A Multifunctional Organometallic Switch with Carbon-Rich Ruthenium and Diarylethene Units

Yifei Liu, Corinne Lagrost,* Karine Costuas,* Noureddine Tchouar, Hubert Le Bozec and Stéphane Rigaut*

Electronic Supplementary Information

I - Synthetic procedures.

General Comments. The reactions were achieved under an inert atmosphere, using the Schlenk techniques. Solvents were freshly distillated under argon using standard procedures. The diethynyl-substituted dithienylethene¹ and the ruthenium precursor² were prepared as previously reported. All the reactions and handling of the compound are carried out in the dark.

Synthesis of [Cl-(dppe)₂Ru-C≡C-(C₁₅S₂F₆H₆)-C≡C-Ru(dppe)₂-Cl] (10):

In a Schlenk tube, [Cl(dppe)₂Ru][OTf] (172 mg, 0.16 mol) and the diethynyl-substituted dithienylethene (33.08 mg, 0.08 mmol) were pumped for 30 min. Then, well degassed dichloromethane (20 mL) was transferred onto the solids. The mixture was stirred in the dark for four days before addition of triethylamine (0.2 mL, 3.2 mmol). After 30 min, the reacting solution was evaporated. The dichloromethane solution was washed with degassed water (4 × 10 mL), dried (Na₂SO₄), and the residue obtained after evaporation was washed with pentane (2 × 10 mL). An amount of 100 mg of **10** as a light green solid was recovered after drying under vacuum (55% yield). ³¹P NMR (81 MHz, CDCl₃, 297 K): δ 50.3 (s, PPh₂). ¹H NMR (200 MHz, CDCl₃, 297 K): δ 7.55-6.97 (m, 80 H, Ph), 6.17 (s, 2 H, ArH), 2.69 (m, 16 H, CH₂), 1.78 (s, 6 H, ArCH₃). ¹³C NMR (75.5 MHz, C₆D₆, 297 K): δ 136.67-127.23 (Ph dppe), 135.36, 130.13 124.77, 124.64 (DTE), 103.92 (Ru-C=<u>C</u>), 30.97 (m, |¹J_{PC} + ³J_{PC}| = 23 Hz), 14.77 (ArCH₃). ¹⁹F NMR (188.3 MHz, CD₂Cl₂, 297 K): δ -110.144 (t, J = 6 Hz, 4 F), -132.287 (m, 2 F). IR (KBr): v = 2055 cm⁻¹ (C=C). HR-MS FAB⁺ (m/z): 2261.2958 ([M -. F] ⁺, calcd: 2261.2865).

Figure S1. ¹H NMR spectrum of 10 in CDCl₃

Figure S2. ³¹P NMR spectrum of 10 in CDCl₃

II – Isomerization studies

General Comments. UV-vis irradiation were performed with a LS series Light Source of ABET technologies, Inc (150 W xenon lamp), with single wavelength light filters of "350FS 10-25", "450FS 20-25", "650FS 10-25" and "750FS 40-25". UV-vis-NIR spectra were recorded with a Cary 5000 apparatus.

³¹P and ¹H NMR studies

Figure S3. ³¹P and selected ¹H NMR signals in C_6D_6 of **10** and of **1c** after excitation at 350 nm. Initial spectra were recovered after bleaching at 750 nm.

Data for 1C: ³¹P NMR (81 MHz, C₆D₆, 297 K): δ 49.5 (s, PPh₂). ¹H NMR (200 MHz, C₆D₆, 297 K): δ 7.84-6.95 (m, 80 H, Ph), 5.43 (s, 2 H, ArH), 2.61 (s, 6 H, ArCH₃), 2.52 (m, 16 H, PCH₂CH₂P). IR (KBr): v = 2009 cm⁻¹ (C=C).

IV – Electrochemistry

General Comments. Electrochemical studies were carried out under argon using an instrument consisted of a Tacussel GSTP4 programmer and a home-built potentiostat equipped with a positive feedback compensation device $(CH_2Cl_2, 0.2 \text{ M Bu}_4\text{NPF}_6)$.³ The voltammograms were recorded with a 310 Nicolet oscilloscope. The working electrode was a Pt disk, the counter electrode was a Pt wire and SCE electrode was used a reference electrode. After each series of experiments, ferrocene and decamethylferrocene were added to the electrolyte and the corresponding couples served as internal probes.⁴

Macroelectrolyses under argon atmosphere were performed at controlled potential with a three electrode configuration in a two-compartment cell. A Pt plate (3 cm²) was used as a working electrode, a Pt disk (1 mm of diameter) was used as a secondary working electrode, a SCE electrode with an extension (CH₂Cl₂, 0.2 M Bu₄NPF₆) served as a reference electrode and a Pt grid was the counter electrode. Experiments were performed with a EGG PAR-173 potentiostat and a EGG PAR-175 universal programmer equipped with a EGG PAR-179 digital coulometer. For each macroscale electrolysis, a dilute CH₂Cl₂ solution (ca. 10⁻³ M) of the compounds was prepared with Bu₄NPF₆ (0.2 M) as the supporting electrolyte. The applied oxidation potentials were calibrated upon performing cyclic voltammetry before electrolysis. By recording CVs, the secondary Pt electrode was used to control the consumption of the starting materials throughout the bulk electrolysis. Electrolyses were stopped after the current was dropped to less than 10 % of its initial value. All the reactions and handling of the compound were carried out in the dark.

UV-vis-NIR spectroelectrochemistry (SEC) experiments were performed in CH_2Cl_2 at 20 °C, under argon, with a home-made Optically Transparent Thin-Layer Electrosynthetic (OTTLE) cell, path length = 1 mm, using a Varian CARY 5000 spectrometer and an EG&G PAR model 362 potentiostat. A Pt mesh was used as the working electrode, a Pt wire as the counter electrode, and an Ag wire as a pseudo-reference electrode. The electrodes were arranged in the cell such that the Pt

mesh was in the optical path of the quartz cuvette. The anhydrous freeze-pump-thaw degassed sample-electrolyte solution ($0.2 \text{ M Bu}_4\text{NPF}_6$) was cannula-transferred under argon into the cell previously thoroughly deoxygenated. The oxidation potentials were calibrated upon performing cyclic voltammetry before electrolysis. Nice isosbestic points observed along the whole experiment show the clean conversion processes.

Cyclic voltametry

Figure S4. Cyclic voltammetry of 10 (CH₂Cl₂ 0.2 M Bu₄NPF₆) at 0.1 V.s⁻¹.

Study of the mechanism: Numerical simulations.

Numerical simulations of the voltammograms were performed with the DigiElch simulation software (Elchsoft), ⁵ using the defaults numerical options with the assumption of a planar diffusion and a Butler-Volmer law for the electron transfer. The charge-transfer coefficient, α , was taken as 0.5.

Two distinct mechanisms were tested.

Mechanism 1(closing in t	the $1o^{2+}$ state)		
$10 = 10^+ + e^-$	$E_1^{\circ} = 0.405 \text{ V}$	$k_{s}^{1} = 0.2 \text{ cm.s}^{-1}$	
$10^+ = 10^{2+} + e^-$	$E^{2\circ} = 0.490 V$	$k_{s}^{2} = 0.2 \text{ cm.s}^{-1}$	
$10^{2+} = 1c^{2+}$	$K = 10^8$	$k_f = 15 s^{-1}$ $k_b = 1.$	$5 \ 10^{-7} \ \mathrm{s}^{-1}$
$1c^{2+} + e^{-} = 1c^{+}$	$E_3^{\circ} = 0.130 \text{ V}$	$k_{s}^{3} = 0.2 \text{ cm.s}^{-1}$	
$1c^+ + e^- = 1c$	$E_{3'}^{\circ} = 0.009 V$	$k^{3'}s = 0.2 \text{ cm.s}^{-1}$	
$10^{2+} + 1c = 10^{+} + 1c^{+}$	$K=1.35 \ 10^8$	$k_{f} = 10^{8} \text{ s}^{-1}$	$k_b = 0.74 \text{ s}^{-1}$
$10^{2+} + 1c^{+} = 10^{+} + 1c^{2+}$	$K=1.21\ 10^6$	$k_{f} = 10^{8} \text{ s}^{-1}$	$k_b = 83 \text{ s}^{-1}$
$10^{+} + 1c = 10 + 1c^{+}$	$K = 4.9 \ 10^6$	$k_{f} = 10^{8} \text{ s}^{-1}$	$k_b = 20 \text{ s}^{-1}$
$10^{+} + 1c^{+} = 10 + 1c^{2+}$	$K = 4.4 \ 10^5$	$k_{f} = 10^{8} \text{ s}^{-1}$	$k_b = 2250 \text{ s}^{-1}$
$10^{+} + 10^{+} = 10 + 10^{2+}$	K = 0.037	$k_{f} = 10^{8} \text{ s}^{-1}$	$k_b = 2.7 \ 10^9 \ s^{-1}$

