Catalytic Direct-Type Substitution Reaction of α-alkyl Enolates: A Pd/Brønsted Base-Catalyzed Approach to the Decarboxylative Allylation of Sulfonylimidates

S. B. Jennifer Kan, Ryosuke Matsubara, Florian Berthiol, Shu Kobayashi *

Department of Chemistry, School of Science, and Graduate School of Pharmaceutical Sciences, The University of Tokyo, The HFRE Division, ERATO, Japan Science Technology Agency (JST), Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Electronic Supplementary Information

Experimental details and physical data of products.

General. Melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ECX-500 or a JNM-ECX-600 spectrometer in CDCl₃ unless otherwise noted. Tetramethylsilane (TMS, $\delta = 0$ ppm) or CDCl₃ ($\delta = 7.26$ ppm) served as internal standard for ¹H NMR, and CDCl₃ ($\delta = 77.0$ ppm) was used as internal standard for ¹³C NMR. IR spectra were measured on a JASCO FT/IR-610 spectrometer and only the strongest/structurally important peaks are listed (v_{max}, cm⁻¹). Column chromatography was conducted on Silica gel 60 (Merck) and preparative thin-layer chromatography was carried out using Wakogel B-5F. All air and moisture sensitive reactions were carried out under argon atmosphere in dried glassware. All solvents were dried and distilled by standard procedures. Imidate hydrochloride salts were prepared as previously reported.¹ All allyl carbonates were prepared from the corresponding alcohols according to standard method for carbonate formation.² (*E*)-3-(pyridin-3-yl)prop-2-en-1-ol was prepared from Horner-Wadsworth-Emmons reaction of nicotinaldehyde and subsequent DIBALH reduction.² (*E*)-isopropyl 4-hydroxybut-2-enoate was prepared by borane reduction of (*E*)-4-isopropoxy-4-

oxobut-2-enoic acid.³ (*E*)-4-(*tert*-butyldimethylsilyloxy)but-2-en-1-ol was prepared by TBS protection of (*E*)-isopropyl 4-hydroxybut-2-enoate and subsequent DIBALH reduction.

(I) Representative procedure for the syntheses of sulfonylimidates.

To a solution of isopropyl propionimidate hydrochloride salt (3.00 g, 19.8 mmol) in DCM (50 mL) was added Et₃N (6.0 mL, 43.6 mmol) dropwise at 0 °C. The resulting white suspension was stirred vigorously, and 4-nitrobenzenesulfonyl chloride (4.39 g, 19.8 mmol) and DMAP (243 mg, 1.98 mmol) were added. After stirring at room temperature for 12 h, the reaction mixture was quenched with NaHCO₃ and extracted with DCM. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification by column chromatography (4:1 hexane/acetone) and recrystallisation (hexane/DCM) afforded the desired imidate **5a** as white crystals (4.26 g, 14.2 mmol, 72%).

Ph O₂S N (CDCl₃) $\delta = 8.06-8.09$ (m, 2H), 7.60-7.64 (m, 3H), 4.70 (septet, 1H, J = 1Et O₄Pr 6.3 Hz), 2.88 (qd, 2H, J = 7.3, 1.7 Hz), 1.05 (td, 3H, J = 7.3, 1.2 Hz), 0.83 (d, 6H, J = 6.3 Hz); ¹³C NMR (CDCl₃) $\delta = 176.0$, 143.6, 132.0, 128.8, 126.9, 71.6, 28.2, 20.9, 10.4; IR (neat) 3055, 2988, 1506, 1448, 1308, 1265, 1157, 1093, 896, 740, 705, 634, 459, 445, 413 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₂H₁₈NO₃S [M+H]⁺, 256.1007. Found 256.1010.

