128.6, 137.0, 142.9, 160.1. HRMS (Secondary Ion Mass Spectory, SIMS) for C₄₂H₃₉NO₄, [M+H]⁺: Calcd. 622.2958, Found 622.2953.

Synthesis of 5G₂: To a suspension of G₂CH₂NH₂ (2.972 g, 4 mmol) and NaH (0.15 g, 6 mmol) in THF (10 mL) was added dropwise a solution of G₂CH₂Br (3.389 g, 4.2 mmol) in THF (20 mL) at 0 °C over 10 min and then stirred for 72 h at 50 °C under a nitrogen atmosphere. The reaction was followed by TLC. After quenching with saturated aq. ammonium chloride, the solution was extracted with dichloromethane twice. The combined organic layer was washed with brine, and dried over anhydrous Na₂SO₄. The solvent was evaporated and the resulting residue was purified by flash column chromatography to afford the secondary amine 5G₂ as a white foam (5.12 g, 87% yield). ¹H NMR (300 MHz, CDCl₃) δ

= 3.74 (s, 4H), 4.96-5.00 (m, 24H), 6.55-6.68 (m, 18H), 7.26-7.40 (m, 40H). ¹³C NMR (75 MHz, CDCl₃) δ = 53.2, 70.0, 70.1, 100.7, 101.6, 106.4, 107.1, 127.6, 128.0, 128.6, 136.8, 139.4, 142.9, 160.0, 160.2. HRMS (SIMS) for C₉₈H₈₇NO₁₂, [M+ H]⁺: Calcd. 1470.6307, Found 1470.6335.

Synthesis of 5G₃: To a suspension of G₃CH₃NH₂ (3.184 g, 2 mmol) and NaH (0.300 g, 12 mmol) in THF (10 mL) was added dropwise a solution of G₃CH₂Br (4.968 g, 3 mmol) in THF (20 mL) at 0 °C over 10 min and then stirred for 72 h at 50 °C under a nitrogen atmosphere. The reaction was followed by TLC. After quenching with saturated aq. ammonium chloride, the solution was extracted with dichloromethane twice. The combined organic layer was washed with brine, and dried over anhydrous Na₂SO₄. The solvent was evaporated and the resulting residue was purified by flash column chromatography to afford the secondary amine **5G**₃ as a white foam (4.44 g, 70% yield). ¹H NMR (300 MHz, CDCl₃) δ = 3.70 (s, 4H), 4.87-4.98 (m, 56H), 6.50-6.64 (m, 42H), 7.25-7.37 (m, 80H). ¹³C NMR (75 MHz, CDCl₃) δ = 53.2, 70.0, 70.2, 100.9, 101.8, 106.5, 107.3, 127.6, 127.8, 128.0, 128.2, 128.3, 128.6, 136.9, 139.4, 139.5, 143.1, 160.1, 160.2, 160.2. MS (MALDI-TOF): m/z Calcd for C₂₁₀H₁₈₃NO₂₈: 3168.69, Found 3206.4 ([M+K]⁺).

3. General procedure for the synthesis of chiral dendritic monodentate phosphoramidite ligands 1-4

Scheme S2. The synthesis of dendritic monodentate phosphoramidite ligands 1-4

Synthesis of (*S*)-1AG₀⁵: To a solution of dibenzylamine 5G₀ (690 mg, 3.5 mmol) and Et₃N (1 mL, 7.0 mmol) in THF (10 mL) at 0 °C was added dropwise a solution of (*S*)-[1, 1'-binaphthyl-2,2'-diyl] chlorophosphite (1.225 g, 3.5 mmol) in THF (20 mL). The resulting mixture was stirred at room temperature overnight. The precipitate of Et₃NHCl was filtered over a pad of celite. After the solvent was removed under reduced pressure, the residue was purified by flash column chromatography to give 1AG₀ (1.503 g, 84% yield) as a white foam. ¹H NMR (300 MHz, CDCl₃): δ = 3.39-3.48 (m, 2H), 4.16-4.24 (m, 2H), 7.11 (d, *J* = 8.8 Hz, 1H), 7.24-7.42 (m, 16H), 7.63 (d, *J* = 8.8 Hz, 1H), 7.74 (d, *J* = 8.8 Hz, 1H), 7.80 (dd, *J*₁ = 8.8 Hz, *J*₂ = 1.4 Hz,1H), 7.94 (d, *J* = 8.8 Hz, 1H), 8.00 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 48.1, 48.4, 121.5, 122.2, 122.2, 124.6, 124.9, 126.1, 126.1, 126.9, 127.1, 127.3, 128.2, 128.4, 128.4, 128.9, 130.1, 130.3, 137.9, 137.9, 149.3, 149.8.