Mechanism 2 (closing in	the 10^+ state)	
$10 = 10^+ + e^-$	$E_1^{\circ} = 0.405 V$	$k_{s}^{1} = 0.2 \text{ cm.s}^{-1}$
$10^+ = 10^{2+} + e^-$	$E^{2\circ} = 0.490 V$	$k_{s}^{2}=0.2 \text{ cm.s}^{-1}$
$10^{+} = 1c^{+}$	$K = 10^8$	$k_f = 1.5 \text{ s}^{-1}$ $k_b = 1.5 10^{-8} \text{ s}^{-1}$
$1c^{2+} + e^{-} = 1c^{+}$	$E_3^{\circ}= 0.130 \text{ V}$	$k_{s}^{3} = 0.2 \text{ cm.s}^{-1}$
$1c^{+} + e^{-} = 1c$	$E_{3'}^{\circ} = 0.009 V$	$k_{s'}^{3'} = 0.2 \text{ cm.s}^{-1}$

$10^{2+} + 1c^{+} = 10^{+} + 1c^{2+}$ K= 1.21 10^{6} $k_{f} = 10^{8} \text{ s}^{-1}$ $k_{b} = 83 \text{ s}^{-1}$ $10^{+} + 1c = 10 + 1c^{+}$ K= 4.9 10^{6} $k_{f} = 10^{8} \text{ s}^{-1}$ $k_{b} = 20 \text{ s}^{-1}$ $10^{+} + 1c^{+} = 10 + 1c^{2+}$ K= 4.4 10^{5} $k_{f} = 10^{8} \text{ s}^{-1}$ $k_{b} = 2250 \text{ s}^{-1}$ $10^{+} + 1c^{+} = 10 + 1c^{2+}$ K= 0.037 $k_{f} = 10^{8} \text{ s}^{-1}$ $k_{b} = 2.7 10^{9} \text{ s}^{-1}$	$10^{2+} + 1c = 10^{+} + 1c^{+}$	$K=1.35 \ 10^8$	$k_f = 10^8 \text{ s}^{-1}$	$k_b = 0.74 \text{ s}^{-1}$
$10^{+} + 1c = 10 + 1c^{+}$ K= 4.9 10^{6} $k_{f} = 10^{8} \text{ s}^{-1}$ $k_{b} = 20 \text{ s}^{-1}$ $10^{+} + 1c^{+} = 10 + 1c^{2+}$ K= 4.4 10^{5} $k_{f} = 10^{8} \text{ s}^{-1}$ $k_{b} = 2250 \text{ s}^{-1}$ $10^{+} + 10^{+} = 10 + 10^{2+}$ K= 0.037 $k_{f} = 10^{8} \text{ s}^{-1}$ $k_{b} = 2.7 10^{9} \text{ s}^{-1}$	$10^{2+} + 1c^{+} = 10^{+} + 1c^{2+}$	$K=1.21\ 10^{6}$	$k_f = 10^8 \text{ s}^{-1}$	$k_b = 83 \text{ s}^{-1}$
$10^{+} + 1c^{+} = 10 + 1c^{2+} \qquad K = 4.4 \ 10^{5} \qquad k_{f} = 10^{8} \ s^{-1} \qquad k_{b} = 2250 \ s^{-1}$ $10^{+} + 10^{+} = 10 + 10^{2+} \qquad K = 0.037 \qquad k_{f} = 10^{8} \ s^{-1} \qquad k_{b} = 2.7 \ 10^{9} \ s^{-1} $	$10^{+} + 1c = 10 + 1c^{+}$	$K = 4.9 \ 10^6$	$k_f = 10^8 \text{ s}^{-1}$	$k_b = 20 \text{ s}^{-1}$
$10^{+} + 10^{+} = 10 + 10^{2+}$ K= 0.037 k _f = 10^{8} s ⁻¹ k _h = 2.7 10^{9} s	$10^+ + 1c^+ = 10 + 1c^{2+}$	$K = 4.4 \ 10^5$	$k_{f} = 10^{8} \text{ s}^{-1}$	$k_b = 2250 \text{ s}^{-1}$
$R_{\rm I} = 10^{-10}$ $R_{\rm I} = 10^{-10}$ $R_{\rm I} = 2.710^{-10}$	$10^+ + 10^+ = 10 + 10^{2+}$	K = 0.037	$k_{f} = 10^{8} \text{ s}^{-1}$	$k_b = 2.7 \ 10^9 \ s^{-1}$

Figure S5. Cyclic voltammetry of **10** in $CH_2Cl_2 0.2 \text{ M Bu}_4NPF_6$ on a Pt disk electrode at 0.5 V.s⁻¹. Solid line : experimental data. Dotted line: simulation. On the left, simulation according to *mechanism 1*.

On the right, simulation according to *mechanism* 2

III – Theoretical calculations

General Comments. Density functional theory (DFT) calculations were performed with the Amsterdam Density Functional package (ADF 2007.01)⁶ on slightly simplified models of 10^{n+} and $1c^{n+}$ (phenyl groups were replaced by hydrogen atoms), n = 0, 1, 2. The singlet and triplet states were considered for dications, $1c^{2+}$ in its high spin state was not fully converged and is not reported. The geometries were fully optimized without constraints (C_1 symmetry). The bonding energies and cartesian coordinates of each structure is given in Table S1. Because of the size of the molecules and thus of computational limits, frequency analysis were not performed, but the geometry optimization convergence criteria were more drastic than default ones (energy change < 0.0005 Hartree, atomic position displacement < 0.005 Å). Conformational studies were performed on 1c in order to evaluate the influence of the spatial orientation of the [ClRu(dpe)₂] groups toward the organic DTE bridge on the electronic excitation energies. Three orientations were chosen: $1c_1$ where the dpe (1,2-diphosphinoethane) ligands of each metallic fragments span below and above the DTE plane; $1c_2$ where the dpe ligands of one metallic fragments span below and above the DTE plane, the other is rotated by ~ 90°; $1c_3$ which shows intermediate positions of the metallic moieties toward the organic plane (see schemes included in Table S1). The orientation of $1c_1^{2+}$ and $1c_1^{+}$ is arbitrarily chosen as the one of $1c_1$. Electron correlation was treated within the local density approximation (LDA) in the Vosko-Wilk-Nusair parametrization.⁷ The non-local corrections of Becke and Perdew were added to the exchange and correlation energies, respectively.⁸ The analytical gradient method implemented by Verluis and Ziegler was used.⁹ The standard ADF TZP basis set was used, i.e., triple- ξ STO basis set for the valence core augmented with a 3d polarisation function for C, P. Orbitals up to 1s, 2p, and 4p were kept frozen for C, P, and Ru, respectively. The excitation energies and oscillator strengths

were calculated following the procedure described by van Gisbergen and co-wokers.¹⁰ In that case, the functional used was PBE.¹¹

Anti-parallel conformation

Parallel conformation

 $[Ru] = Ru(dppe)_2Cl$

Figure S6. Top: Anti parallel and parallel conformations of **10**. Bottom: Unstable structural arrangement of **10** in its parallel conformation (main distances and angles taken from the optimized **10** anti-parallel geometry). Inter-group C-H and H-H distances are too short (much less than the sum of the van der Waals radii) in this conformation whatever the orientation of the metallic moieties is chosen.

