Supporting Information

Catalytic Asymmetric Hydrogenation using Homogeneous Chiral Nickel-Bisphosphine Complexes through DKR

Yasumasa Hamada,* Yu Koseki, Takefumi Fujii, Tsukuru Maeda, Takuya Hibino, and Kazuishi Makino Graduate School of Pharmaceutical Sciences, Chiba University
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

General: Melting points were uncorrected. Infrared spectra were recorded on a JASCO FT/IR-230 Fourier transform infrared spectrometer. Optical rotations were measured on a JASCO P-1020 polarimeter. NMR spectra were recorded on a JEOL JNM GSX 400A and JNM ECP400 spectrometers, operating at 400 MHz for ${ }^{1} \mathrm{H}$-NMR and 100 MHz for ${ }^{13} \mathrm{C}$-NMR. Chemical shifts are recorded in ppm from tetramethylsilane or chloroform as an internal standard. Mass spectra were obtained on a JEOL HX-110A spectrometer. The enantiomeric excess (ee) was determined by HPLC analysis. Reagents and solvent were purified by standard procedures.

I. Influence of Air and Moisture

We employed nickel acetate tetrahydrate as the catalyst precursor. We first examined the effects of moisture and air. As shown in Table S1, the hydrogenation without any care indicated the problem of reproducibility on the chemical yield (entries 1-3). Careful experiments revealed that the strict exclusion of both air and moisture was essential for smooth reaction (entries 6 and 7). Under this conditions, the reaction using 10% nickel catalyst completed in 6 h . The origin for the negative effect of water is unclear.

Table S1

entry glove bag	MS3A	time (h) yield(\%) ${ }^{\text {a) }}$	anti : syn ${ }^{\text {b) }}$ ee (\%) ${ }^{\text {c) }}$			
1	\times	\times	36	52	$>99: 1$	81
2	\times	\times	36	83	$>99: 1$	81
3	\times	\times	36	98	$>99: 1$	82
4	\times	\bigcirc	36	20	$>99: 1$	80
5	\bigcirc	\times	40	58	$>99: 1$	82
6	\bigcirc	\bigcirc	12	100	$>99: 1$	86
7	\bigcirc	\bigcirc	6	100	$>99: 1$	84
$(R, S)-P P F-P C y_{2}$						

[^0]
II. Experimental Procedures and Characterization of the Products

Typical procedure for Ni-catalyzed asymmetric hydrogenation

Methyl (2R,3R)-2-benzoylamino-3-hydroxy-3-phenylpropionate (5a)

The reaction was carried out in a glass vessel placed in a stainless autoclave apparatus. A glass test tube was charged with $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(8.7 \mathrm{mg}, 0.035 \mathrm{mmol})$, (R, S)-ferrocenyl ligand ($3 \mathrm{~g}, 24.9 \mathrm{mg}$, 0.035 mmol), the α-amino- β-keto ester hydrochloride ($1,161 \mathrm{mg}, 0.70 \mathrm{mmol}$), sodium acetate ($57.4 \mathrm{mg}, 0.70$ $\mathrm{mmol})$, and molecular sieves $3 \mathrm{~A}(70 \mathrm{mg})$, and then was flushed with argon. After trifluoroethanol (0.7 mL) and acetic acid (2.8 mL) was added, the resulting mixture was degassed by three freeze-thaw cycles. The glass test tube was transferred to a stainless steel autoclave in an argon-filled glove bag. The mixture was stirred at $25^{\circ} \mathrm{C}$ under hydrogen pressure (100 atm) for 24 h . After hydrogen was carefully released, $\mathrm{MeOH}(3.5 \mathrm{~mL})$ and aqueous $\mathrm{HCl}\left(1.4 \mathrm{~mL}, 1 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added and the mixture was concentrated in vacuo to dryness below $40^{\circ} \mathrm{C}$. The resulting residue was dissolved in MeOH and the mixture was concentrated in vacuo. This operation was repeated three times. The residue was used for next step without any purification. Benzoic anhydride ($158 \mathrm{mg}, 0.70 \mathrm{mmol}$) followed by a solution of $\mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{~mL}, 2.1 \mathrm{mmol})$ in THF $(2.1 \mathrm{~mL})$ were added dropwise to a solution of the above crude product in THF (3.5 mL) at $0{ }^{\circ} \mathrm{C}$. After stirring the mixture at $25^{\circ} \mathrm{C}$ for 12 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc. The organic layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, saturated aqueous NaHCO_{3}, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography to give the N-benzoyl derivative $\mathbf{6 a}$ ($204 \mathrm{mg}, 98 \%$). The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR. The enantiomeric excess was determined by chiral HPLC. 6a: colorless solids; 100% conversion yield and 91% isolated yield (two steps); anti:syn $=>99: 1,92 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{18}-122.7\left(c 1.04, \mathrm{CHCl}_{3}\right)$ for 92% ee; mp $130.5-131.5{ }^{\circ} \mathrm{C}$ (recrystallized from ethyl acetate-n-hexane); $\operatorname{IR}(\mathrm{KBr}) 3338,1744,1644,1525,1229,1173 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.79(\mathrm{~s}, 3 \mathrm{H})$, $4.56(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=3.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=3.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{brd}, 1 \mathrm{H}), 7.2-7.4(\mathrm{~m}$, $5 \mathrm{H}), 7.4-7.5(\mathrm{~m}, 2 \mathrm{H}), 7.5-7.6(\mathrm{~m}, 1 \mathrm{H}), 7.7-7.8(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 52.6,59.4,75.1,125.9$, 127.1, 128.0, 128.3, 128.6, 132.1, 133.0, 139.1; LR-FABMS (NBA) m/z : $300\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$: C 68.21; H 5.72; N 4.68. Found: C 68.18; H 5.64; N 4.55.
HPLC analysis using CHIRALPAK AD and n-hexane $/ i-\operatorname{PrOH}(85 / 15,0.5 \mathrm{~mL} / \mathrm{min})$, Retention time for ($2 S, 3 S$): 35.0 min [minor], $(2 R, 3 R)$: 39.6 min [major].

