Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 Dendronized Macromonomers for Three-Dimensional Data Storage

SUPPORTING INFORMATION

Dendronized Macromonomers for Three-Dimensional Data Storage

Anzar Khan,[†] Anders E. Daugaard,[‡] Andrea Bayless,[†] Shogo Koga,[§] Yasuaki Miki,[§] Ken Sato,[§]

Jun Enda, § Søren Hvilsted,[‡] Galen D. Stucky, and Craig J. Hawker*^{†,}

Departments of Chemistry and Biochemistry, Materials Department, Materials Research Laboratory, and Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106-9510. Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 423 Produktionstorvet, DK-2800 Kgs, Lyngby, Denmark. Mitsubishi Chemical Group Science and Technology Research Center, Inc.1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan

E-mail: hawker@mrl.ucsb.edu

Table of Contents	
Materials	S2
Synthesis of the monomers	S2
Formulations	S8
Sample preparation	S8
Hologram recording	S8
M/# and Angular selectivity curves (polyurethane matrix)	S10
M/# and Angular selectivity curves (polycarbonate matrix)	S10
Holographic properties	S11
Shrinkage calculations	S11
Refractive index calculation	S16
Exposure time for recording each hologram	S16
Monomer conversion in thick film	S18
References	S19

<u>Supplementary Material (ESI) for Chemical Communications</u> This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

General Methods and Materials

Materials. 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirine TPO) was purchased from BASF. Hexamethylenediisocyanate was purchased from Wako. Dioctyltin dilaurate (U810) was purchased from Nitto Kasei. Tribromophenyl acrylate (BR-30) was purchased from Dai-Ichi Kogyo Seiyaku. Polypropylene-triol (GP1000) (average molecular weight is 1000) was purchased from Sanyo Chemical Industries. All these chemicals were used as received. Analytical TLC was performed on commercial Merck plates coated with silica gel GF254 (0.24 mm thick). Column chromatography was performed on a Biotage SP1 Flash Purification System using FLASH 40+M and FLASH 25+M cartridges. Infrared spectra were recorded on a Perkin Elmer Spectrum 100 with a Universal ATR sampling accessory. ¹H NMR (400 MHz and 200 MHz) and ¹³C NMR (100 MHz) measurements were performed on a Bruker AC 400 and 200 spectrometers at 23 \pm 2 °C using residual protonated solvent signal as internal standard (¹H: δ (CHCl₃) = 7.26 ppm and ¹³C: δ (CHCl₃) = 77.0 ppm. Differential Scanning Calorimetry (DSC) measurements were performed with a TA Instruments DCS 2920 with temp rate of 5 degrees per minute. Data was collected during third cycle in the selected temperature ranges. Calibrations were made using indium as a standard for both temperature transitions and the heats of fusion. Melting transition temperatures (Tm) were determined by peak maxima of the transition.

Synthesis of the dendritic monomers:¹

Scheme S1

Typical procedure for the synthesis of bromo substituted dendritic alcohols;

Br₂-**G1-OH** (**I**): A mixture of 4-bromobenzyl bromide (28.90 g, 116 mmol), 18-crown-6-ether (3.06 g, 12 mmol) and 3,5-dihydroxybenzyl alcohol (6.48 g, 46 mmol) in dry acetone (90 mL) was refluxed under nitrogen for 12 h. The mixture was cooled and the solvent was removed *in vacuo*. The resulting solid was dissolved in CH₂Cl₂/H₂O and extracted with CH₂Cl₂ (x3). The combined organic layers were dried with MgSO₄, filtered, and concentrated *in vacuo*. The crude product was purified by column chromatography using CH₂Cl₂ as eluent to afford benzyl alcohol **I** as a white solid (18.00 g, 81%). ¹H-NMR (500 MHz) CDCl₃, $\delta_{\rm H}$ (ppm): 1.95 (t, 1 H, -CH₂OH, ³*J* = 6.0 Hz), 4.61 (d, 2 H, -CH₂OH, ³*J* = 6.0 Hz), 4.98 (s, 4 H, (Br)Ar-CH₂-OAr), 6.48 (t, 1 H,