10				1o ⁺			
E =	-471.819 eV	J		E =	-466.234 e	J	
С	.133568	089908	.033189	С	.130106	105162	.023572
С	.176753	239897	1.532466	С	.187435	278677	1.521961
С	1.688466	080109	1.937019	С	1.704355	104612	1.913614
С	2.424502	.215991	.577006	С	2.419659	.245063	.553009
С	1.350783	.204317	481783	С	1.334371	.219780	496046
F	586639	.725838	2.155512	F	584508	.668609	2.154698
F	312312	-1.452617	1.962314	F	281968	-1.503722	1.926935
F	2.161825	-1.219412	2.515893	F	2.200269	-1.254935	2.440399
F	1.858038	.941720	2.822766	F	1.866922	.891640	2.822166
F	3.392263	736060	.334970	F	3.407805	668995	.276369
F	3.081077	1.424539	.642356	F	3.027910	1.474598	.629648
С	1.671065	.474641	-1.902271	С	1.640029	.490052	-1.919543
С	2.128326	537789	-2.797031	С	2.067087	524671	-2.808092
С	2.322925	100039	-4.097250	С	2.278215	085798	-4.116322
S	1.952034	1.628578	-4.183123	S	1.942979	1.653970	-4.204577
С	1.529141	1.718973	-2.495440	С	1.524393	1.743081	-2.520433
Н	2.300145	-1.570951	-2.503058	Н	2.228066	-1.560218	-2.516968
С	1.058634	3.011643	-1.896669	С	1.100629	3.044819	-1.911194
Н	1.063734	2.953277	800675	Н	1.061706	2.965126	818020
Н	.033904	3.253615	-2.217977	Н	.105055	3.346098	-2.269616
Н	1.707080	3.850647	-2.186238	Н	1.801532	3.852342	-2.163019
Н	.026556	-5.033364	-8.300322	Н	.022998	-5.038773	-8.319751
С	2.722111	821000	-5.234401	С	2.685040	817349	-5.223721
С	3.062722	-1.470442	-6.231146	С	3.039410	-1.476396	-6.222743
Ru	3.691933	-2.591956	-7.801625	Ru	3.669785	-2.574517	-7.754934
P	2.193287	-4.340520	-7.299996	Ρ	2.178674	-4.364370	-7.299332
С	.875238	-4.417885	-8.630097	С	.872572	-4.419739	-8.639577
С	.435125	-2.994401	-9.005337	С	.429249	-2.993438	-9.002270
P	1.943220	-1.892204	-9.223001	Ρ	1.925207	-1.881178	-9.216307
Н	2.601512	-5.705860	-7.248221	Н	2.623958	-5.715691	-7.274859
Н	1.410298	-4.317717	-6.104831	Н	1.394800	-4.375143	-6.106284
Н	1.358207	-4.914280	-9.486148	Н	1.354980	-4.909403	-9.499252
Н	159187	-2.543757	-8.195052	Н	165982	-2.550474	-8.188264
Н	176021	-2.986547	-9.918653	Н	184837	-2.982100	-9.913196
Н	1.330350	602573	-9.191009	Н	1.316219	590767	-9.192438
Н	2.168292	-1.977883	-10.629024	Н	2.189759	-1.974774	-10.612587

Table S1. Optimized Cartesian coordinates of 10^{n+} and $1c^{n+}$, n = 0, 1, 2 and their total bonding energies.

P 5.463101	-3.341907	-6.450874	P	5.480976	-3.367946	-6.446253
C 6.831643	-2.058383	-6.421625	С	6.852018	-2.090926	-6.436013
C 6.943357	-1.393717	-7.802521	С	6.949109	-1.415484	-7.813169
P 5.232720	924413	-8.414246	Ρ	5.242136	920245	-8.407556
Н 5.095863	.405171	-7.911106	Н	5.122340	.416220	-7.923064
Н 5.513837	599270	-9.774758	Н	5.484839	632886	-9.780885
Н 7.600920	513501	-7.780061	Н	7.612338	540100	-7.788441
н 7.340474	-2.103365	-8.545397	Н	7.336980	-2.118670	-8.566259
н 7.781559	-2.514823	-6.110336	Н	7.804073	-2.555553	-6.144848
н 6.537275	-1.322241	-5.657133	Н	6.579228	-1.359899	-5.658687
Н 6.170403	-4.523153	-6.829261	Н	6.145326	-4.544712	-6.895312
н 5.321249	-3.617629	-5.058260	Н	5.372547	-3.680843	-5.060789
Cl 4.507041	-4.054651	-9.742632	Cl	4.491455	-4.000369	-9.674259
C -1.143072	198597	709972	С	-1.147520	205742	718310
C -1.664568	-1.387160	-1.198330	С	-1.693009	-1.393986	-1.207145
s -3.148637	-1.079976	-2.055293	S	-3.163258	-1.079976	-2.073347
C -3.078704	.659762	-1.755303	С	-3.065840	.663847	-1.783276
C -1.940744	.939694	-1.014863	С	-1.916228	.935091	-1.036405
C -1.112486	-2.780934	-1.095612	С	-1.165001	-2.791970	-1.082110
н -1.115063	-3.141070	056358	Н	-1.211103	-3.141700	040752
н076222	-2.821450	-1.462670	Н	114543	-2.841864	-1.402783
H -1.702820	-3.485630	-1.694296	Н	-1.739324	-3.492585	-1.699272
H -1.688481	1.951777	706979	Н	-1.658527	1.945287	727103
C -4.042767	1.562969	-2.233453	С	-4.008177	1.570790	-2.250793
C -4.810016	2.454277	-2.619203	С	-4.789035	2.470662	-2.623916
Ru -6.012334	4.029388	-3.058512	Ru	-5.982449	4.002066	-3.059568
P -5.587239	4.719802	855427	P	-5.598092	4.772979	853600
C -6.658672	3.741956	.332802	С	-6.672568	3.807719	.337127
C -8.045572	3.527961	292980	С	-8.051744	3.562537	295591
P -7.851589	2.944426	-2.067627	Ρ	-7.853738	2.935908	-2.051760
н -5.860791	6.065521	459948	Н	-5.914042	6.127110	539841
н -4.304125	4.582622	248422	Η	-4.321536	4.690880	225766
Н -6.722060	4.250962	1.304755	Н	-6.754427	4.335647	1.297143
н -6.143012	2.779767	.479491	Н	-6.147552	2.855852	.514695
н -8.598608	4.479029	348835	Н	-8.618711	4.503287	372134
н -8.648203	2.813193	.284456	Н	-8.646870	2.852854	.295111
н -9.184741	3.097120	-2.550945	Н	-9.167872	3.103421	-2.572333
н -7.851503	1.525742	-1.905010	Н	-7.862648	1.521099	-1.873945
P -4.226285	5.210688	-4.040071	Ρ	-4.223927	5.253228	-4.048850
C -4.138651	4.867671	-5.886293	С	-4.125895	4.894157	-5.888648
C -5.549746	4.598436	-6.431839	С	-5.527325	4.589020	-6.440880
P -6.445556	3.407331	-5.295106	Ρ	-6.410296	3.380648	-5.315413
н -2.857692	5.037552	-3.670657	Н	-2.854079	5.135657	-3.667759
H -4.269731	6.636452	-4.009867	Н	-4.340628	6.671791	-4.012112