NO₂

 O_2S

 NO_2

 O_2S

Ph

NO₂ NO₂ Isopropyl *N*-(4-nitrobenzenesulfonyl)propionimidate (5a): Mp. 70-71 °C; ¹H NMR (CDCl₃) $\delta = 8.35$ (br d, 2H, J = 9.2 Hz), 8.12 (br d, 2H, J = 9.2 Hz), 5.00 (septet, 1H, J = 6.3 Hz), 2.98 (q, 2H, J = 8.0 Hz), 1.27 (t, 3H, J = 8.0 Hz), 1.26 (d, 6H, J = 6.3 Hz); ¹³C NMR (CDCl₃) δ = 177.5, 149.8, 147.6, 127.8, 124.1, 72.9, 28.6, 21.1, 10.2; IR (neat)

3021, 2987, 1579, 1532, 1350, 1308, 1216, 1158, 1094 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₂H₁₆N₂O₅S [M+H]⁺, 301.0858. Found 301.0871.

NO₂ NO₂ Isopropyl *N*-(4-nitrobenzenesulfonyl)butyrimidate (5b): Mp. 49-50 °C; ¹H NMR (CDCl₃) $\delta = 8.35$ (br d, 2H, J = 8.6 Hz), 8.12 (br d, 2H, J = 8.6 Hz), 5.00 (septet, 1H, J = 6.3 Hz), 2.88 (t, 2H, J = 7.5Hz), 1.77 (tq, 2H, J = 8.0, 8.0 Hz), 1.26 (d, 6H, J = 6.3 Hz), 1.02 (t, 3H, J = 8.0 Hz); ¹³C NMR (CDCl₃) $\delta = 176.7$, 149.8, 147.7, 127.8,

124.0, 72.8, 36.6, 21.2, 19.6, 13.7; IR (neat) 2972, 2938, 1582, 1530, 1349, 1311, 1160, 1093 cm⁻¹; HRMS (APCI) Exact mass calcd for $C_{13}H_{19}N_2O_5S$ [M+H]⁺, 315.1015. Found 315.1028.

Isopropyl *N*-(4-nitrobenzenesulfonyl)-3-methylbutanimidate (5c): Mp. 79-80 °C; ¹H NMR (CDCl₃) δ =8.36 (br d, 2H, *J* = 9.2 Hz), 8.12 (br d, 2H, *J* = 9.2 Hz), 5.00 (septet, 1H, *J* = 6.3 Hz), 2.79 (d, 2H, *J* = 7.4 Hz), 2.26 (app septet, 1H, *J* = 7.0 Hz), 1.25 (d, 6H, *J*) $D^{OPr} = 6.3$ Hz), 1.02 (d, 3H, *J* = 7.0 Hz); ¹³C NMR (CDCl₃) δ = 176.0,

149.7, 147.8, 127.8, 124.0, 72.8, 43.2, 26.9, 22.3, 21.2; IR (neat) 2961, 1597, 1534, 1370, 1305, 1158, 1091 cm⁻¹; HRMS (APCI) Exact mass calcd for $C_{14}H_{21}N_2O_5S$ [M+H]⁺, 329.1171. Found 329.1173.

Isopropyl *N*-(4-nitrobenzenesulfonyl)-2-phenylacetimidate (5d): Mp. 92-93 °C; ¹H NMR (CDCl₃) δ = 8.32 (br d, 2H, *J* = 9.2 Hz), 8.07 (br d, 2H, *J* = 9.2 Hz), 7.25-7.40 (m, 5H), 5.01 (septet, 1H, *J* = 6.3 $^{\circ}$ C[/]Pr

S-3

Hz), 4.22 (s, 2H), 1.20 (d, 6H, J = 6.3 Hz); ¹³C NMR (CDCl₃) $\delta = 173.8$, 149.8, 147.3, 133.1, 129.3, 128.6, 127.8, 127.4, 124.0, 73.4, 40.4, 21.0; IR (neat) 3020, 1580, 1532, 1351, 1308, 1216, 1158, 1093 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₇H₁₉N₂O₅S [M+H]⁺, 363.1015. Found 363.1015.