This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

Ar*H*, ${}^{4}J = 2.1$ Hz), 6.60 (d, 2 H, Ar*H*, ${}^{4}J = 2.1$ Hz), 7.27 and 7.50 (ABq, 8 H, (Br)Ar*H*, ${}^{3}J = 8.3$ Hz); 13 C-NMR (125 MHz) CDCl₃, δ_{C} (ppm): 65.2 (1 C, Ar-CH₂OH), 69.4 (2 C, (Br)Ar-CH₂O-Ar), 101.5 (1 C, arom. *C*H), 106.0 (2 C, arom. *C*H), 122.0 (2 C, arom. *C*Br), 129.2 (4 C, (Br)arom. *C*H), 131.8 (4 C, (Br)arom. *C*H), 135.9 (2 C, (Br)arom. *C*-CH₂O), 143.7 (1 C, arom. *C*-CH₂OH), 160.0 (2 C, arom. *C*-O-); IR (cm⁻¹): 3290 (OH), 2920, 2875 (C-H), 1610, 1595 (C=C), 1160, 1010 (C-O); 825, 800 (1,4-Ar), 690 (1,3,5-Ar); MS (m/z, EI): 476, 478, 480 (1:2:1, M⁺); T_m = 98-99°C.

Typical procedure for the synthesis of bromo substituted dendritic chlorides;

Br₂-**G1-Cl** (**II**): A solution of **I** (0.50 g, 1.0 mmol) in dry toluene (6.5 mL) was cooled to 0°C and pyridine (0.09 g, 1.1 mmol) was added. To the stirred mixture a solution of SOCl₂ (0.14 g, 1.1 mmol) in toluene (0.2 mL) was added dropwise. After addition the mixture was heated to reflux for 30 min. The reaction mixture was concentrated *in vacuo* and the residue was dissolved in CH₂Cl₂ and filtered through a silica gel plug. The obtained solid was recrystallized from hexane and the product was isolated as a white solid (0.40 g, 77%). ¹H-NMR (500 MHz) CDCl₃, $\delta_{\rm H}$ (ppm): 4.51 (s, 2 H, -CH₂Cl), 4.99 (s, 4 H, (Br)Ar-CH₂-OAr), 6.51 (t, 1 H, ArH, ⁴*J* = 2.1 Hz), 6.63 (d, 2 H, ArH, ⁴*J* = 2.1 Hz), 7.29 and 7.52 (ABq, 8 H, (Br)ArH, ³*J* = 8.3 Hz); ¹³C-NMR (125 MHz) CDCl₃, $\delta_{\rm C}$ (ppm): 46.3 (1 C, Ar-CH₂Cl), 69.5 (2 C, (Br)Ar-CH₂O-Ar), 102.2 (1 C, arom. CH), 107.9 (2 C, arom. CH), 122.1 (1 C, arom. CBr), 129.2 (4 C, (Br)arom. CH), 131.9 (4 C, (Br)arom. CH), 135.8 (2 C, (Br)arom. C-CH₂O), 139.9 (1 C, arom. C-CH₂Cl), 160.0 (2 C, arom. C-O-); IR (cm⁻¹): 2920, 2875 (C-H); 1595 (C=C), 1170, 1060, 1010 (C-O), 835, 800 (1,4-Ar), 705 (C-Cl); MS (m/z, EI): 494, 496, 498, 500 (1:2:1.5:0.5, M⁺); T_m = 83-84°C.