Synthesis of (S)-1AG₁: Followed the similar procedure used in the synthesis of (S)-1AG₀.Yield 67%. $[\alpha]_D^{20} = +58.8 (c \ 0.2)$. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.40-3.49$ (m,

2H), 4.07-4.15 (m, 2H), 5.04 (s, 8H), 6.55-6.58 (m, 6H), 7.18 (d, J = 8.8 Hz, 1H), 7.23-7.42 (m, 26H), 7.60 (d, J = 8.8 Hz, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.83 (dd, $J_1 = 8.1$ Hz, $J_2 = 1.5$ Hz, 1H), 7.93-7.95 (d, J = 8.1 Hz, 1H), 8.00-8.02 (d, J = 8.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 48.5$, 48.7, 70.1, 101.2, 107.9, 121.5, 122.1, 124.6, 124.9, 126.1, 126.1, 126.9, 127.1, 127.6, 128.0, 128.2, 128.3, 128.6, 130.2, 130.3, 130.7, 131.5, 136.9, 140.4, 149.2, 149.6, 160.0. ³¹P NMR (162 MHz, CDCl₃): $\delta = 144.4$. HRMS (SIMS) for C₆₂H₅₀O₆NP, [M + H]⁺: Calcd. 936.3454, Found 936.3391.

Synthesis of (*S*)-1AG₂: Followed the similar procedure used in the synthesis of (*S*)- 1AG₀. Yield 77%. $[\alpha]_D^{20} = +44.5$ (*c* 0.2). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.44$ -3.53 (m, 2H), 4.09-4.16 (m, 2H), 4.90-5.04 (m, 24H), 6.52-6.68 (m, 18H), 7.13 (d, J = 8.8 Hz, 1H), 7.17-7.44 (m, 46H), 7.58 (d, J = 8.8 Hz, 1H), 7.75 (d, J = 8.7 Hz, 2H), 7.91 (t, J = 8.6 Hz, 1H). ¹³C NMR (75 MHz, CH₂Cl₂): $\delta = 47.5$, 47.8, 69.0, 100.2, 100.6, 105.4, 106.8, 120.4, 123.6, 123.8, 125.0, 125.9, 126.0, 126.5, 126.9, 127.2, 127.3, 127.4, 127.5, 129.2, 129.3, 129.7, 130.4, 131.4, 131.8, 135.8, 138.3, 139.4, 148.2, 148.6, 148.7, 159.0, 159.2. ³¹P NMR (162 MHz, CDCl₃): $\delta = 146.4$. MS (MALDI-TOF): m/z Calcd for C₁₁₈H₉₈O₁₄NP: 1785.0, found 1783.6.

Synthesis of (S)-1AG₃: Followed the similar procedure used in the synthesis of (*S*)-**1AG**₀. Yield 38%. $[\alpha]_D^{20} = +24.5 (c \ 0.2)$. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.36-3.45 (m, 2H)$, 4.02-4.10 (m, 2H), 4.76-4.85 (m, 56H), 6.41-6.57 (m, 42H), 7.00-7.26 (m, 86H), 7.46 (d, $J = 8.6 \ Hz, 2H$), 7.63 (d, $J = 8.6 \ Hz, 2H$), 7.73 (d, $J = 8.3 \ Hz, 1H$), 7.78 (d, $J = 8.8 \ Hz, 1H$). ¹³C NMR (75 MHz, CDCl₃) $\delta = 47.6, 47.8, 68.9, 69.0, 100.3, 100.7, 105.4, 106.9, 120.4, 121.0, 121.5, 122.9, 123.6, 123.8, 125.1, 125.8, 125.9, 126.1, 126.5, 126.9, 127.2, 127.5, 129.4, 129.6, 130.4, 131.4, 131.7, 135.8, 138.2, 138.3, 139.4, 148.1, 158.9, 159.1, 159.1. ³¹P NMR (162 MHz, CH₂Cl₂): <math>\delta = 146.3$. MS (MALDI-TOF): m/z Calcd for C₂₃₀H₁₉₄O₃₀NP: 3483.0, found 3481.9.