CF₃ **Isopropyl** *N*-(4-trifluoromethylbenzenesulfonyl)propionimidate (6): ¹H NMR (CDCl₃) $\delta = 8.06$ (br d, 2H, J = 8.6 Hz), 7.76 (br d, 2H, J = 8.6 Hz), 5.00 (septet, 1H, J = 6.3 Hz), 2.91 (q, 2H, J = 7.5 Hz), ⁰2^SN 1.21-1.24 (m, 9H); ¹³C NMR (CDCl₃) $\delta = 177.1$, 145.5, 126.9, 125.8, ^{125.8}, 72.5, 28.3, 21.0, 10.1; IR (neat) 2987, 2946, 1593, 1323, 1163, 1097, 1064 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₃H₁₇F₃NO₃S [M+H]⁺, 324.0881. Found 324.0871.

CF₃ Isopropyl *N*-(3-trifluoromethylbenzenesulfonyl)propionimidate (7): ¹H NMR (CDCl₃) $\delta = 8.21$ (s, 1H), 8.13 (br d, 1H, J = 8.0 Hz), 7.81 (br d, 1H, J = 8.0 Hz), 7.65 (dd, 1H, J = 8.0, 8.0 Hz), 5.00 (septet, 1H, J =Et O'Pr 6.3 Hz), 2.92 (q, 2H, J = 7.5 Hz), 1.22-1.27 (m, 9H); ¹³C NMR (CDCl₃) $\delta = 177.1$, 143.3, 129.7, 129.5, 128.9, 128.8, 123.6, 72.6, 28.3, 21.1, 10.1; IR (neat) 2986, 2946, 1595, 1328, 1159, 1105, 1072 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₃H₁₇F₃NO₃S [M+H]⁺, 324.0881. Found 324.0873.

Sopropyl *N*-(4-methoxybenzenesulfonyl)propionimidate (8): Mp. 25-26 °C; ¹H NMR (CDCl₃) δ = 7.86 (br d, 2H, *J* = 9.2 Hz), 6.96 (br d, 2H, *J* = 9.2 Hz), 5.03 (septet, 1H, *J* = 6.3 Hz), 3.86 (s, 3H), 2.88 (q, 2H, *J* = 8.0 Hz), 1.23 (d, 6H, *J* = 6.3 Hz), 1.21 (t, 3H, *J* = 8.0 Hz); ¹³C Et O'Pr NMR (CDCl₃) δ = 176.1, 162.5, 134.2, 128.5, 113.8, 71.8, 55.5, 27.8, 21.2, 10.2; IR (neat) 2983, 2944, 1597, 1313, 1259, 1154, 1095 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₃H₂₀NO₄S [M+H]⁺, 286.1113. Found 286.1106.

NMe₂ Isopropyl *N*-(4-dimethylaminobenzenesulfonyl)propionimidate (11): Mp. 98-99 °C; ¹H NMR (CDCl₃) $\delta = 7.74$ (dq, 2H, J = 9.2, 2.3Hz), 6.66 (dq, 2H, J = 9.2, 2.3 Hz), 5.04 (septet, 1H, J = 6.3 Hz), 3.03 (d, 6H, J = 2.3 Hz), 2.85 (qd, 2H, J = 7.4, 2.3 Hz), 1.22 (overlapping d, 6H, J = 6.3 Hz), 1.18 (td, 3H, J = 7.4, 2.3 Hz); ¹³C NMR (CDCl₃) $\delta =$ 175.4, 152.5, 128.1, 128.0, 110.6, 71.4, 40.1, 27.4, 21.2, 10.2; IR (neat) 2982, 2923, 1589, 1368, 1308, 1146, 1088 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₄H₂₃N₂O₃S [M+H]⁺, 299.1429. Found 299.1444.

(II) Representative procedure for allylation reaction.

To a prestirred, degassed solution of Pd₂dba₃ (6.9 mg, 7.5 μ mol), ligand 4c (10.3 mg, 15 μ mol) and MS 4A (50 mg) in dry THF (1.5 ml) was successively added a solution of cinnamyl carbonate 1a (99.1 mg, 0.45 mmol) in THF (0.4 ml), imidate 5a (90.3 mg, 0.3 mmol) and DBU (1,8-diazabicyclo[5.4.0]undec-7-ene, 4.6 mg, 0.03 mmol) in THF (100 μ l) and the mixture was stirred at room temperature. Upon complete consumption of the imidate starting material, the resulting orange solution was diluted with acetone (1 ml), filtered and concentrated *in vacuo*. The ratio of regioisomers was determined by ¹H NMR of the crude products (α : γ 95:5). Purification by preparative TLC eluting with hexane/acetone (4:1) afforded the allylation adduct (103.8 mg, 0.25 mmol, 83%).