Br₄-**G2-OH** (**III**): Compound **III** was prepared from **II** by the method reported for synthesis of molecule **I** and purified by column chromatography furnishing a white solid (12.80 g, 87%). ¹H-NMR (500 MHz) CDCl₃, $\delta_{\rm H}$ (ppm): 1.75 (t, 1 H, -CH₂OH, ³*J* = 6.0 Hz), 4.62 (d, 2 H, -CH₂OH, ³*J* = 6.0 Hz), 4.96, 4.97 (2 x s, 12 H, Ar-CH₂-OAr), 6.51 (2 x t, 3H, ArH, ⁴*J* = 2.0 Hz, ⁴*J* = 2.0 Hz), 6.59 (d, 2 H, Ar*H*, ⁴*J* = 2.0 Hz), 6.65 (d, 4H, Ar*H*, ⁴*J* = 2.0 Hz), 7.27 and 7.50 (ABq, 16H, (Br)Ar*H*, ³*J* = 8.3 Hz); ¹³C-NMR (125 MHz) CDCl₃, $\delta_{\rm C}$ (ppm): 65.3 (1 C, Ar-CH₂OH), 69.5 (4 C, (Br)Ar-CH₂O-Ar), 69.9 (2 C, Ar-CH₂O-Ar), 101.5 (1 C, arom. CH), 101.7 (2 C, arom. CH), 105.9 (2 C, arom. CH), 106.5 (4 C, arom. CH), 122.0 (4 C, arom. CBr), 129.2 (8 C, (Br)arom. CH), 131.8 (8 C, (Br)arom. CH), 135.9 (4 C, (Br)arom. C-CH₂O), 139.6 (2 C, arom. C-CH₂O),

This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

143.6 (1 C, arom. *C*-CH₂OH), 160.0 (4 C, arom. *C*-O-), 160.1 (2 C, arom. *C*-O-); IR (cm⁻¹): 3325 (OH), 2920, 2880 (C-H), 1590 (C=C), 1150, 1070, 1010 (C-O), 825, 795 (1,4-Ar), 675 (1,3,5-Ar); MS (m/z, ESI/TOF): 1083 {M+Na}⁺, 1099 {M+K}⁺; $T_m = 103-104^{\circ}C$.

Br₄-**G2-Cl** (**IV**): Compound **IV** was prepared from **III** by the general method described above for molecule **II** and purified by precipitation into hexanes from CH₂Cl₂, giving a white solid (7.69 g, 75%). ¹H-NMR (500 MHz) CDCl₃, $\delta_{\rm H}$ (ppm): 4.50 (s, 2 H, -CH₂Cl), 4.96, 4.98 (2 x s, 12 H, Ar-CH₂-OAr), 6.51 (2 x t, 3H, ArH, ⁴J = 2.2 Hz, ⁴J = 2.2 Hz), 6.61 (d, 2 H, ArH, ⁴J = 2.2 Hz), 6.64 (d, 4H, ArH, ⁴J = 2.2 Hz), 7.27 and 7.49 (ABq, 16H, (Br)ArH, ³J = 8.4 Hz); ¹³C-NMR (125 MHz) CDCl₃, $\delta_{\rm C}$ (ppm): 46.4 (1 C, Ar-CH₂Cl), 69.5 (4 C, (Br)Ar-CH₂O-Ar), 70.1 (2 C, Ar-CH₂O-Ar), 101.9 (2 C, arom. *C*H); 102.3 (1 C, arom. *C*H), 106.6 (4 C, arom. *C*H), 107.9 (2 C, arom. *C*H), 122.1 (4 C, arom. *C*Br), 129.2 (8 C, (Br)arom. *C*H), 131.9 (8 C, (Br)arom. *C*H), 135.9 (4 C, (Br)arom. *C*-CH₂O), 139.4 (2 C, arom. *C*-CH₂O), 139.8 (1 C, arom. *C*-CH₂Cl), 160.0 (6 C, arom. *C*-O-); IR (cm⁻¹): 3060, 2870 (C-H), 1590 (C=C), 1150, 1045, 1010 (C-O), 830, 800 (1,4-Ar), 710 (C-Cl), 680 (1,3,5-Ar); MS (m/z, ESI/TOF): 1079{M+H}⁺, 1101 {M+Na}⁺, 1117 {M+K}⁺; T_m = 104-105°C.