Н	-3.654705	5.706313	-6.405996	Н	-3.658403	5.737825	-6.414624
Н	-6.154739	5.518499	-6.416067	Н	-6.151549	5.495744	-6.442898
Н	-5.522747	4.211344	-7.460064	Н	-5.481701	4.195917	-7.465856
Н	-3.497570	3.979847	-6.004618	Н	-3.464003	4.020290	-5.996113
Н	-7.758303	3.439983	-5.850689	Н	-7.727597	3.398022	-5.854394
Н	-6.038222	2.140969	-5.820289	Н	-5.984782	2.118926	-5.830680
Cl	-7.507274	6.043769	-3.589707	Cl	-7.492333	5.962545	-3.562486
10 ²⁺	singlet st	tate		10 ²⁺	triplet st	ate	
E =	-458.096 e	νe		E =	-458.229 e	V	
С	0.143599	-0.131935	-0.004968	С	0.129281	-0.100369	0.006684
С	0.199179	-0.305583	1.497386	С	0.166437	-0.267415	1.509729
С	1.726831	-0.215185	1.873574	С	1.686974	-0.141950	1.912875
С	2.423004	0.267326	0.542970	С	2.414497	0.243130	0.565665
С	1.342893	0.218112	-0.516123	С	1.340024	0.212737	-0.498931
F	-0.505910	0.696954	2.117866	F	-0.575405	0.714887	2.119071
F	-0.342898	-1.493174	1.908799	F	-0.351787	-1.469941	1.910408
F	2.190865	-1.442203	2.223783	F	2.150126	-1.327734	2.380200
F	1.941973	0.647712	2.892341	F	1.869089	0.808972	2.858811
F	3.480047	-0.539202	0.219623	F	3.419051	-0.644255	0.280758
F	2.916096	1.540777	0.692954	F	2.987427	1.485954	0.662191
С	1.656962	0.489440	-1.937741	С	1.671597	0.478812	-1.919546
С	1.988395	-0.537335	-2.837533	С	2.071131	-0.532397	-2.809255
С	2.277128	-0.089935	-4.138957	С	2.327222	-0.079832	-4.114773
S	2.111472	1.682394	-4.194205	S	2.073448	1.679241	-4.182467
С	1.671853	1.767865	-2.521448	С	1.625846	1.752104	-2.512022
Н	2.051543	-1.589712	-2.568202	Н	2.188573	-1.578307	-2.533880
С	1.366605	3.088079	-1.885431	С	1.234196	3.054543	-1.888057
Н	1.249194	2.981617	-0.800823	Н	1.199004	2.969874	-0.795637
Н	0.441541	3.518982	-2.297427	Н	0.242811	3.375115	-2.244086
Н	2.171331	3.813943	-2.067696	Н	1.945822	3.851056	-2.143503
Η	0.123396	-5.127232	-8.396783	Н	0.068951	-5.088947	-8.383706
С	2.663047	-0.826678	-5.234697	С	2.711384	-0.809829	-5.215946
С	3.046395	-1.500894	-6.226204	С	3.060465	-1.490662	-6.215497
Ru	3.695109	-2.568322	-7.730653	Ru	3.669263	-2.567700	-7.725812
Ρ	2.240899	-4.423073	-7.329336	Ρ	2.183529	-4.396898	-7.304512
С	0.961265	-4.480843	-8.692111	С	0.917135	-4.456077	-8.679481
С	0.482056	-3.060896	-9.035543	С	0.456408	-3.036559	-9.047890
Ρ	1.939198	-1.897289	-9.224509	P	1.924800	-1.884845	-9.229758
Η	2.752692	-5.749283	-7.331757	Н	2.666926	-5.733248	-7.273553
Η	1.448838	-4.488310	-6.144542	Н	1.377574	-4.420418	-6.127716
Н	1.464781	-4.944225	-9.553953	Н	1.424393	-4.937121	-9.529370
Η	-0.134539	-2.647481	-8.221673	Н	-0.169372	-2.607564	-8.249244
Н	-0.124335	-3.053520	-9.951666	Η	-0.136403	-3.036233	-9.973011

н 1.304361 -0.622362 -9.18	3210 н	1.299375	-0.604971	-9.197690
н 2.244633 -1.965832 -10.65	1265 Н	2.242473	-1.960189	-10.613117
P 5.545964 -3.418473 -6.46	51983 P	5.535900	-3.400095	-6.471822
C 6.961255 -2.198212 -6.53	5390 C	6.934714	-2.161660	-6.552237
C 7.004901 -1.511597 -7.91	.0226 C	6.976298	-1.491676	-7.935799
P 5.298207 -0.923832 -8.40	1640 P	5.263637	-0.931916	-8.439111
н 5.242527 0.395073 -7.86	3735 Н	5.194462	0.399128	-7.934770
н 5.464554 -0.605791 -9.77	7164 Н	5.421371	-0.648906	-9.823158
н 7.708060 -0.667550 -7.91	.4743 Н	7.668525	-0.638964	-7.948133
Н 7.316148 -2.219832 -8.69	3139 Н	7.300151	-2.205619	-8.708286
н 7.908360 -2.707639 -6.31	.0279 Н	7.887424	-2.654866	-6.315897
н 6.775574 -1.465671 -5.73	3945 Н	6.733999	-1.421787	-5.761475
н 6.113407 -4.630053 -6.94	3036 Н	6.117248	-4.603806	-6.956082
н 5.470337 -3.717559 -5.07	'1971 Н	5.472565	-3.699230	-5.081291
Cl 4.545717 -3.940349 -9.63	35232 Cl	4.471965	-3.971146	-9.628920
C -1.136843 -0.210008 -0.74	12352 C	-1.145611	-0.189936	-0.744437
C -1.777989 -1.397297 -1.14	10232 C	-1.707633	-1.386283	-1.227409
s -3.249990 -1.057729 -1.98	31822 S	-3.174356	-1.081961	-2.088957
C -3.037314 0.699456 -1.80	06529 C	-3.071924	0.667191	-1.802013
C -1.834329 0.947113 -1.11	.8492 C	-1.913198	0.941998	-1.053232
C -1.341885 -2.809442 -0.91	2042 C	-1.192344	-2.781351	-1.066097
н -1.566915 -3.122289 0.11	.8884 H	-1.284186	-3.109986	-0.020028
н -0.256774 -2.910437 -1.05	51283 Н	-0.126406	-2.834911	-1.330967
н -1.847668 -3.504838 -1.59	91655 Н	-1.740884	-3.492146	-1.694170
н -1.514664 1.957427 -0.87	4755 Н	-1.658505	1.954071	-0.747121
C -3.951335 1.621539 -2.25	7916 C	-3.997030	1.570926	-2.273394
C -4.732969 2.543621 -2.60	8953 C	-4.770847	2.502556	-2.616371
Ru -5.964415 4.001148 -3.0	33392 Ru	-5.969040	3.989745	-3.036458
P -5.712468 4.915682 -0.83	5810 P	-5.655221	4.848339	-0.834053
C -6.879488 4.038778 0.33	4412 C	-6.775261	3.931363	0.348998
C -8.195407 3.695846 -0.38	2986 C	-8.129000	3.643020	-0.323585
P -7.848069 2.905728 -2.04	2237 P	-7.869748	2.927928	-2.033985
н -6.055292 6.288048 -0.68	87939 Н	-5.995448	6.214671	-0.629149
н -4.486096 4.896324 -0.11	.2166 Н	-4.402264	4.810397	-0.158008
н -7.056546 4.657853 1.22	4453 H	-6.901520	4.506446	1.276206
н -6.357619 3.124895 0.65	9306 H	-6.253224	2.994839	0.600828
н -8.774514 4.606663 -0.59	8008 Н	-8.701312	4.572235	-0.465722
н -8.821660 3.029403 0.22	5454 Н	-8.738129	2.957103	0.280076
н -9.112289 2.955845 -2.68	8331 Н	-9.151008	3.061787	-2.633241
н -7.788499 1.515537 -1.73	6323 Н	-7.856057	1.522489	-1.801243
P -4.304969 5.369167 -4.09	90298 P	-4.273598	5.327991	-4.085527
C -4.238010 4.978755 -5.92	22534 C	-4.217329	4.955095	-5.921241
C -5.630157 4.582198 -6.44	0582 C	-5.616532	4.591883	-6.440896
P -6.420544 3.337806 -5.29	0346 P	-6.435145	3.352549	-5.302034