ArO₂S_N Ph $Me_{Ar = Ph}$ Ar = Ph (E)-Isopropyl N-(benzenesulfonyl)-2-methyl-5-phenyl pent-4-enimidate (3 α): ¹H NMR (CDCl₃) δ = 7.90 (br d, 2H, J = 7.5 Hz), 7.51 (tt, 1H, J = 7.5, 1.2 Hz), 7.43 (br t, 2H, J = 7.5 Hz), 7.26-7.32 (m, 4H), 7.19-7.23 (m, 1H), 6.40 (d, 1H, J)

J = 16.1 Hz), 6.13 (dt, 1H, J = 16.1, 7.4 Hz), 5.03 (septet, 1H, J = 6.3 Hz), 3.80-3.84 (m, 1H), 2.53-2.57 (m, 1H), 2.37-2.41 (m, 1H), 1.26 (d, 3H, J = 6.9 Hz), 1.24 (d, 3H, J = 6.3 Hz), 1.19 (d, 3H, J = 6.3 Hz); ¹³C NMR (CDCl₃) $\delta = 177.9$, 142.3, 137.2, 132.3, 132.1, 128.7, 128.5, 127.1, 126.7, 126.4, 126.1, 71.9, 38.7, 37.5, 21.3, 21.1, 17.5; IR (neat) 2981, 2933, 2357, 1593, 1447, 1304, 1156, 1090 cm⁻¹; HRMS (APCI) Exact mass calcd for C₂₁H₂₆NO₃S [M+H]⁺, 372.1633. Found 372.1634.

Hz), 3.72 (td, 1H, J = 7.5, 6.0 Hz), 2.46-2.52 (m, 1H), 2.32-2.37 (m, 1H), 1.23 (d, 3H, J = 6.5 Hz), 1.18 (d, 3H, J = 6.5 Hz), 1.13 (d, 3H, J = 6.0 Hz); ¹³C NMR (CDCl₃) $\delta = 178.8$, 149.6, 147.6, 137.0, 132.4, 128.5, 127.7, 127.3, 126.3, 126.0, 123.9, 72.6, 39.4, 37.6, 39.4, 37.6, 21.2, 21.0, 17.6; IR (neat) 2983, 2933, 2363, 1578, 1530, 1457, 1349, 1305, 1159, 1090 cm⁻¹; HRMS (APCI) Exact mass calcd for C₂₁H₂₅N₂O₅S [M+H]⁺, 417.1484. Found 417.1489.

ArO₂S_N Ph MeAr = p-MeOC₆H₄ Me $Ar = p-MeOC_6H_4$ (E)-Isopropyl N-(4-methoxybenzenesulfonyl)-2-methyl-5-phenylpent-4-enimidate (8p α): ¹H NMR[†] (CDCl₃) δ = 7.74 (br d, 2H, J = 9.2 Hz), 7.11-7.25 (m, 5H), 6.80 (br d, 2H, J = 9.2 Hz), 6.40* (d, 1H, J = 16.0 Hz), 6.31 (d, 1H, J = 16.1

Hz), 6.10* (dt, 1H, J = 16.0, 7.5 Hz), 6.03 (dt, 1H, J = 16.1, 7.5 Hz), 4.95 (septet, 1H,

^{*} Reported as an inseparable mixture of α (major) and γ (minor) regioisomers. Asterisk indicated data corresponded to the γ regioisomer.