Br₈-**G3-OH** (**V**): Molecule **V** was synthesized from compound **IV** as described for compound **I** and purified by column chromatography (Solvent) furnishing an off-white glassy solid (0.51 g, 87%). ¹H-NMR (500 MHz) CDCl₃, $\delta_{\rm H}$ (ppm): 1.68 (br-t, 1 H, -CH₂OH, ³*J* = 6.0 Hz), 4.61 (d, 2 H, -CH₂OH, ³*J* = 5.8 Hz), 4.97 (s, 28 H, Ar-CH₂-OAr), 6.51 (m, 7 H, ArH), 6.61 (d, 2 H, ArH, ⁴*J* = 1.9 Hz), 6.65 (m, 12 H, ArH), 7.28 and 7.50 (ABq, 32 H, (Br)ArH, ³*J* = 8.3 Hz); ¹³C-NMR (125 MHz) CDCl₃, $\delta_{\rm C}$ (ppm): 65.3 (1 C, Ar-CH₂OH), 69.5 (8 C, (Br)Ar-CH₂O-Ar), 70.0 (6 C, Ar-CH₂O-Ar), 101.5 (1 C, arom. CH), 101.7 (2 C, arom. CH), 101.8 (4 C, arom. CH), 105.9 (2 C, arom. CH), 106.5 (4 C, arom. CH), 106.6 (8 C, arom. CH), 122.1 (8 C, arom. CBr), 129.2 (16 C, (Br)arom. CH), 131.8 (16 C, (Br)arom. CH), 135.9 (8 C, (Br)arom. C-CH₂O), 139.50 (2 C, arom. C-CH₂O), 139.53 (4 C, arom. C-CH₂O), 143.7 (1 C, arom. C-CH₂OH), 160.0 (8 C, arom. C-O-), 160.14 (2 C, arom. C-O-); IR (cm⁻¹): 3325 (OH), 3060, 2870 (C-H), 1590 (C=C), 1150, 1040, 1010 (C-O), 830, 800 (1,4-Ar), 680 (1,3,5-Ar); T_g = 51.4°C.

Br₂-**G1-Acrylate** (2): Compound I (0.150 g, 0.3 mmol) was dissolved in CH₂Cl₂ (2 mL) after which DMAP (0.016 g, 0.1 mmol) and Et₃N (0.5 g, 0.7 mL, 5 mmol) were added. To this stirring mixture acryloyl chloride (0.114 g, 0.1 mL, 1.2 mmol) was added dropwise, and the resulting slurry was stirred for 16 h at room temperature under nitrogen atmosphere. The reaction mixture was filtered and the organic layer was extracted with NaHSO₄ (1 M, x3), NaHCO₃ (x3) and brine (x1). The organic layer was dried with MgSO₄, filtered and concentrated *in vacuo*. The product was obtained as an oil (0.093 g, 56%). ¹H-NMR (500 MHz) CDCl₃, $\delta_{\rm H}$ (ppm): 4.98 (s, 4 H, (Br)Ar-CH₂-OAr), 5.12 (s, 2 H, -CH₂OCO-), 5.87 (dd, 1 H, CH₂=C, ²J=1.3 Hz, ³J=10.4 Hz), 6.16 (dd, 1 H, CH₂=CH-, ³J=10.4 Hz, ³J=17.3 Hz), 6.44 (dd, 1 H, CH₂=CH-, ²J=1.3 Hz, ³J=17.3 Hz), 6.51 (t, 1 H, ArH, ⁴J = 2.2 Hz), 6.59 (d, 2 H, ArH, ⁴J = 2.2 Hz), 7.28 and 7.50 (ABq, 8H, (Br)Ar-CH₂O-Ar), 102.0 (1 C, arom. CH), 107.3 (2 C, arom. CH), 122.1 (1 C, arom. C-Br), 128.3 (1 C, -CH=CH₂), 129.2 (4 C, (Br)arom. CH), 131.4 (1C, CH₂=CH), 131.9 (4 C, (Br)arom.

This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

CH), 135.8 (2 C, (Br)arom. C-CH₂O), 138.5 (1 C, arom. C-CH₂OCO), 159.9 (2 C, arom. C-O-), 166.0 (1 C, C-COO-); IR (cm⁻¹): 3056, 2926, 2875 (C-H), 1722 (C=O), 1610, 1595 (C=C), 1152, 1011 (C-O), 832, 800 (1,4-Ar), 727 (1,3,5-Ar); MS (m/z, ESI/TOF): 552 {M+Na}⁺.