Synthesis of (S)-2BG₂: Followed the similar procedure used in the synthesis of (S)- **1AG**₀. Yield 60%. $[\alpha]_D^{20} = +4.9$ (*c* 0.25). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.70-1.73$ (m, 8H), 2.17-2.24 (m, 2H), 2.59-2.78 (m, 6H), 3.35-3.44 (m, 2H), 4.01-4.09 (m, 2H), 4.92-4.97 (m, 24H), 6.50-6.66 (m, 18H), 6.87 (d, J = 8.2 Hz, 1H), 7.04-7.10 (m, 3H), 7.28-7.37 (m, 40H). ¹³C NMR (75 MHz, CDCl₃) δ = 22.3, 22.4., 22.4, 27.8, 29.0, 29.1, 29.7, 49.5, 70.1, 70.1, 101.7, 101.8, 106.4, 107.9, 118.1, 118.9, 125.9, 127.2, 127.5, 127.7, 127.9, 128.2, 128.3, 128.5, 129.7, 130.1, 135.0, 135.6, 136.9, 138.3, 138.4, 139.3, 139.5, 139.5, 145.8, 145.9, 147.6, 147.7, 160.1, 160.1, 160.3. ³¹P NMR (162 MHz, CH₂Cl₂): δ = 139.0. MS (MALDI-TOF): m/z Calcd for C₁₁₈H₁₀₆O₁₄NP: 1793.1, found 1792.9.

Synthesis of (S)-3CG₂: Followed the similar procedure used in the synthesis of (*S*)- **1AG**₀. Yield 93%. $[\alpha]_D^{20} = +92.8 (c \ 0.2)$. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.16$ (s, 3H), 2.71 (s, 3H), 3.51-3.59 (m, 2H), 4.15-4.23 (m, 2H), 4.89-4.94 (m, 24H), 6.47-6.64 (m, 18H), 7.10-7.40 (m, 46H), 7.60 (s, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.78 (s, 1H), 7.81 (d, J = 8.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 17.4$, 29.4, 48.6, 48.9, 69.7, 69.8, 101.2, 101.4, 106.2, 107.7, 108.0, 121.9, 124.2, 124.6, 124.8, 124.9, 126.7, 126.8, 127.1, 127.2, 127.5, 127.6, 128.0, 128.1, 128.3, 129.3, 129.6, 129.8, 129.9, 130.3, 131.1, 131.2, 131.5, 136.6, 139.1, 140.0, 148.1, 148.8, 159.7, 160.0. ³¹P NMR (162 MHz, CDCl₃): $\delta = 140.3$. MS (MALDI-TOF): m/z Calcd for C₁₂₀H₁₀₂O₁₄NP: 1813.1, found 1811.9 ([M -H]⁻).

Synthesis of (*S*)-4DG₀: Followed the similar procedure used in the synthesis of (*S*)-1AG₀. Yield 43%. $[\alpha]_D^{20} = -134.2$ (*c* 0.21). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.91-1.98$ (m, 2H), 2.15-2.22 (m, 2H), 2.66-2.85 (m, 2H), 2.97-3.06 (m, 2H), 3.23-3.32 (m, 2H), 3.85-3.92 (m, 2H), 6.03 (d, *J* = 7.8 Hz, 1H), 6.77-6.87 (m, 2H), 7.07 (t, *J* = 7.6 Hz, 2H), 7.21-7.36 (m, 11H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 30.5$, 31.0, 38.2, 38.4, 48.5, 48.8, 58.9, 120.5, 121.3, 121.3, 121.4, 121.5, 121.6, 127.3, 128.3, 128.5, 128.5, 129.3, 138.4, 140.6, 142.3, 145.0, 145.8, 145.9, 146.2, 146.3, 148.4, 148.5. ³¹P NMR (121MHz, CDCl₃): $\delta = 122.2$. MS (MALDI-TOF): m/z Calcd for C₃₁H₂₈O₂NP: 477.5, found 478.2. HRMS (SIMS) for C₃₁H₂₈O₂NP, [M + H]⁺: Calcd. 478.1936, Found 478.1930.