Isopropyl

J = 6.3 Hz), 3.72-3.80 (m, 4H), 2.86* (dd, 1H, J = 14.3, 7.5 Hz), 2.44-2.50 (m, 1H), 2.26-2.31 (m, 1H), 1.18 (d, 3H, J = 6.3 Hz), 1.16 (d, 3H, J = 6.3 Hz), 1.11 (d, 3H, J =6.3 Hz), 1.09* (d, 3H, J = 6.3 Hz); ¹³C NMR (CDCl₃) $\delta = 177.4$, 162.4, 137.3, 134.3, 132.2, 128.5, 128.4, 127.1, 126.8, 126.1, 113.8, 71.6, 55.5, 38.4, 37.5, 21.3, 21.1, 17.5; IR (neat) 2980, 2938, 2361, 1595, 1498, 1458, 1296, 1258, 1152, 1091 cm⁻¹; HRMS (APCI) Exact mass calcd for C₂₂H₂₈NO₄S [M+H]⁺, 402.1739. Found 402.1728.

ArO₂S_N Me $Ar = p - NO_2C_6H_4$

4-enimidate (9ab): MP. 69-70 °C; ¹H NMR (CDCl₃) $\delta = 8.35$ OⁱPr (br d, 2H, J = 9.2 Hz), 8.12 (br d, 2H, J = 9.2 Hz), 5.70-5.81 (m, 1H), 5.08 (d, 1H, J = 20.6 Hz), 5.05 (br d, 1H, J = 14.9 Hz), 4.97 (septet, 1H, J = 6.3 Hz), 3.66 (qt, 1H, J = 7.5, 6.9 Hz), 2.42-2.48 (m, 1H), 2.22-2.27 (m, 1H), 1.22-1.27 (m, 9H); ¹³C NMR (CDCl₃) δ = 179.0, 149.7, 147.8, 134.6, 127.8,

2-methyl-N-(4-nitrobenzenesulfonyl)pent-

124.0, 117.4, 72.6, 39.2, 38.1, 21.1, 21.0, 17.5; IR (neat) 2982, 2933, 1581, 1532, 1458, 1350, 1298, 1157, 1089 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₅H₂₁N₂O₅S [M+H]⁺, 341.1171. Found 341.1181.

Isopropyl 2-ethyl-*N*-(4-nitrobenzenesulfonyl)pent-4-enimidate ArO₂S (9bb): ¹H NMR (CDCl₃) δ = 8.33 (br d, 2H, J = 9.2 Hz), 8.10 (br Et d, 2H, J = 9.2 Hz), 5.77 (ddt, 1H, J = 17.2, 9.7, 6.9 Hz), 4.94-5.07 $Ar = p - NO_2C_6H_4$ (m, 3H), 3.56 (app quint, 1H, J = 7.5 Hz), 2.28-2.40 (m, 2H),

1.57-1.73 (m, 2H), 1.23 (d, 3H, J = 6.3 Hz), 1.21 (d, 3H, J = 6.3 Hz), 0.95 (t, 3H, J =7.5 Hz); ¹³C NMR (CDCl₃) δ = 178.2, 149.6, 147.8, 134.7, 127.7, 123.9, 117.2, 72.4, 46.0, 36.8, 25.5, 21.1, 21.0, 11.5; IR (neat) 2980, 2936, 1583, 1531, 1465, 1350, 1307, 1245, 1160, 1091 cm⁻¹; HRMS (APCI) Exact mass calcd for $C_{16}H_{23}N_2O_5S$ [M+H]⁺, 355.1328. Found 355.1324.

ArO₂S_N iPr Pr iPr $Ar = p-NO_2C_6H_4$ Isopropyl Isopropyl Isopropyl $Ar = p-NO_2C_6H_4$ (m, 3H), 3.34 (ddd, 1H, J = 9.2 Hz), 5.68-5.78 (m, 1H), 4.86-5.00 (m, 3H), 3.34 (ddd, 1H, J = 10.3, 8.6, 4.6 Hz), 2.40-2.47 (m, 1H), 2.17-2.25 (m, 1H), 1.82-1.92 (m, 1H), 1.17 (d, 3H, J = 6.3 Hz), 1.14 (d, 3H, J = 6.3Hz), 0.96 (d, 3H, J = 6.9 Hz), 0.92 (d, 3H, J = 6.9 Hz); ¹³C NMR (CDCl₃) $\delta = 177.8$, 149.7, 148.0, 135.0, 127.7, 123.9, 117.0, 72.4, 51.0, 34.9, 30.9, 21.2, 21.0, 20.9, 19.8; IR (neat) 2968, 1579, 1532, 1467, 1350, 1306, 1159, 1093 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₇H₂₅N₂O₅S [M+H]⁺, 369.1484. Found 369.1476.