	н	-2 922608	5 367058	-3 741958	н	-2 892364	5 281901	-3 734997
	н	-4 546850	6 770204	-4 060780	н	-4 478466	6 734021	-4 036060
	н	-3 834325	5 838376	-6 474716	н	-3 796280	5 812844	-6 464259
	н	-6 306611	5 450124	-6 450948	н	-6 275191	5 473861	-6 443569
	н	-5 578883	4 175433	-7 459755	н	-5 573678	4 193263	-7 464138
	и п	-3 526667	1 1//883	-6 032010	и ц	-3 521871	1 108717	-6 030004
	п	-7 759045	3 200121	-5.766975	п	-3.321071	3 32/105	-5 701160
	п	- 7.73004J	2 001222	5 701100	п 11	- / · / 0 9 0 1 3	2 102627	5 014420
	н	-5.942636	Z.U91232	-5.791180	п	-5.9///05	2.102037	-5.814430
	CI	-7.582307	5.840218	-3.523038	CI	-1.522333	5.882040	-3.515355
-	1				1.0			
	101				102		~	
			$\overline{(F_6)}$				$\langle F_6 \rangle$	
		<i>[</i>						
	11							
	- ""	Ru S	″/ う ヾ	Ru		Ru	, , 0	Ru
	Cl		ų,	CI CI	CI			ČI CI
	r –	-471 740 or	7		v –	-471 754 ov	,	
	ь – Ри	0 062034	0 015071	-0 076459	E -	0 056706	0 014423	-0 0/0052
	ли р	0.059693	0.114047	2 202500	Ru D	0.056973	0.014423	2 302307
	r	1 010000	0.110337	2.202309	r C	1 016035	0.100040	2.302307
	c	1.010U00	0.725100	2.957091		2 720100	0.131007	2.900090
	D	2.710115	-0.725180	2.019/44		2.720100	-0.710307	2.038879
	P	2.382205	-0.285091	0.227890	P	2.3//269	-0.277266	0.24/942
	п	-0.515166	1.180000	2.027047	п	-0.527650	1.109331	3.051141
	н	-0.519916	-0.982474	2.98/84/	н	-0.509453	-0.995036	3.011683
	п	2.140139	1.172460	2.93/001	п	2.128475	1.188185	2.944275
	п	2.700005	-0.242949	3.9/4293	п	2 704100	-0.222555	3.992/08
	п	3.780665	1 704474	2.23/9//	п	2 490746	-0.569215	2.2/422/
	п	2.400000	1 210222	2.110440	п	2.400/40	1 201656	2.1330/1
	п	2 202727	-1.510255	-0.442576	п	2 202570	-1.301030	-0.420095
	л С1	0 010700	0.795069	0.010409		0 100007	0.003379	0.021701
	D	-0.212709	0 111626	0.092445	D	-0.190907	-2.529540	0.094300
	r T	2 150407	0.620502	-0.343930	E II	-2.204077	0.109309	-0.334170
	п	-3.139407	1 250707	0.212000	п	-3.1/4100	1 257207	0.403012
	п	-2.977310	1.336707	-0.313996	п	-2.9///2/	1.35/38/	-0.300183
	C	-2.122144	-0.553/1/	-2.03/831	C	-2.724354	-0.543324	-2.034394
	п	-2.004077	-1.049277	-1.944005	н	-2.670015	-1.039097	-1.948/14
	н	-3./33368	-0.2/98/8	-2.303202	н	-3./33206	-0.264119	-2.301014
	U	-1./11020	-0.04158/	-3.0/5851		-1./U95U6	-U.U28130	-3.066599
	н	-1.01//09	-0.0000002	-4.0369/5	н	-1.011445	-0.548032	-4.029222
	н	-1.851889	1.035594	-3.257347	Н	-1.850007	1.048981	-3.247845
	Н -	U./59365	0.595573	-3.328934	Н	0.762392	0.607250	-3.309599
	P	0.039044	-0.235302	-2.419335	P	0.037665	-0.223358	-2.403086
	Η	0.416042	-1.505258	-2.947338	H	0.416464	-1.493231	-2.929561

Supplementa	ry Material (ESI) for Cl	hemical Comi	munications
This journal i	s (c) The Ro	yal Society	y of Chemistry	y 2008

С	0.262941	2.017821	-0.187025	С	0.240022	2.015111	-0.139920
С	0.377354	3.254640	-0.192778	С	0.342209	3.253173	-0.166793
С	0.430715	4.643347	-0.069425	С	0.337340	4.643950	-0.264061
S	1.638117	5.619833	-0.962836	S	1.321164	5.656980	0.838576
С	-0.408724	5.429162	0.708615	С	-0.382293	5.405901	-1.174804
Н	-1.233242	4.989236	1.265562	Н	-0.982792	4.936438	-1.950862
С	-0.144539	6.809893	0.684407	С	-0.247636	6.799101	-1.042207
С	-0.879423	7.856813	1.208131	С	-0.697475	7.811540	-1.868908
С	1.205217	7.157951	0.027338	С	0.442785	7.218640	0.270302
С	1.042940	8.448593	-0.815395	С	1.376451	8.424417	-0.006443
С	0.487600	9.567303	0.084249	С	0.557060	9.550927	-0.660567
С	-0.510142	9.225282	0.976953	С	-0.364606	9.187163	-1.623210
С	-2.103335	7.765281	2.042305	С	-1.543045	7.673167	-3.080088
С	-2.402423	9.244949	2.515732	С	-1.910517	9.150878	-3.509358
С	-1.316395	10.151042	1.808958	С	-1.135997	10.095735	-2.505746
F	-3.209851	7.268617	1.357194	F	-0.901609	7.032617	-4.138419
F	-1.973962	6.934119	3.144871	F	-2.702072	6.937897	-2.879610
С	2.266261	7.294658	1.144141	С	-0.654117	7.529111	1.315268
Η	3.260988	7.469221	0.716115	Н	-0.208141	7.759023	2.290619
Н	2.015740	8.137420	1.805680	Н	-1.254565	8.392272	0.991221
Н	2.284923	6.371147	1.737524	Н	-1.312571	6.656292	1.415351
F	-3.661653	9.631193	2.159762	F	-1.532826	9.398649	-4.796918
F	-2.312065	9.342750	3.873859	F	-3.257848	9.353457	-3.431169
F	-1.939611	11.159484	1.087218	F	-0.351319	10.995364	-3.213701
F	-0.573937	10.824302	2.776943	F	-2.050995	10.894536	-1.822767
S	2.650748	9.161875	-1.485742	S	2.106076	9.229125	1.531530
С	2.182633	10.817564	-0.990592	С	1.734109	10.867815	0.911931
С	1.058046	10.824009	-0.176174	С	0.913560	10.831761	-0.207122
Н	0.684885	11.749671	0.256273	Н	0.549059	11.749085	-0.663965
С	2.899808	11.949408	-1.381514	С	2.218195	12.029754	1.515471
С	0.086183	8.270571	-2.017102	С	2.557122	8.074638	-0.941530
Η	-0.030888	9.233985	-2.530328	Н	3.137657	8.984235	-1.143860
Η	0.481831	7.530715	-2.723697	Н	3.210950	7.324471	-0.480033
Η	-0.900864	7.930561	-1.669474	Н	2.181143	7.673287	-1.894538
С	3.370258	13.066395	-1.655073	С	2.570881	13.165747	1.873747
Ru	3.989349	14.943008	-2.045064	Ru	3.097056	15.063403	2.294348
Ρ	4.038916	14.584876	-4.376636	Ρ	5.396002	14.549437	2.382675
Ρ	1.749271	15.539938	-2.467959	Ρ	3.538926	15.385101	0.003196
Ρ	3.950228	15.534845	0.238120	Ρ	0.858191	15.804233	2.193885
Ρ	6.258928	14.485809	-1.587659	P	2.622449	14.875089	4.599033
С	2.527729	15.385342	-5.147840	С	6.207414	15.123757	0.791449
С	1.302678	15.153748	-4.249130	С	5.283747	14.824497	-0.399895
С	6.736344	15.353503	0.003616	С	1.100872	15.898941	4.983449
С	5.613789	15.190872	1.040488	С	0.046654	15.694771	3.884317

Supple	ementar	у Ма	terial (I	ESI) for C	hemical	Com	munication	s
This jo	urnal is	(c) T	he Roy	al Societ	y of Che	emistr	y 2008	