Br₄-**G2**-**Acrylate** (**3**): The product was obtained from compound **III** by the general procedure reported for compound **2** and the product was obtained as a solid (0.109 g, 69%). ¹H-NMR (500 MHz) CDCl₃, $\delta_{\rm H}$ (ppm): 4.96, 4.98 (2 x s, 12 H, Ar-CH₂-OAr), 5.13 (s, 2 H, -CH₂OCO-), 5.84 (dd, 1 H, CH₂=C, ²J=1.3 Hz, ³J=10.4 Hz), 6.16 (dd, 1 H, CH₂=CH-, ³J=10.4 Hz, ³J=17.3 Hz), 6.44 (dd, 1 H, CH₂=CH-, ²J=1.3 Hz, ³J=17.3 Hz), 6.50 (m, 3H, ArH), 6.59 (d, 2 H, ArH, ⁴J = 2.1 Hz), 6.64 (d, 4H, ArH, ⁴J = 2.1 Hz), 7.27 and 7.49 (ABq, 16H, (Br)ArH, ³J = 8.3 Hz); ¹³C-NMR (125 Mhz) CDCl₃, $\delta_{\rm C}$ (ppm): 66.2 (1 C, Ar-CH₂OH), 69.5 (4 C, (Br)Ar-CH₂O-Ar), 70.0 (2 C, Ar-CH₂O-Ar), 101.8 (1 C, arom. *C*H), 101.9 (2 C, arom. *C*H), 106.6 (4 C, arom. *C*H), 107.2 (2 C, arom. *C*H), 122.1 (4 C, arom. *C*-Br), 128.3 (1 C, OOC-CH=CH₂), 129.2 (8 C, (Br)arom. *C*H), 131.4 (1 C, -CH=CH₂), 131.9 (8 C, (Br)arom. *C*H), 135.9 (4 C, (Br)arom. *C*-CH₂O), 138.4 (1 C, arom. *C*-CH₂OCO), 139.5 (2 C, arom. *C*-CH₂O), 160.0 (6 C, arom. *C*-O-), 166.0 (1 C, *COO*-); IR (cm⁻¹): 3063, 2920, 2880 (C-H); 1724 (C=O); 1592 (C=C), 1150, 1050, 1010 (C-O); 827, 800 (1,4-Ar); 680 (1,3,5-Ar).MS (m/z, ESI/TOF): 1132 {M+Na}⁺; T_m = 101°C.

Br₈-G3-Acrylate (4): Compound 4 was prepared from V by the general procedure reported for compound 2 and the product was obtained as a solid (0.105 g, 69%). ¹H-NMR (500 MHz) CDCl₃, $\delta_{\rm H}$ (ppm): 4.95 (s, 28 H, Ar-CH₂-OAr), 5.11 (s, 2 H, -CH₂OCO-), 5.82 (dd, 1 H, CH₂=C, ²J=1.3 Hz, ³J=10.4 Hz), 6.15 (dd, 1 H, CH₂=CH-, ³J=10.4 Hz, ³J=17.3 Hz), 6.42 (dd, 1 H, CH₂=CH-, ²J=1.3 Hz, ³J=17.3 Hz), 6.51 (m, 6 H, Ar*H*), 6.54 (t, 1 H, Ar*H*, ⁴J=2.1 Hz), 6.59 (d, 2 H, Ar*H*, ⁴J = 2.1 Hz), 6.63 (m, 12 H, Ar*H*), 7.24 and 7.47 (ABq, 32H, (Br)Ar*H*, ³J = 8.3 Hz); ¹³C-NMR (125 MHz) CDCl₃, $\delta_{\rm C}$ (ppm): 66.2 (1 C, Ar-CH₂OCO), 69.4 (8 C, (Br)Ar-CH₂O-Ar), 70.0 (4 C, Ar-CH₂O-Ar), 70.1 (2 C, Ar-CH₂O-Ar), 101.8 (6 C, arom. *C*H), 101.9 (1 C, arom. *C*H), 106.6 (12 C, arom. *C*H), 107.2 (2 C, arom. *C*H), 122.0 (8 C, arom. *C*-Br), 128.3 (1 C, OOC-CH=CH₂), 129.2 (16 C, (Br)arom. *C*H), 131.4 (1 C, -CH=CH₂), 131.8 (16 C, (Br)arom. *C*H), 135.9 (8 C, (Br)arom. *C*-CH₂O), 138.4 (1 C, arom. *C*-CH₂OCO), 139.3 (2 C, arom. *C*-CH₂O), 139.5 (4 C, arom. *C*-CH₂O), 160.0 (10 C, arom. *C*-O-), 160.1 (4 C, arom. *C*-O-), 166.0 (1 C, COO-); MS (m/z, ESI/TOF): 2294 {M+Na}⁺; IR (cm⁻¹): 3060, 2870 (C-H), 1723 (C=O), 1590 (C=C), 1155, 1040, 1010 (C-O), 825, 800 (1,4-Ar), 680 (1,3,5-Ar); T_m = 86°C.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