5.06 (br d, 1H, J = 10.9 Hz), 4.99 (septet, 1H, J = 6.3 Hz), 4.93 (dd, 1H, J = 9.2, 6.3 Hz), 2.81-2.88 (m, 1H), 2.58-2.64 (m, 1H), 1.29 (d, 3H, J = 6.3 Hz), 1.18 (d, 3H, J = 6.3 Hz); ¹³C NMR (CDCl₃) $\delta = 175.1$, 149.7, 149.7, 147.6, 137.2, 134.3, 128.6, 128.4, 127.8, 123.9, 117.7, 73.3, 49.6, 38.0, 21.1, 21.0; IR (neat) 2983, 2938, 1577, 1531, 1350, 1306, 1159, 1093 cm⁻¹; HRMS (APCI) Exact mass calcd for C₂₀H₂₃N₂O₅S [M+H]⁺, 403.1328. Found 403.1317.

7.67 (br d, 1H, J = 8.6 Hz), 7.23 (dd, 1H, J = 8.6, 5.2 Hz), 6.42 (d, 1H, J = 16.0 Hz), 6.27 (dt, 1H, J = 16.0, 8.6 Hz), 4.98 (septet, 1H, J = 6.3 Hz), 3.78-3.85 (m, 1H), 2.63 (app dt, 1H, J = 14.3, 8.6 Hz), 2.47 (app dt, 1H, J = 14.3, 8.6 Hz), 1.33 (d, 3H, J = 6.9Hz), 1.26 (d, 3H, J = 6.3 Hz), 1.21 (d, 3H, J = 6.3 H); ¹³C NMR (CDCl₃) $\delta = 178.5$, 149.7, 148.5, 148.1, 147.6, 132.6, 132.5, 128.9, 128.9, 127.8, 124.0, 123.5, 72.7, 39.5, 37.6, 21.2, 21.1, 17.5; IR (neat) 2983, 2918, 2362, 1716, 1578, 1530, 1351, 1305, 1158, 1091 cm⁻¹; HRMS (APCI) Exact mass calcd for $C_{20}H_{24}N_3O_5S$ [M+H]⁺, 418.1437. Found 418.1451.

ArO2S(E)-Isopropyl2-methyl-N-(4-nitrobenzenesulfonyl)hept-MeO'Pr4-enimidate (9ad):1H NMR (CDCl3) δ = 8.34 (br d, 2H, JMePrPrPrPr $Ar = p-NO_2C_6H_4$ 15.5, 6.3 Hz), 5.33 (br dt, 1H, J = 15.5, 8.0 Hz), 4.96 (septet, 10.5)

1H, J = 6.3 Hz), 3.60 (qt, 1H, J = 7.5, 6.9 Hz), 2.36 (app dt, 1H, J = 13.7, 6.9 Hz), 2.16 (app dt, 1H, J = 13.7, 6.9 Hz), 1.97 (app quint, 2H, J = 7.5 Hz), 1.20-1.25 (m, 9H), 0.93 (t, 3H, J = 7.5 Hz); ¹³C NMR (CDCl₃) $\delta = 179.3$, 149.7, 147.9, 135.2, 127.7, 124.9, 124.0, 72.4, 39.6, 37.0, 25.5, 21.1, 21.0, 17.3, 13.7; IR (neat) 2981, 2935, 1582, 1531, 1459, 1350, 1307, 1160, 1091 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₇H₂₅N₂O₅S [M+H]⁺, 369.1484. Found 369.1480.