The alternative procedure using the prior prepared nickel complex:

A glass test tube was charged with $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1.3 \mathrm{mg}, 0.005 \mathrm{mmol})$ and (R, S)-ferrocenyl ligand $(3 \mathrm{~g}, 3.8 \mathrm{mg}$,
$0.005 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. After degassed by three freeze-thaw cycles, the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 45 min under an argon atmosphere. The resulting yellow solution was concentrated and dried in vacuo at rt for 20 min to give the yellow powder. The α-amino- β-keto ester hydrochloride (0.1 mmol), sodium acetate $(8.3 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, molecular sieves $3 \mathrm{~A}(10 \mathrm{mg})$, trifluoroethanol $(0.1 \mathrm{~mL})$ and acetic acid $(0.4 \mathrm{~mL})$ was added to the prepared yellow powder in an argon-filled glove bag. After the mixture was degassed by three freeze-thaw cycles, the glass test tube was transferred to a stainless steel autoclave in an argon-filled glove bag. The mixture was stirred at rt under hydrogen pressure (100 atm) for 24 h . After hydrogen was carefully released, $\mathrm{MeOH}(1 \mathrm{~mL})$ and aqueous $\mathrm{HCl}\left(1 \mathrm{~mL}, 1 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added and the mixture was concentrated to dryness under reduced pressure below $40^{\circ} \mathrm{C}$. The resulting residue was dissolved in MeOH and the mixture was concentrated in vacuo. This cycle was repeated three times. The residue was used for next step without any purification. The conversion yield was estimated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d^{6} of the crude product.
To a solution of the above residue in the THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added benzoic anhydride ($27.1 \mathrm{mg}, 0.12 \mathrm{mmol}$) and dropwise a solution of $\mathrm{Et}_{3} \mathrm{~N}(42 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$. After stirred at rt for 12 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was diluted with EtOAc . The organic layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, saturated aqueous NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography to give N-benzoyl derivative.

Methyl 2-benzoylamino-3-hydroxy-3-o-tolylpropionate (6b)

Prepared according to the typical procedure. 6b: colorless solids; 100% conversion yield and 90% isolated yield (two steps), anti:syn $=>99: 1,81 \%$ ee; $[\alpha]_{D}{ }^{17}-62.8$ (c 1.28, CHCl_{3}) for 81% ee; mp 123.5-124.5 ${ }^{\circ} \mathrm{C}$; IR(ATR) $3356,3065,2952,1739,1639,1603,1578,1521,1486,1436,1365,1211 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $2.42(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 5.12(\mathrm{dd}, J=3.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=3.6,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.38 \sim 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 19.0,52.3,57.5,71.7,125.7,125.8,127.2,128.0,128.4$, $128.7,130.1,130.6,132.1,133.3,134.8,137.2,167.7,170.4$. HR-FABMS (NBA): calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 314.1392. Found 314.1395.