Formulations.

		Polyols (wt%)		Isocyanate	Monomer	Initiator	Catalyst
				(wt%)	(wt%)	(wt%)	(wt%)
	polycarbonate-	polypropylene-	trimethyl-	HMDI	1, 2, 3, or	TPO	dioctyltin-
	diol	triol	olpropane		4		dilaurate
Polyurethane matrix formulation	0.0	77.2	0.0	19.48	3	0.3	0.02
polycarbonate matrix formulation	63.0	0.0	7.0	26.68	3	0.3	0.02

Sample Preparation. To fabricate optical films, several drops of the mixture of solutions A and B were placed between two 3 x 1 inch glass plates separated by Teflon spacers of 0.5mm thicknesses. Clips were placed on both ends of the glass slides to hold them in proper position. The whole assembly was then placed in a heating oven set at 60 °C for 15 hrs. After curing the films, the sample sandwiched between two glass slides was mounted on the holographic setup and exposed.

Hologram Recording and Evaluation. Experimental setup for recording of holograms was assembled on an optical table suspended on vibration damping supports. The output of a blue diode laser (SONY SBL-N001A, 407 nm, 45 mW, single longitudinal mode) was split into two beams with equal power using a continuously adjustable beam splitter consisting of two half-wavelength plates and a polarizer cube.² The resulting beams passed through spatial filters and collimating lenses, which produced beams with diameter of ~ 5 mm. The angle between the recording beams was 37.4° . Optical power density in a single recording beam was $\sim 6 \text{ mW/cm}^2$. A sample was placed at the intersection point of the recording beams on a computer-controlled rotation stage (Sigma Koki SGSP-120YAW, 0.025° positioning accuracy). Intensities of the diffracted and transmitted beams were measured by Si photodiodes protected from ambient light by interference filters. Exposure of a sample to the recording beams was controlled by a computer-operated shutter (Suruga Seiki F77-4). Overall controls over the experiment and data acquisition were carried out by a home-brew program running on a PC. The experimental setup allowed us to control the amount of optical energy used for recording of a hologram, record multiple diffraction gratings, determine their diffraction efficiency (M# measurements), and

This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

measure angular selectivity of diffraction gratings to evaluate the amount of volume shrinkage due to the recording.

Diffraction efficiency was determined using the following formula:

$$\eta = \frac{I_D}{I_D + I_T}$$

here I_D and I_T are intensities of diffracted and transmitted beams, respectively. Holograms recorded in our experiments are transmission volume holograms (transmission Bragg holograms).²

Sensitivity of the material was estimated using the following equation:

$$S = \frac{\sqrt{\eta}}{dtI}$$

where *t* is the recording time, *d* is the thickness of a hologram and *I* is the combined intensity of recording beams.

Multiplexing capabilities of the recording material were evaluated using M# parameter:

$$M \# = \sum_{i=1}^{N} \sqrt{\eta_i}$$

In these experiments, we recorded consecutively *N* holographic gratings on the same spot on the sample. The sample was rotated by a certain angle between the recordings. For each hologram, we measured diffraction efficiency η_i .