ArO₂S_N TBSO $Ar = p-NO_2C_6H_4$ (E)-Isopropyl 6-(*tert*-butyldimethylsilyloxy)-2-methyl-N-(4-nitrobenzenesulfonyl)hex-4-enimidate (9ae): ¹H NMR (CDCl₃) $\delta = 8.33$ (br d, 2H, J = 9.2Hz), 8.10 (br d, 2H, J = 9.2 Hz), 4.94-5.56 (m, 2H), 4.95

(septet, 1H, J = 6.3 Hz), 4.09 (br s, 2H), 3.63 (qt, 1H, J = 7.5, 6.9 Hz), 2.36-2.47 (m, 1H), 2.18-2.25 (m, 1H), 1.18-1.26 (m, 9H), 0.88 (s, 9H), 0.04 (s, 6H); ¹³C NMR (CDCl₃) $\delta = 179.0$, 149.7, 147.8, 132.4, 127.8, 126.4, 124.0, 72.6, 63.5, 39.4, 36.5, 25.9, 21.1, 21.0, 18.4, 17.4; IR (neat) 2930, 2857, 1583, 1531, 1463, 1350, 1308, 1255, 1160, 1092 cm⁻¹; HRMS (APCI) Exact mass calcd for C₂₂H₃₇N₂O₆SSi [M+H]⁺, 485.2142. Found 485.2153.

ArO₂S_N (4*E*,6*E*)-Isopropyl 2-methyl-Me N-(4-nitrobenzenesulfonyl)octa-4,6-dienimidate (9af):Ar = $p-NO_2C_6H_4$

¹H NMR⁺ (CDCl₃) $\delta = 8.32$ (br d, 2H, J = 9.2 Hz), 8.10 (br d, 2H, J = 9.2 Hz), 5.89-6.02 (m, 2H), 5.77* (ddd, 1H, J = 17.2, 10.3, 8.6 Hz), 5.57 (dq, 1H, J = 14.3, 6.9 Hz), 5.41 (dt, 1H, J = 14.3, 6.9 Hz), 5.28* (ddq, 1H, J = 15.5, 8.6, 1.7 Hz), 4.98 (septet, 1H, J = 6.3 Hz), 3.59-3.68 (m, 1H), 3.48-3.55* (m, 1H), 2.88* (app quint, 1H, J = 9.1 Hz), 2.38-2.46 (m, 1H), 2.19-2.27 (m, 1H), 1.71 (d, 3H, J = 6.9 Hz), 1.18-1.26 (m, 9H); ¹³C NMR (CDCl₃) $\delta = 179.1$, 178.6, 149.7, 147.8, 138.7, 133.1, 131.0, 130.0, 128.3, 128.0, 127.8, 127.8, 126.8, 124.0, 115.5, 72.6, 51.2, 43.5, 39.5, 37.0, 21.2, 21.0, 18.0, 17.4, 15.9; IR (neat) 2983, 2936, 1578, 1531, 1457, 1160, 1091 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₈H₂₅N₂O₅S [M+H]⁺, 381.1484. Found 381.1474.

1H, J = 16.1, 1.8 Hz), 5.04 (septet, 1H, J = 6.3 Hz), 5.03 (septet, 1H, J = 6.3 Hz), 3.77 (qt, 1H, J = 7.5, 6.9 Hz), 2.58 (dddd, 1H, J = 14.9, 7.5, 6.9, 1.8 Hz), 2.40 (dddd, 1H, J = 14.9, 7.5, 6.9, 1.8 Hz), 1.20-1.30 (m, 15H); ¹³C NMR (CDCl₃) $\delta = 177.7$, 165.5, 149.8, 147.5, 143.8, 127.8, 124.4, 124.1, 73.0, 67.6, 38.4, 36.0, 21.8, 21.0, 21.0, 17.4; IR (neat) 2982, 2938, 1714, 1656, 1583, 1531, 1465, 1351, 1307, 1160, 1107 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₉H₂₇N₂O₇S [M+H]⁺, 427.1539. Found 427.1550.