Synthesis of (*R***)-4DG**₁**:** Followed the similar procedure used in the synthesis of (*S*)- **1AG**₀. Yield 40%. $[\alpha]_D{}^{20} = +71.7$ (*c* 0.1). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.92-2.02$ (m, 2H), 2.18-2.24 (m, 2H), 2.70-2.88 (m, 2H), 2.98-3.09 (m, 2H), 3.20-3.29 (m, 2H), 3.76-3.81 (m, 2H), 5.03 (s, 8H), 6.23 (d, *J* = 7.2 Hz, 1H), 6.55 (br, 6H), 6.85-6.93 (m, 2H), 7.07 (d, *J* = 8.6 Hz, 2H), 7.22-7.41 (m, 21H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 29.5$, 29.9, 31.7, 37.3, 48.0, 48.3, 57.8, 69.0, 100.3, 107.3, 119.5, 120.4, 126.4, 126.8, 127.5, 135.9, 139.5, 139.8, 141.2, 141.2, 144.0, 144.8, 145.2, 145.3, 147.4, 158.9. ³¹P NMR (162 MHz, CDCl₃): δ = 123.1. MS (MALDI-TOF): m/z Calcd for C₅₉H₅₂O₆NP: 902.0, found 902.5. HRMS (SIMS) for C₅₉H₅₂O₆NP, [M + H]⁺: Calcd. 902.3610, Found 902.3631.

4. Preparation of Rh/1 catalysts and their ³¹P NMR spectra

A mixture of $[Rh(COD)_2]^+BF_4^-(1.2 \text{ mg}, 0.003 \text{ mmol})$ and **1** (0.006 mmol) in CH₂Cl₂ (0.5 mL) was stirred at room temperature for 2 h in glovebox. The organic solvent was removed, providing the *in situ* catalysts.

 $[\mathbf{Rh}(\mathbf{1AG_0})(\mathbf{COD})]^+\mathbf{BF_4}^+: {}^{31}\mathbf{P} \text{ NMR (162 MHz, CDCl_3)}: \delta = 134.6 \text{ (dd, } J_{\text{Rh-P}} = 235.5 \text{ Hz}, J_{\text{P-P}} = 37.3 \text{ Hz} \text{), } 139.7 \text{ (dd, } J_{\text{Rh-P}} = 236.8 \text{ Hz}, J_{\text{P-P}} = 37.6 \text{ Hz} \text{), } 140.2 \text{ (d, } J_{\text{Rh-P}} = 238.6 \text{ Hz} \text{).}$

 $[\mathbf{Rh}(\mathbf{1AG_1})(\mathbf{COD})]^+\mathbf{BF_4}^-: {}^{31}\mathbf{P} \text{ NMR (162 MHz, CDCl_3)}: \delta = 134.9 \text{ (dd, } J_{\text{Rh-P}} = 236.6 \text{ Hz}, J_{\text{P-P}} = 35.3 \text{ Hz} \text{), } 139.1 \text{ (dd, } J_{\text{Rh-P}} = 238.0 \text{ Hz}, J_{\text{P-P}} = 35.6 \text{ Hz} \text{), } 140.0 \text{ (d, } J_{\text{Rh-P}} = 240.5 \text{ Hz} \text{).}$

 $[\mathbf{Rh}(\mathbf{1AG_2})(\mathbf{COD})]^+\mathbf{BF_4}^-: {}^{31}\mathbf{P} \text{ NMR} (162 \text{ MHz}, \text{CDCl}_3): \delta = 135.1 \text{ (dd}, J_{\text{Rh-P}} = 236.6 \text{ Hz}, J_{\text{P-P}} = 35.5 \text{ Hz} \text{)}, 138.8 \text{ (dd}, J_{\text{Rh-P}} = 237.9 \text{ Hz}, J_{\text{P-P}} = 35.3 \text{ Hz} \text{)}, 140.2 \text{ (d}, J_{\text{Rh-P}} = 239.9 \text{ Hz} \text{)}.$