Н	1.380417	16.914445	-2.361280	Н	3.527240	16.714950	-0.514930
Н	0.642918	14.969343	-1.772110	Н	2.793007	14.748154	-1.031805
Н	3.752934	16.914175	0.540988	Н	0.648552	17.171958	1.850262
Н	3.059751	14.976191	1.203492	Н	-0.148441	15.220460	1.367622
Н	6.707584	13.151315	-1.345463	Н	2.288519	13.614259	5.181783
Н	7.314108	14.902688	-2.450868	Н	3.520943	15.334774	5.605874
Н	3.987439	13.268578	-4.928879	Н	5.854139	13.199843	2.475773
Н	5.078343	15.115213	-5.194910	Н	6.258376	15.131846	3.356499
Н	5.760770	15.851881	1.905908	Н	-0.767906	16.428144	3.961394
Н	5.568777	14.154296	1.409690	Н	-0.396181	14.688568	3.948229
Н	7.696343	14.973908	0.380224	Н	0.705394	15.649386	5.977800
Н	6.860392	16.412447	-0.271993	Н	1.452395	16.942426	4.995610
Н	0.999786	14.094963	-4.265076	Н	5.220859	13.740520	-0.584199
Н	0.442398	15.758439	-4.568227	Н	5.638327	15.306272	-1.321698
Н	2.364542	15.003026	-6.165012	Н	7.193954	14.655718	0.668842
Н	2.764621	16.458922	-5.213455	Н	6.350040	16.209484	0.909277
Cl	4.760633	17.332715	-2.553566	Cl	3.760166	17.480775	2.821737
1 c ₃				$\mathbf{1c_1}^+$			
		$\overline{(F_6)}$		E =	-466.628 eV	7	
			\frown	Ru	.060883	.064871	072100
1				D	046676	105060	2 301254
				L L	.040070	.123303	2.001204
	Ru	S ^{ri} ll S	Ru	C	1.805231	.125585	2.951266
CI	Ru	S ^{TI} II S	Ru Ru	C C	1.805231 2.703756	.115687 725176	2.951266 2.030203
CI	Ru	S ^T II S	Ru	C C P	1.805231 2.703756 2.386976	.125363 .115687 725176 276360	2.951254 2.951266 2.030203 .239713
CI E =	-471.755 eV	S ^T	Ru	г С Р Н	1.805231 2.703756 2.386976 530751	.125363 .115687 725176 276360 1.183310	2.9501294 2.951266 2.030203 .239713 3.063108
CI E = Ru	-471.755 et	S 11 S v 0.055155	Ru -1.002745	Г С Р Н Н	1.805231 2.703756 2.386976 530751 546521	.115687 725176 276360 1.183310 983415	2.951254 2.951266 2.030203 .239713 3.063108 2.969372
Cl E = Ru P	Ru -471.755 ev 0.894904 2.868953	S W S 0.055155 0.015294	Ru -1.002745 0.278780	г С Р Н Н	1.805231 2.703756 2.386976 530751 546521 2.131602	.123363 .115687 725176 276360 1.183310 983415 1.167562	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117
CI E = Ru P C	-471.755 eT 0.894904 2.868953 4.359911	S 1 S 0.055155 0.015294 0.348362	Ru -1.002745 0.278780 -0.811616	г С Р Н Н	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357
CI E = Ru P C C	Ru -471.755 ev 0.894904 2.868953 4.359911 4.125874	S W S 0.055155 0.015294 0.348362 -0.250059	Ru -1.002745 0.278780 -0.811616 -2.207376	г С Р Н Н Н Н	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902
CI E = Ru P C C P	Ru -471.755 eT 0.894904 2.868953 4.359911 4.125874 2.408714	S W 0.055155 0.015294 0.348362 -0.250059 0.205090	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237	Г С Р Н Н Н Н	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936
CI E = Ru P C C P H	Ru -471.755 ev 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721	S W S 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713	г С Р Н Н Н Н	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411
CI E = Ru P C C P H H	Ru -471.755 eT 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721 3.228289	S W 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286 -1.211573	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713 0.911592	с С Р Н Н Н Н Н Н	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599 3.306880	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141 .792506	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411 .022272
CI E = Ru P C C P H H	Ru -471.755 ev 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721 3.228289 4.456523	S W 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286 -1.211573 1.444005	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713 0.911592 -0.868045	Г С Р Н Н Н Н Н Н С С	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599 3.306880 212811	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141 .792506 -2.441715	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411 .022272 .099576
CI E = Ru P C C P H H H	Ru -471.755 eV 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721 3.228289 4.456523 5.271642	S W 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286 -1.211573 1.444005 -0.049942	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713 0.911592 -0.868045 -0.345308	Г С Р Н Н Н Н Н С 1 Р	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599 3.306880 212811 -2.298181	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141 .792506 -2.441715 .109329	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411 .022272 .099576 339314
CI E = Ru P C C P H H H H	Ru -471.755 eV 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721 3.228289 4.456523 5.271642 4.886376	S W 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286 -1.211573 1.444005 -0.049942 0.082761	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713 0.911592 -0.868045 -0.345308 -2.927350	Г С Р Н Н Н Н Н Ц Р Н	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599 3.306880 212811 -2.298181 -3.145883	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141 .792506 -2.441715 .109329 655967	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411 .022272 .099576 339314 .509664
CI E = Ru P C C P H H H H H	Ru -471.755 eV 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721 3.228289 4.456523 5.271642 4.886376 4.141405	S W 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286 -1.211573 1.444005 -0.049942 0.082761 -1.350524	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713 0.911592 -0.868045 -0.345308 -2.927350 -2.167461	Г С Р Н Н Н Н Н С Ц Р Н Н	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599 3.306880 212811 -2.298181 -3.145883 -3.016560	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141 .792506 -2.441715 .109329 655967 1.342439	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411 .022272 .099576 339314 .509664 307696
CI E = Ru P C C P H H H H H	Ru -471.755 eV 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721 3.228289 4.456523 5.271642 4.886376 4.141405 2.293151	S % S 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286 -1.211573 1.444005 -0.049942 0.082761 -1.350524 -0.619588	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713 0.911592 -0.868045 -0.345308 -2.927350 -2.167461 -3.961525	Г С Р Н Н Н Н Н Н С С	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599 3.306880 212811 -2.298181 -3.145883 -3.016560 -2.727689	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141 .792506 -2.441715 .109329 655967 1.342439 570445	2.9501294 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411 .022272 .099576 339314 .509664 307696 -2.028800
CI E = Ru P C C P H H H H H H	Ru -471.755 ev 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721 3.228289 4.456523 5.271642 4.886376 4.141405 2.293151 2.639515	S W 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286 -1.211573 1.444005 -0.049942 0.082761 -1.350524 -0.619588 1.452009	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713 0.911592 -0.868045 -0.345308 -2.927350 -2.167461 -3.961525 -3.460299	Г С Р Н Н Н Н Н Н С Ц Р Н Н С Ц Р	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599 3.306880 212811 -2.298181 -3.145883 -3.016560 -2.727689 -2.664941	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141 .792506 -2.441715 .109329 655967 1.342439 570445 -1.664936	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411 .022272 .099576 339314 .509664 307696 -2.028800 -1.929857
CI E = Ru P C C P H H H H H H H H C1	Ru -471.755 eV 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721 3.228289 4.456523 5.271642 4.886376 4.141405 2.293151 2.639515 1.031694	S % S 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286 -1.211573 1.444005 -0.049942 0.082761 -1.350524 -0.619588 1.452009 -2.493533	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713 0.911592 -0.868045 -0.345308 -2.927350 -2.167461 -3.961525 -3.460299 -1.208791	Г С Р Н Н Н Н Н Н Н С Ц Р Н Н С Ц Р Н Н Н С Ц Р Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599 3.306880 212811 -2.298181 -3.145883 -3.016560 -2.727689 -2.664941 -3.759423	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141 .792506 -2.441715 .109329 655967 1.342439 570445 -1.664936 304431	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411 .022272 .099576 339314 .509664 307696 -2.028800 -1.929857 -2.296695
CI E = Ru P C C P H H H H H H H H C I P	Ru -471.755 eV 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721 3.228289 4.456523 5.271642 4.886376 4.141405 2.293151 2.639515 1.031694 -0.606864	S W 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286 -1.211573 1.444005 -0.049942 0.082761 -1.350524 -0.619588 1.452009 -2.493533 -0.292604	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713 0.911592 -0.868045 -0.345308 -2.927350 -2.167461 -3.961525 -3.460299 -1.208791 0.784451	Г С Р Н Н Н Н Н Н Н С Ц Р Н Н С Ц Р Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599 3.306880 212811 -2.298181 -3.145883 -3.016560 -2.727689 -2.664941 -3.759423 -1.721495	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141 .792506 -2.441715 .109329 655967 1.342439 570445 -1.664936 304431 057638	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411 .022272 .099576 339314 .509664 307696 -2.028800 -1.929857 -2.296695 -3.071622
CI E = Ru P C C P H H H H H H H H H H H H H H H H	-471.755 eV 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721 3.228289 4.456523 5.271642 4.886376 4.141405 2.293151 2.639515 1.031694 -0.606864 -0.350242	S % S 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286 -1.211573 1.444005 -0.049942 0.082761 -1.350524 -0.619588 1.452009 -2.493533 -0.292604 -1.248324	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713 0.911592 -0.868045 -0.345308 -2.927350 -2.167461 -3.961525 -3.460299 -1.208791 0.784451 1.810320	Г С С Р Н Н Н Н Н Н Н С Н Н С Н Н С Н	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599 3.306880 212811 -2.298181 -3.145883 -3.016560 -2.727689 -2.664941 -3.759423 -1.721495 -1.828401	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141 .792506 -2.441715 .109329 655967 1.342439 570445 -1.664936 304431 057638 585790	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411 .022272 .099576 339314 .509664 307696 -2.028800 -1.929857 -2.296695 -3.071622 -4.029161
CI E = Ru P C C P H H H H H H H H H H H H H	Ru -471.755 eV 0.894904 2.868953 4.359911 4.125874 2.408714 3.122721 3.228289 4.456523 5.271642 4.886376 4.141405 2.293151 2.639515 1.031694 -0.606864 -0.350242 -1.024854	S % S 0.055155 0.015294 0.348362 -0.250059 0.205090 0.902286 -1.211573 1.444005 -0.049942 0.082761 -1.350524 -0.619588 1.452009 -2.493533 -0.292604 -1.248324 0.792734	Ru -1.002745 0.278780 -0.811616 -2.207376 -2.804237 1.366713 0.911592 -0.868045 -0.345308 -2.927350 -2.167461 -3.961525 -3.460299 -1.208791 0.784451 1.810320 1.613066	Г С С Р Н Н Н Н Н Н Н Н С Н Н С Н Н Н С Н	1.805231 2.703756 2.386976 530751 546521 2.131602 1.826437 3.767113 2.458014 3.088599 3.306880 212811 -2.298181 -3.145883 -3.016560 -2.727689 -2.664941 -3.759423 -1.721495 -1.828401 -1.869037	.123363 .115687 725176 276360 1.183310 983415 1.167562 254796 594958 -1.794861 -1.308141 .792506 -2.441715 .109329 655967 1.342439 570445 -1.664936 304431 057638 585790 1.017215	2.9501234 2.951266 2.030203 .239713 3.063108 2.969372 2.963117 3.985357 2.273902 2.115936 445411 .022272 .099576 339314 .509664 307696 -2.028800 -1.929857 -2.296695 -3.071622 -4.029161 -3.261507