HPLC analysis using CHIRALPAK AD-H and n-hexane $/ \mathrm{i}-\mathrm{PrOH}(85 / 15,0.5 \mathrm{~mL} / \mathrm{min}$), Retention time 27.8 min [major], 31.4min [minor].

Methyl (2R, 3R)-2-benzoylamino-3-hydroxy-3-m-tolylpropionate (6c)

Prepared according to the typical procedure. 6c: colorless solids; 88% conversion yield and 83% isolated yield
(two steps), anti:syn $=>99: 1,93 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{18}-113.3\left(c 0.81, \mathrm{CHCl}_{3}\right)$ for 93% ee; mp 111-112 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 3304$, $1747,1719,1645,1541,1337,1273,1219 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.31(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.42(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=4.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=4.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{brd}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.11$ (m, 3H, Ar-H), 7.19-7.25 (m, 1H, Ar-H), 7.42-7.56 (m, 3H, Ar-H), 7.73-7.76 (m, 2H, Ar-H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.4,52.6,59.4,75.2,122.9,126.6,127.1,128.2,128.6,128.9,132.1,133.2,138.0,139.0,168.6,170.0 ;$ LR-FABMS (NBA) m/z: $314\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 68.99; H, 6.11; N, 4.47. Found: C, 68.71; H, 6.01; N, 4.37.

HPLC analysis using CHIRALCEL OD-H and n-hexane $/ i-\operatorname{PrOH}(90 / 10,0.4 \mathrm{~mL} / \mathrm{min}$), Retention time for $(2 R, 3 R)$: 41.7 min [major], for $(2 S, 3 S)$: 54.1 min [minor].

Methyl (2R, 3R)-2-benzoylamino-3-(3-fluorophenyl)-3-hydroxypropionate (6d)

Prepared according to the typical procedure. 6d: colorless solids; 100% conversion yield and 88% isolated yield (two steps), anti:syn $=>99: 1,89 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{18}-112.0\left(c 0.86, \mathrm{CHCl}_{3}\right)$ for $89 \% \mathrm{ee} ; \mathrm{mp} 132-133{ }^{\circ} \mathrm{C}$; IR (KBr) 3420 , $3328,1720,1646,1531,1270 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.85(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}$, $J=3.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=3.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.04(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.52-7.56 (m, 1H), 7.74-7.76 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 52.8,59.5,74.6,113.0(\mathrm{~d}, J=22.3 \mathrm{~Hz}$), $114.9(\mathrm{~d}, ~ J=20.6 \mathrm{~Hz}), 121.5(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 127.1,128.7,129.8(\mathrm{~d}, ~ J=8.2 \mathrm{~Hz}), 132.3,132.8,141.9(\mathrm{~d}, J=6.6$ $\mathrm{Hz}), 162.8(\mathrm{~d}, J=245 \mathrm{~Hz}), 168.7$, 169.7. HR-FABMS (NBA): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FNO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right): 318.1142$. Found 318.1163.

HPLC analysis using CHIRALCEL OD-H and n-hexane $/ i-\operatorname{PrOH}(85 / 15,0.4 \mathrm{~mL} / \mathrm{min}$), Retention time for $(2 R, 3 R): 23.7 \mathrm{~min}$ [major], for $(2 S, 3 S): 39.1 \mathrm{~min}$ [minor].

Methyl (2R, 3R)-2-benzoylamino-3-(3-chlorophenyl)-3-hydroxypropionate (6e)

Prepared according to the typical procedure. 6e: colorless solids; 100% conversion yield and 91% isolated yield (two steps), anti:syn $=>99: 1,92 \%$ ee; $[\alpha]_{D}{ }^{18}-99.3\left(c 0.95, \mathrm{CHCl}_{3}\right.$) for 92% ee; mp $115-118{ }^{\circ} \mathrm{C}$; IR (KBr) 3905 , $3306,1742,1645,1578,1534,1438,1272 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19(\mathrm{dd}, J=3.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{br}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.44(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 52.9,59.5,74.8$, 124.1, 126.2, 127.2, 128.2, 128.7, 129.6, 132.3, 132.8, 134.3, 141.3. HR-FABMS (NBA): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClNO}_{4}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right):$334.0846. Found 334.0817.
HPLC analysis using CHIRALCEL OD-H and n-hexane $/ i-\operatorname{PrOH}(85 / 15,0.4 \mathrm{~mL} / \mathrm{min}$), Retention time for