 $[\mathbf{Rh}(\mathbf{1AG_2})(\mathbf{COD})]^+\mathbf{BF_4}^{:31}P \text{ NMR (162 MHz, CDCl_3): } \delta = 134.9 (dd, J_{Rh-P} = 236.6 \text{ Hz}, J_{P-P} = 33.7 \text{ Hz}), 138.5 (dd, J_{Rh-P} = 239.1 \text{ Hz}, J_{P-P} = 34.2 \text{ Hz}), 140.1 (d, J_{Rh-P} = 240.9 \text{ Hz}).$

Figure S1. ³¹P NMR spectra of dendritic Rh catalyst: (a) $[Rh(1AG_0)(COD)]^+BF_4^-$; (b) $[Rh(1AG_1)(COD)]^+BF_4^-$; (c) $[Rh(1AG_2)(COD)]^+BF_4^-$; (d) $[Rh(1AG_3)(COD)]^+BF_4^-$.

The results of ³¹P NMR spectra show that all dendritic catalysts $[Rh(1)_2(COD)]BF_4$ are present in solution as two isomers. Similar to the corresponding small molecular Rh-catalysts,⁶ both isomers might differ in the relative position of the two dendritic phosphoramidite ligands, i.e. group of N(Gn)₂ on the same or different hemisphere of the square planar complex.

5. General procedure for the Rh-catalyzed asymmetric hydrogenation and catalyst recycling using Rh/1AG₂ as catalyst

A mixture of $[Rh(COD)_2]^+BF_4(0.40 \text{ mg}, 0.001 \text{ mmol})$ and $1AG_2$ (3.90 mg, 0.002 mmol) in CH_2Cl_2 (1.0 mL) was stirred at room temperature for 2 h in glovebox. The mixture was transferred by a syringe to a stainless steel autoclave, in which the corresponding substrate (0.1 mmol) was charged in CH_2Cl_2 (0.5 mL) before hand. The hydrogenation was performed at room temperature under 20 atm H₂ pressure for a given time.

After carefully venting of hydrogen, most of the reaction solvent was removed under reduced pressure. n-Hexane was then added and the catalyst was precipitated and recovered via filtration. The recovered catalyst was reused in the next catalytic cycle. The n-hexane layer was used to determine the conversion and enantioselectivity of the reduced product by GC with a 25 m Chiralsi L-Val capillary column.

6. ¹H NMR, ¹³C NMR and MS spectra of dendrons $5G_1$ - $5G_3$

Figure S1. ¹H NMR, ¹³C NMR and MS spectra of dendrimer $5G_1$

7. ¹H NMR, ¹³C NMR, ³¹P NMR and MS spectra of the chiral dendritic monodentate phosphoramidite ligands

Figure S4. ¹H NMR, ¹³C NMR spectra of 1AG₀

Figure S5. ¹H NMR, ¹³C NMR, ³¹P NMR and MS spectra of **1AG**₁

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Figure S11. ¹H NMR, ¹³C NMR, ³¹P NMR and MS spectra of 4DG₁

75

175

200

ppm

150

125

100

25

ò

50

References

- 1. Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638.
- van Bommel, K. J. C.; Metselaar, G. A.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem.
 2001, 66, 5405.
- 3. Xu, Y.; Clarkson, G. C.; Docherty, G.; North, C. L.; Woodward, G.; Wills, M. J. Org. *Chem.* **2005**, *70*, 8079.
- Cram, D. J.; Helgeson, R. C.; Peacock, S. C.; Kaplan, L. J.; Domeier, L. A.; Moreau, P.; Koga, K.; Mayer, J. M.; Chao, Y.; Siegel, M. G.; Hoffman, D. H.; Sogah, G. D. Y. J. Org. *Chem.* 1978, 43, 1930.
- Arnold, L. A.; Imbos, R.; Mandoli, A.; de Vries, A. H. M.; Naasz, R.; Feringa, B. L. *Tetrahedron* 2000, 56, 2865.
- Minnaard, A. J.; Feringa, B. L.; Lefort, L.; De Vries, J. G. Acc. Chem. Res. 2007, 40, 1267.