Н	-2.068838	-1.991215	-0.105565	Ρ	.031381	235434	-2.427210
Н	-3.028758	-0.835774	0.860546	Н	.419615	-1.516704	-2.910950
С	-2.589672	-0.164122	-1.182741	С	.255382	2.026247	192348
Н	-3.423366	-0.640005	-1.717495	С	.371502	3.273401	214167
Н	-2.881823	0.873262	-0.956286	С	.433555	4.642798	119118
Н	-1.504806	0.953204	-3.218993	S	1.672086	5.606811	957055
P	-1.081283	-0.051335	-2.297623	С	434615	5.461348	.642269
Н	-1.245936	-1.191502	-3.137986	Н	-1.290911	5.033423	1.159249
С	0.797219	2.055152	-0.814197	С	124110	6.807945	.649775
С	0.740060	3.287599	-0.667798	С	858376	7.876650	1.197081
С	0.540295	4.658443	-0.509845	С	1.228407	7.147870	.007947
S	1.805442	5.706518	0.205294	С	1.060789	8.436344	846743
С	-0.595598	5.373990	-0.863963	С	.527603	9.551861	.059997
Н	-1.430848	4.891322	-1.366752	С	498514	9.211709	.960815
С	-0.566644	6.747331	-0.564223	С	-2.082675	7.777280	2.048639
С	-1.453343	7.746326	-0.919616	С	-2.392099	9.261126	2.508102
С	0.600926	7.141024	0.361626	С	-1.303504	10.158392	1.789721
С	1.164941	8.514399	-0.083180	F	-3.165155	7.265402	1.356179
С	0.019433	9.541859	-0.103393	F	-1.918838	6.959324	3.144509
С	-1.196263	9.125335	-0.610364	С	2.291723	7.301174	1.121126
С	-2.740893	7.589853	-1.639824	Н	3.283282	7.467686	.682784
С	-3.422707	9.016868	-1.599628	Н	2.047043	8.153808	1.771447
С	-2.380640	9.972201	-0.891701	Н	2.320442	6.389132	1.731145
F	-2.593368	7.187352	-2.965483	F	-3.643695	9.635631	2.134805
F	-3.589483	6.644997	-1.081849	F	-2.297441	9.372190	3.859157
С	0.082649	7.142295	1.818572	F	-1.909181	11.150390	1.049407
Н	0.899869	7.342993	2.522067	F	535657	10.814416	2.735806
Н	-0.689253	7.915804	1.946743	S	2.651060	9.141616	-1.545259
Н	-0.356407	6.161748	2.044494	С	2.242416	10.785045	-1.004435
F	-3.710235	9.461390	-2.857090	С	1.116904	10.783584	145522
F	-4.595437	8.970211	-0.903219	Н	.780960	11.702875	.328803
F	-2.112867	11.065121	-1.703980	С	2.939883	11.907860	-1.383962
F	-2.958442	10.522383	0.250884	С	.092706	8.242171	-2.037465
S	2.428533	9.268209	1.091663	Н	043308	9.196324	-2.562480
С	1.637587	10.872001	0.993710	Н	.493787	7.502484	-2.741114
С	0.402945	10.810345	0.362259	Н	887209	7.891771	-1.681214
Н	-0.227799	11.692311	0.277903	С	3.384164	13.049691	-1.647896
С	2.217412	12.030288	1.513826	Ru	3.968237	14.897804	-2.031262
С	1.812395	8.477466	-1.486720	Ρ	4.024560	14.600387	-4.384357
Н	2.132138	9.490936	-1.762427	Ρ	1.714631	15.509909	-2.439504
Н	2.682110	7.809025	-1.496840	Ρ	3.928952	15.533400	.257365
Н	1.085961	8.118747	-2.231185	Ρ	6.259544	14.483778	-1.558747
С	2.570792	13.166328	1.871852	С	2.502929	15.406851	-5.123080
Ru	3.097876	15.063313	2.294183	С	1.279582	15.150499	-4.227436

Supplem	nentary M	laterial (I	ESI) for C	hemical Comi	nunications
This jour	mal is (c)	The Roy	al Societ	y of Chemistry	/ 2008

_								
Р	5.396243	14.547961	2.382268	С	6.718431	15.385079	.014670	
Р	3.540336	15.386240	0.003274	С	5.598844	15.228635	1.055649	
Р	0.858775	15.803689	2.194249	Н	1.359532	16.882829	-2.299641	
Р	2.622673	14.874816	4.599173	Н	.614818	14.925117	-1.747081	
С	6.208563	15.122667	0.791776	Н	3.698047	16.913487	.517960	
С	5.284692	14.824360	-0.399701	Н	3.045125	14.972535	1.226314	
С	1.100557	15.897785	4.983907	Н	6.714673	13.156444	-1.300442	
С	0.046571	15.693404	3.884544	Н	7.295390	14.899338	-2.442180	
Н	3.529957	16.716505	-0.513942	Н	3.993226	13.298484	-4.967964	
Н	2.793502	14.750251	-1.031552	Н	5.067790	15.169674	-5.166175	
Н	0.647739	17.171184	1.850685	Н	5.739201	15.908965	1.906637	
Н	-0.148543	15.220163	1.368279	Н	5.569003	14.200168	1.448268	
Н	2.289877	13.613828	5.181892	Н	7.681323	15.020633	.397869	
Н	3.520907	15.334804	5.606082	Н	6.835047	16.439811	278022	
Н	5.853829	13.198042	2.474823	Н	.983067	14.090287	-4.262989	
Н	6.258972	15.129107	3.356553	Н	.415597	15.752962	-4.539829	
Н	-0.768548	16.426197	3.961839	Н	2.336755	15.043391	-6.146432	
Н	-0.396160	14.687093	3.948616	Н	2.731573	16.482770	-5.172076	
Н	0.705186	15.647503	5.978161	Cl	4.712411	17.263091	-2.519100	
Н	1.451486	16.941479	4.996778					
Н	5.220726	13.740392	-0.583945					
Н	5.639411	15.306297	-1.321363					
Н	7.194911	14.654061	0.669434					
Н	6.351713	16.208285	0.910405					
Cl	3.761686	17.480102	2.823144					
1c1 ²	²⁺ singlet s	tate						
E =	-458.942 e	V						
Ru	.057300	.125769	085311					
Ρ	.041122	.113401	2.310079					
С	1.800421	.049045	2.953037					
С	2.683523	785526	2.012816					
Ρ	2.393970	288124	.230850					
Н	526408	1.151102	3.105128					
Н	579666	-1.016454	2.908932					
Н	2.147767	1.093277	2.997745					
Н	1.809483	350814	3.975833					
Н	0 740507	679593	2.261328					
	3./4852/							
Н	3.748527 2.421414	-1.852757	2.072179					
H H	3.748527 2.421414 3.042759	-1.852757 -1.329323	2.072179 487258					
H H H	3.748527 2.421414 3.042759 3.345310	-1.852757 -1.329323 .754572	2.072179 487258 .031044					
H H H Cl	3.748527 2.421414 3.042759 3.345310 209104	-1.852757 -1.329323 .754572 -2.363772	2.072179 487258 .031044 .087185					
H H H Cl P	3.748527 2.421414 3.042759 3.345310 209104 -2.322527	-1.852757 -1.329323 .754572 -2.363772 .121843	2.072179 487258 .031044 .087185 343876					