Methyl (2R, 3R)-2-benzoylamino-3-(3-bromo-phenyl)-3-hydroxypropionate (6f)

Prepared according to the typical procedure. 6f: colorless solids. 100% conversion yield and 91% isolated yield (two steps). anti:syn $=>99: 1,92 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{18}-90.2\left(c 0.82, \mathrm{CHCl}_{3}\right.$) for 92% ee; mp $122.5-123.5{ }^{\circ} \mathrm{C}$; IR (ATR) 3285, 2918, 1722, 1642, 1530, 1435, $1268 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.21(\mathrm{dd}, J=3.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=3.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{brd}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 52.8,59.5,74.7$, $122.5,124.5,127.2,128.7,129.2,129.9,131.2,132.3,132.8,141.5,168.9,169.6$. HR-FABMS (NBA): calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right): 378.0341$. Found 378.0336.
HPLC analysis using CHIRALCEL OD-H and n-hexane $/ i-\operatorname{PrOH}(85 / 15,0.4 \mathrm{~mL} / \mathrm{min})$, Retention time for ($2 R$, $3 R): 25.0$ min [major], $(2 S, 3 S): 38.8 \mathrm{~min}$ [minor].

Methyl (2R, 3R)-2-benzoylamino-3-hydroxy-3-p-tolylpropionate (6g)

Prepared according to the typical procedure. $\mathbf{6 g}$: colorless solids; 86% conversion yield and 82% isolated yield (two steps), anti:syn $=>99: 1,93 \%$ ee; $[\alpha]_{D}{ }^{18}-116.6\left(c 0.61, \mathrm{CHCl}_{3}\right)$ for 93% ee; mp 122-123 ${ }^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 3319$, $1741,1645,1539,1324,1264 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.23(\mathrm{dd}, J=3.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=3.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{brd}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 4 \mathrm{H})$, 7.40-7.60 (m, 3H), 7.70-7.80 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 21.1,52.7,59.5,75.2,125.8,127.2$, 128.7, 129.0, 132.1, 133.1, 136.0, 137.8, 168.6, 170.0; LR-FABMS (NBA) m/z: $314\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 68.99; H, 6.11; N, 4.47. Found: C, 68.83; H, 6.17; N, 4.38.
HPLC analysis using CHIRALCEL OD-H and n-hexane $/ i-\operatorname{PrOH}(85 / 15,0.5 \mathrm{~mL} / \mathrm{min}$), Retention time for $(2 R, 3 R): 25.8 \mathrm{~min}$ [major], for $(2 S, 3 S): 34.4 \mathrm{~min}$ [minor].

Methyl (2R, 3R)- 2-benzoylamino-3-(4-tert-butylphenyl)-3-hydroxypropionate (6h)

Prepared according to the typical procedure. 6h: colorless solids; 100% conversion yield and 90% isolated yield (two steps), anti:syn $=>99: 1,92 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{18}-98.4$ (c $1.52, \mathrm{CHCl}_{3}$) for 92% ee; mp $77-78{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 3432$,

2965, 1719, 1656, 1526, 1490, 1436, $1281 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $1.30(\mathrm{~s}, 9 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=3.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=3.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.74-7.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.3,34.5$, $52.7,59.4,75.0,125.3,125.6,127.2,128.6,132.1,133.2,135.9,151.1,168.6,170.1$. HR-FABMS (NBA): calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right): 356.1862$. Found 356.1827.

HPLC analysis using CHIRALPAK AD and n-hexane $/ i-\operatorname{PrOH}(85 / 15,0.5 \mathrm{~mL} / \mathrm{min})$, Retention time for $(2 S, 3 S)$: 29.2 min [minor], for $(2 R, 3 R): 42.1 \mathrm{~min}$ [major].

Methyl (2S, 3S)-2-benzoylamino-3-(4-benzyloxyphenyl)-3-hydroxypropionate (6i)

Prepared according to the typical procedure. 6i: colorless solids; 100% conversion yield and 94% isolated yield (two steps), anti:syn $=>99: 1,91 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{18}-92.9\left(c 1.03, \mathrm{CHCl}_{3}\right.$) for $91 \% \mathrm{ee} ; \mathrm{mp} 108-110{ }^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) 3323$, 1743, 1642, 1515, $1246 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H})$, $5.21(\mathrm{dd}, J=3.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=3.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.75(\mathrm{~m}, 8 \mathrm{H}), 7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 52.7,59.5$, $70.0,75.0,114.7,127.2,127.5,128.0,128.6,128.7,131.4,132.2,133.1,136.8,158.7,168.6,170.1$; LR-FABMS (NBA) m/z: $406\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{5}: \mathrm{C}, 71.10 ; \mathrm{H}, 7.72 ; \mathrm{N}, 3.45$. Found: C, 70.71; H, 5.75; N, 3.41 .