M/# and Angular selectivity curves of data storage systems in polyurethane matrix.

Figure S1. Angular selectivity curves of the holograms recorded in 0.5 mm thick films containing; a) monomer **1**, b) monomer **2**, c) monomer **3**, and d) monomer **4**.

M/# and Angular selectivity curves of data storage systems in polycarbonate matrix.

containing; a) monomer 1, b) monomer 2, c) monomer 3, and d) monomer 4.

Table S1. Holographic properties of the different data storage systems in the polycarbonate matrix.

Monomer	Storage Capacity	Sensitivity	Volume Shrinkage
	(M/#)	(cm/mJ)	(%)
1	7	0.14	0.23
2	6	0.06	0.1
3	6.5	0.04	0.04
4	6	0.05	0.03

Shrinkage Calculation. Shrinkage due to the recording was evaluated in accordance with Dhar's report.³ A set of fifteen holograms was angle multiplexed from -28° to $+28^{\circ}$ by 4° step. After recording of the holograms, the material was post-cured for 5 minutes with LEDs (Bivar Inc., 400 nm, 10 mW/cm²). In order to evaluate the volume shrinkage taken place in the out-of-plane

This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

direction, σ , the shift in the Bragg angle, $\Delta \theta_{Bragg}$, experimentally obtained was fitted to the following equation:

$$\Delta \theta_{Bragg} = \arcsin\left[n_1 \sin\left\{\phi_1 - \frac{\pi}{2} + \arcsin\left(\frac{\lambda}{2\Lambda_1 n_1}\right)\right\}\right] - \arcsin\left[n_0 \sin\left\{\phi_0 - \frac{\pi}{2} + \arcsin\left(\frac{\lambda}{2\Lambda_0 n_0}\right)\right\}\right],$$

where λ , ϕ , Λ and *n* are the recording laser wavelength, the grating tilt angle, the grating fringe spacing and the refractive index, respectively. The subscripts 1 and 0 represent the states with and without the volume shrinkage. ϕ_1 and Λ_1 are the functions of σ and described, respectively, as $\phi_1 = \pi/2 - \arctan{\{\tan(\pi/2 - \phi_0)/(1 + \sigma)\}}$ and $\Lambda_1 = \Lambda_0 \sin \phi_1 / \sin \phi_0$. In this study, $n_0 = n_1 = 1.510$ was used for the shrinkage evaluation.

Figure S3. Diffraction efficiency of the fifteen recorded holograms as a function of sample rotation angle for holographic system containing monomer **1**. The angle of the maximum diffraction efficiency for each hologram was found by fitting each peak to a Gaussian line shape.

This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

Figure S4. Shift in the Bragg angle as a function of sample rotation angle for 1.

Figure S5. Diffraction efficiency of the fifteen recorded holograms as a function of sample rotation angle for holographic system containing Monomer **2**. The angle of the maximum diffraction efficiency for each hologram was found by fitting each peak to a Gaussian line shape.

This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

Figure S6. Shift in the Bragg angle as a function of sample rotation angle for Monomer **2** system. The solid line represents the fit to the Bragg shift using the theoretical equation.

Figure S7. Diffraction efficiency of the fifteen recorded holograms as a function of sample rotation angle for holographic system containing Monomer **3**. The angle of the maximum diffraction efficiency for each hologram was found by fitting each peak to a Gaussian line shape.

This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

Figure S8. Shift in the Bragg angle as a function of sample rotation angle for Monomer **3** system. The solid line represents the fit to the Bragg shift using the theoretical equation.

Figure S9. Diffraction efficiency of the fifteen recorded holograms as a function of sample rotation angle for holographic system of Monomer **4**. The angle of the maximum diffraction efficiency for each hologram was found by fitting each peak to a Gaussian line shape.

This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

Figure S10. Shift in the Bragg angle as a function of sample rotation angle for Monomer 4.

Refractive index calculation;

Theoretical refractive indices of the acrylate monomers 1, 2, 3, and 4 were calculated usingsoftwarebyPolymer-DesignToolsTM(http://www.hallogram.com/polymerdesign/index.html).