Isopropyl 2,4-dimethyl-*N***-(4-dimethylaminobenzenesulfonyl)** pent-4-enimidate (9ai): 52-53 °C; ¹H NMR (CDCl₃) δ = 7.72 (br d, 2H, *J* = 9.2 Hz), 6.64 (br d, 2H, *J* = 9.2 Hz), 5.01 (septet, 1H, *J* = 6.3 Hz), 4.72 (d, 2H, *J* = 13.2 Hz), 3.81 (qt, 1H, *J* = 7.5, 6.9

^{*} Reported as an inseparable mixture of α (major) and γ (minor) regioisomers. Asterisk indicated data corresponded to the γ regioisomer.

Hz), 3.00 (s, 3H), 2.39 (dd, 1H, J = 14.3, 8.0 Hz), 2.04 (dd, 1H, J = 14.3, 8.0 Hz), 1.73 (s, 3H), 1.19 (overlapping d, 6H, J = 6.3 Hz), 1.13 (d, 3H, J = 6.9 Hz); ¹³C NMR (CDCl₃) $\delta = 176.7$, 152.4, 142.5, 128.3, 128.0, 112.4, 110.5, 71.0, 41.7, 40.0, 36.1, 22.1, 21.0, 17.4; IR (neat) 2981, 2935, 1714, 1595, 1518, 1448, 1370, 1300, 1221, 1149, 1093 cm⁻¹; HRMS (APCI) Exact mass calcd for C₁₈H₂₉N₂O₃S [M+H]⁺, 353.1899. Found 353.1903.

^{*} Reported as an inseparable mixture of diastereomers. Asterisk indicated data corresponded to the minor diastereomer.

(III) Enantioselectivity of the allylation reaction of sulfonylimidate 5a with allyl

carbonate 1a

(IV) Procedure for the hydrolysis of sulfonylimidate 9aaα to ester 10.

In addition to the procedure previously reported for the conversion of sulfonylimidates to the corresponding esters,¹ it was found that the desired transformation could also be achieved in excellent yield upon mild hydrolysis as shown below:

To sulfonylimidate **9aa** α (20 mg, 0.048 mmol) was added THF (10 ml), pH 10 buffer (10 ml), and the solution was stirred at 40 °C for 24 h until no starting material remained. After evaporation of THF, the crude mixture was extracted with ether, and the combined organic layer washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification by preparative TLC eluting with hexane/acetone (4:1) afforded ester **10** as a colourless oil (11.0 mg, 0.047 mmol, 99%).

(*E*)-propyl 2-methyl-5-phenylpent-4-enoate (10): ¹H NMR Ph $(CDCl_3, 500 \text{ MHz}) \delta = 7.18-7.26 \text{ (m, 4H)}, 7.12 \text{ (br t, 1H, } J = 7.4 \text{ Hz}), 6.34 \text{ (d, 1H, } J = 16.1 \text{ Hz}), 6.08 \text{ (dt, 1H, } J = 16.1, 7.5 \text{ Hz}), 4.93 \text{ (septet, 1H, } J = 6.9 \text{ Hz}), 2.44-2.51 \text{ (m, 2H)}, 2.23-2.30 \text{ (m, 1H)}, 1.10-1.17 \text{ (m, 9H)}; ¹³C NMR (CDCl_3) \delta = 175.6, 137.4, 132.0, 128.5, 127.3, 127.1, 126.0, 67.4, 39.8, 37.1, 21.8, 16.7; IR (neat) 2979, 2933, 1728, 1457, 1375, 1173, 1108 \text{ cm}^{-1}; HRMS (APCI) Exact mass calcd for <math>C_{15}H_{21}O_2$ [M+H]⁺, 233.1542. Found 233.1544.

References

- 1. Matsubara, R.; Berthiol, F.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 1804.
- 2. Welter, C.; Moreno, R. M.; Streiff, S.; Helmchen, G. Org. Biomol. Chem. 2005, 3, 3266.
- 3. Kende, A. S.; Fludzinski, P. Org. Syn. 1986, 64, 104.