HPLC analysis using CHIRALCEL OD-H and n-hexane $/ i-\operatorname{PrOH}(65 / 35,0.4 \mathrm{~mL} / \mathrm{min})$, Retention time for $(2 R, 3 R)$: 26.8 min [major], for $(2 S, 3 S): 33.5 \mathrm{~min}$ [minor];

Methyl (2R,3R)-2-benzoylamino-3-(4-nitrophenyl)-3-hydroxypropionate (6j)

Prepared according to the typical procedure. $\mathbf{6 j}$: colorless solids. 100% conversion yield and 80% isolated yield (two steps). anti:syn $=>99: 1,91 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{18}-95.8\left(c 0.57, \mathrm{CHCl}_{3}\right.$) for $91 \% \mathrm{ee} ; \mathrm{mp} 145.5-146.5{ }^{\circ} \mathrm{C}$; IR (ATR) $3298,2918,1738,1638,1603,1579,1517,1489,1431,1346,1227 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.85(\mathrm{~s}$, $3 \mathrm{H}), 5.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=3.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=3.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{brd}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.77(\mathrm{~m}, 2 \mathrm{H}), 8.18-8.20(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $53.2,59.9,74.9,123.5,126.9,127.2,128.9,132.3,132.6,146.7,147.7,169.0,169.3$. HR-FABMS (NBA): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right): 345.1087$. Found 345.1079.

HPLC analysis using CHIRALPAK AD-H and n-hexane $/ \mathrm{i}-\mathrm{PrOH}(65 / 35,0.5 \mathrm{~mL} / \mathrm{min})$, Retention time for $(2 S, 3 S)$: 20.6 min [minor], for $(2 R, 3 R): 22.1$ min [major] ;

Methyl 2-benzoylamino-3-(4-carbomethoxyphenyl)-3-hydroxypropionate (6k)

Prepared according to the typical procedure. $\mathbf{6 k}$: colorless solids; 100% conversion yield and 82% isolated yield (two steps), anti:syn $=>99: 1,88 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{18}-112.7\left(c 1.00, \mathrm{CHCl}_{3}\right.$) for $88 \% \mathrm{ee} ; \mathrm{mp} 150-151.5{ }^{\circ} \mathrm{C}$; IR (ATR) 3465, 2924, 1741, 1716, 1643, 1578, 1521, 1491, 1434, $1272 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 4.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=3.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=3.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{brd}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 52.1,52.9,59.7,75.2,125.9,127.1,128.8,129.6,129.9,132.4$, 132.7, 144.3, 166.8, 168.9, 169.5. HR-FABMS (NBA): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 358.1291. Found 358.1263. HPLC analysis using CHIRALPAK AD-H and n-hexane $/ i-\operatorname{PrOH}(75 / 25,0.5 \mathrm{~mL} / \mathrm{min}$), Retention time 34.0 min [major], 37.6 min [minor] ;

Methyl (2R,3R)-3-(benzo[1,3]dioxol-5-yl)-2-benzoylamino-3-hydroxypropionate (6l)

Prepared according to the typical procedure. 6l: colorless solids; 100% conversion yield and 90% isolated yield (two steps), anti:syn $=>99: 1,89 \%$ ee; $[\alpha]_{D}{ }^{18}-94.9\left(c \quad 1.32, \mathrm{CHCl}_{3}\right)$ for 89% ee; mp 113-114.5 ${ }^{\circ} \mathrm{C}$ (recrystallized from ethyl acetate-n-hexane); IR (ATR) 3852, 3376, 2982, 1733, 1646, 1578, 1505, 1486, 1443, $1374 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 4.22(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{br}), 5.14(1 \mathrm{H}, \mathrm{dd}, J=$ $3.6 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{s}), 5.92(2 \mathrm{H}, \mathrm{s}), 6.73(2 \mathrm{H}, \mathrm{s}), 6.79(1 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.41-7.46(2 \mathrm{H}, \mathrm{m})$, 7.51-7.55 (1H, m), 7.75-7.77 (2H, m); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,59.6,62.2,75.1,101.0,106.6,108.0$, 119.4, 127.2, 128.7, 132.2, 133.0, 133.1, 147.3, 147.7, 168.7, 169.4. HR-FABMS (NBA): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{6}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right): 358.1291$. Found 358.1279.