Exposure time for each	ı hologram;
------------------------	-------------

	Monomer 1	Monomer 2	Monomer 3	Monomer 4
Popording Angle	Exposure time	Exposure time	Exposure time	Exposure time
Recording Aligie	(msec)	(msec)	(msec)	(msec)
-30	4000	8000	10000	15000
-29	720	2120	2180	2500
-28	720	2080	2180	2500
-27	720	2040	2180	2520
-26	720	2020	2180	2520
-25	720	2020	2200	2520
-24	720	2000	2200	2540
-23	720	2020	2220	2560
-22	740	2020	2240	2580
-21	740	2020	2260	2620
-20	740	2020	2280	2640
-19	760	2040	2320	2680

Sup	plemen	tary	Mater	ial ((ESI)) for	Chemical	Con	nmunicatio	ns
				_						

This journal is (c) The Royal Society of Chemistry 2008

<u> </u>	<u>Dendronized Macrom</u>	onomers for Three-L	<u>Dimensional Data Sto</u>	rage
-18	760	2060	2340	2720
-17	780	2080	2380	2760
-16	800	2100	2420	2820
-15	800	2120	2460	2880
-14	820	2140	2520	2940
-13	840	2180	2580	3000
-12	860	2200	2620	3080
-11	880	2240	2700	3160
-10	900	2280	2760	3240
- 9	920	2340	2840	3340
- 8	960	2380	2920	3440
- 7	980	2440	3000	3540
- 6	1020	2500	3100	3660
- 5	1040	2560	3200	3800
- 4	1080	2640	3300	3940
- 3	1120	2720	3420	4100
-2	1160	2800	3540	4260
-1	1200	2880	3680	4440
0	1260	2980	3840	4620
1	1300	3080	4000	4840
2	1360	3200	4160	5060
3	1420	3320	4340	5300
4	1480	3440	4560	5560
5	1560	3580	4760	5840
6	1640	3740	5000	6160
7	1720	3900	5260	6500
8	1800	4080	5520	6860
9	1900	4260	5820	7260
10	2020	4480	6140	7680
11	2120	4700	6500	8160
12	2260	4940	6880	8680
13	2380	5200	7300	9240
14	2540	5480	7740	9860

<u>I</u>	<u>Dendronized Macromonomers for Three-Dimensional Data Storage</u>			
15	2700	5800	8240	10520
16	2860	6140	8780	11260
17	3060	6500	9360	12060
18	3280	6900	10000	12960
19	3500	7340	10700	13940
20	3760	7800	11460	15000
21	4020	8320	12300	16200
22	4320	8900	13240	17500
23	4660	9520	14260	18960
24	5020	10200	15380	20560
25	5440	10940	16600	22340
26	5880	11760	17980	24320
27	6580	12680	20120	27460
28	7400	14080	22600	31100
29	8620	15680	26340	36700
30	10100	18100	30840	43520

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Monomer Conversion in the holographic disc;

A holographic disk containing the photoactive monomer was exposed to blue light for 5 minutes at each side (note that this is a blanket exposure and not a holographic exposure). The optical power of the light source was 10 mW/cm^2 . After the exposure, the sample was immersed in THF to extract the unreacted monomer, and then the concentration of the monomer in the THF solution was measured by using liquid chromatography. The conversion was calculated from the concentration change before and after the light exposure. The concentration of the monomer in the holographic disk before the light exposure was also measured as a reference.

Monomer	Monomer
	conversion (%)
1	99
2	68
3	46
4	45

This journal is (c) The Royal Society of Chemistry 2008

Dendronized Macromonomers for Three-Dimensional Data Storage

References.

- (1) K. L. Wooley, C. J. Hawker, J. M. J. Fréchet, J. Chem. Soc. Perkin Trans. 1, 1991, 1059
- (2) P. Hariharan, "Optical holography Principles, techniques, and applications", Cambridge University Press, 2nd ed., 1996.
- (3) Dhar et al. Appl. Phys. Lett. 73, 1337 (1998).