Η	-3.062315	1.341344	337198
С	-2.739774	614080	-2.013713
Н	-2.663423	-1.704135	-1.884279
Н	-3.776521	369968	-2.281610
С	-1.750370	115697	-3.078356
Н	-1.857300	674806	-4.018214
Н	-1.917067	.949789	-3.302989
Н	.719239	.557345	-3.400855
P	.013549	245612	-2.459897
Н	.428604	-1.537616	-2.881402
С	.257419	2.044600	208968
С	.392339	3.302220	248281
С	.481832	4.651029	135550
S	1.766785	5.620374	880860
С	421858	5.490902	.610608
Н	-1.314472	5.069944	1.068820
С	078112	6.807577	.664419
С	837905	7.888705	1.222630
С	1.269272	7.164325	.037072
С	1.051465	8.425644	864346
С	.519821	9.542254	.032005
С	529216	9.197361	.945976
С	-2.031863	7.766070	2.130134
С	-2.411828	9.255867	2.518213
С	-1.388533	10.162617	1.716003
F	-3.085457	7.154652	1.491879
F	-1.760343	7.025421	3.249135
С	2.322646	7.401409	1.144001
Н	3.306790	7.588773	.697229
Н	2.047879	8.269771	1.760574
Н	2.391975	6.519948	1.793934
F	-3.684454	9.538836	2.156823
F	-2.276061	9.446341	3.851286
F	-2.049990	11.036735	.894796
F	638398	10.922547	2.583196
S	2.608815	9.139537	-1.605524
С	2.255332	10.769649	-1.009090
С	1.123450	10.752806	117758
Н	.819076	11.659210	.400612
С	2.948768	11.884686	-1.351303
С	.066155	8.163996	-2.026531
Н	112332	9.091178	-2.585937
Н	.476929	7.412319	-2.711661
Н	896652	7.796870	-1.642184

С	3.376765	13.047258	-1.612707
Ru	3.953130	14.849860	-2.004104
P	4.017288	14.565037	-4.380836
P	1.711857	15.566971	-2.449953
P	3.940271	15.560935	.283129
P	6.279473	14.471648	-1.548178
С	2.534846	15.434060	-5.123542
С	1.292509	15.228341	-4.241862
С	6.731837	15.400492	.009069
С	5.618315	15.261746	1.059795
Н	1.460395	16.958643	-2.301533
Н	.574974	15.045585	-1.767780
Н	3.722857	16.952502	.474511
Н	3.057191	15.044172	1.275314
Н	6.745063	13.150709	-1.283104
Н	7.281271	14.890509	-2.465045
Н	3.950789	13.266500	-4.966149
Н	5.099402	15.104077	-5.127235
Н	5.769778	15.954860	1.898498
Н	5.589504	14.240446	1.471128
Н	7.694780	15.039222	.395276
Н	6.854072	16.450310	297439
Н	.947233	14.183029	-4.284133
Н	.459701	15.869369	-4.562130
Н	2.363966	15.074995	-6.147561
Н	2.806676	16.499312	-5.174481
Cl	4.700445	17.185270	-2.535736

Table S2. Calculated main electronic excitations in **10** and **1c**, 3 different rotamers were considered for the latter ($1c_1$, $1c_2$, $1c_3$ for rotamers 1, 2 and 3 respectively). The orbitals mainly involved in the excitations are plotted (for **1c**, the orbitals are given in the $1c_2$ geometry).

Cpnd	Energy (nm)	Oscillator strength ^a	Composition (%) ^b	λ _{max} c calc.	assignment
10	387	0.07	129→137 50 135→142 22 135→146 6		
	389	0.13	$\begin{array}{ccccc} 129 {\rightarrow} 137 & 46 \\ 135 {\rightarrow} 142 & 16 \\ 135 {\rightarrow} 146 & 7 \\ 135 {\rightarrow} 145 & 6 \\ 135 {\rightarrow} 143 & 5 \end{array}$		
	358	0.09	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	370	[Cl(dppe)₂Ru-C₂] → π* DTE/(Ru-P)*

^a Only the transition with calculated oscillator strengths > 0.05 are reported. ^b Only the contribution > 5 % are given. ^c Maximum of absorption in nm in a simulated spectra obtained from all the excitations of the TDDFT results.

Molecular orbitals of **1o**:

129 135 136 (HO	136 (HOMO)	
Cpnd Energy Oscillator Composition λ_{max} assign (nm) strength ^a (%) ^b calc.	ment	
1c ₁ 766 0.62 136 \rightarrow 137 97 766 π C ₂ -DTE \rightarrow π^* C ₂ -	DTE	
500 0.26 132→137 95 500 d/π [Cl-Ru-C ₂]/S→	π* C ₂ -DTE	
395 0.06 130→137 33		
136→153 27 136 →154 7		
136→152 5		
383 0.14 136→154 53		
136→152 28		
$130 \rightarrow 137$ 6 267 0.10 127 127 26 272 d/π [Cl-Ru-Co]/S/C)TF <u>→</u> π*	
$136 \rightarrow 142$ 19 C ₂ -DTE/(Ru-P)*		
133→137 11		
136→146 7 126 146 5		
$130 \rightarrow 140$ 3 328 0.06 131 $\rightarrow 142$ 52		
124→137 37		
1c ₂ 697(2) 0.77 136 \rightarrow 137 86 687 π C ₂ -DTE \rightarrow π^* C ₂ -	DTE/(Ru-P)*	
136→139 10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
d_{100} (0) 0.26 122 127 75 100 d/π [Cl-Ru-Co]/S/C)TE→π* C₀-DTE	
$133 \rightarrow 137$ 8		
136→142 7		
384(40) 0.08 136→152 25		
134→141 24 136→154 21		
368(45) 0.17 128→137 35 379 d/π [Cl-Ru-C ₂]-DT	E→π*	
136→142 18 C ₂ -DTE/(Ru-P)*		
136→155 8 134→137 20		
1c ₂ 706 0 70 136 \rightarrow 137 86 706 π C ₂ -DTE \rightarrow π^* C ₂ -	DTE/(Ru-P)*	
136→139 10	, , , , , , , , , , , , , , , , , , ,	
532 0.14 132→137 75 529 d/π [Cl-Ru-C₂]/S/D	$TE \rightarrow \pi^* C_2 - DTE$	
133→137 8		
$130 \rightarrow 142$ / 387 0.07 136 152 25 200		
134→141 24		
136→154 21		
363(56) 0.06 136 \rightarrow 152 25 d/π [Cl-Ru-C ₂]-DT	$E \rightarrow \pi^*$	
134→141 24 C2-D1L/(Ku-F) 136→154 21		

^a Only the transition with calculated oscillator strengths > 0.05 are reported. ^b Only the contribution > 5 % are given. ^c Maximum of absorption in nm in a simulated spectra obtained from all excitations of the TDDFT results.

Molecular orbitals of 1c₂:

VI References

- 1 A. Osuka, D. Fujikane, H.Shinmori, S. Kobatake, Irie, M. J. Org. Chem., 2001, 66, 3913.
- 2 S. J. Higgins, A. La Pensée, C. A. Stuart, J. M. Charnock, *Dalton Trans.*, 2001, 902.
- 3 D. Garreau, J.-M. Savéant, J. Electroanal. Chem., 1972, 35, 309.
- 4 N. G. Connelly, W. E. Geiger, Chem. Rev., 1996, 96, 877.
- 5 M. J. Rudolph, Comput. Chem., 2005, 26, 1193.
- 6 (a) G. te Velde, F. M. Bickelhaupt, C. Fonseca Guerra, S. J. A. van Gisbergen, E. J. Baerends, J. G. Snijders, T. Ziegler, *J. Comput. Chem.*, 2001, 22, 931; (b) C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, *Theo. Chem. Acc.*, 1998, 99, 391; (c) ADF2007, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, SCM.
- 7 S. D. Vosko, L. Wilk, M. Nusair, Can. J. Chem., 1990, 58, 1200.
- 8 (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; (b) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.
- 9 L.Verluis, T. J. Ziegler, Chem. Phys., 1988, 88, 322.
- 10 S. J. A. van Gisbergen, J. G. Snijders, E. J. Baerends, Comput. Phys. Commun., 1999, 118, 119.
- 11 (a) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865; (b) B. Hammer, L. B. Hansen, J. K. Norskov, *Phys. Rev. Letter*, 1999, *B59*, 7413.