HPLC analysis using CHIRALCEL OD-H and n-hexane $/ i-\operatorname{PrOH}(75 / 25,0.3 \mathrm{~mL} / \mathrm{min}$), Retention time for ($2 R$, $3 R)$: 38.7 min [major], $(2 S, 3 S)$: 52.1 min [minor].

Methyl (2R,3R)-2-benzoylamino-3-hydroxy-3-(naphthalen-2-yl)-propionate (6m)

Prepared according to the typical procedure. 6m: colorless solids; 100% conversion yield and 92% isolated yield (two steps), anti:syn $=>99: 1,90 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{18}-115.1\left(c 0.99, \mathrm{CHCl}_{3}\right)$ for 90% ee; mp $134-136{ }^{\circ} \mathrm{C}$ (recrystallized
from ethyl acetate-n-hexane); $\operatorname{IR}(\mathrm{KBr}) 3333,1741,1646,1523,1488,1437,1363 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{brd}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=3.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.58(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{brd}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.73-7.84(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 52.7,59.6,75.4,123.7,125.1$, $126.1,126.2,127.2,128.0,128.1,128.7,132.2,133.0,133.1,133.2,136.6,168.7,169.9$; LR-FABMS (NBA) m/z: $350\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 70.38 ; \mathrm{H}, 5.62 ; \mathrm{N}, 3.91$. Found: C, 68.28; H, 6.18; N, 4.37. HPLC analysis using CHIRALPAK AD-H and n-hexane $/ \mathrm{i}-\mathrm{PrOH}(75 / 25,0.5 \mathrm{~mL} / \mathrm{min})$, Retention time for $(2 S, 3 S)$: 27.9 min [minor], for $(2 R, 3 R): 29.5 \mathrm{~min}$ [major] ;

Methyl (2R,3S)-2-benzoylamino-3-hydroxy-3-(thiophen-2-yl)-propionate (6n)

Prepared according to the typical procedure. 6n: colorless solids; 100% conversion yield and 79% isolated yield (two steps), anti:syn $=>99: 1,95 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{18}-78.2$ (c $1.02, \mathrm{CHCl}_{3}$) for 95% ee; $\mathrm{mp} 129-130{ }^{\circ} \mathrm{C}$ (recrystallized from ethyl acetatec-n-hexane); IR (KBr) 3408, 3354, 1727, 1643, 1526, $1279 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.83(\mathrm{~s}, 3 \mathrm{H}), 4.96(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=3.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.69(\mathrm{~m}, 1 \mathrm{H}), 6.89-7.05(\mathrm{~m}, 3 \mathrm{H})$, $7.24-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, 2 \mathrm{H}, J=7.2,7.6 \mathrm{~Hz}), 7.55(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 53.0,59.4,72.2,124.3,125.3,126.7,127.2,128.7,132.3,132.9,142.4,169.1,169.4$. HR-FABMS (NBA) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}: 306.0800\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Found: 306.0785. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$: C , 59.00; H, 4.95; N, 4.59. Found: C, 58.83; H, 4.93; N, 4.41.

HPLC analysis using CHIRALCEL OD-H and n-hexane $/ \mathrm{i}-\mathrm{PrOH}(75 / 25,0.3 \mathrm{~mL} / \mathrm{min})$, Retention time for $(2 R, 3 S)$: 28.7 min [major], for $(2 S, 3 R): 36.2 \mathrm{~min}$ [minor] ;

Methyl (2R,3S)-2-benzoylamino-3-hydroxy-3-(cyclohexyl)-propionate (6o)

Prepared according to the typical procedure. 60: colorless solids; 16% isolated yield (2 steps), anti:syn $=>99: 1$, 81% ee; mp $94-97{ }^{\circ} \mathrm{C}$; IR (KBr) 3545, 3493, 3281, 2927, 2854, 1739, 1630, 1542, 1363, 1230, $1209 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{o} .97 \sim 1.30(\mathrm{~m}, 5 \mathrm{H}), 1.42 \sim 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.65 \sim 1.84(\mathrm{~m}, 4 \mathrm{H}), 2.03 \sim 2.06(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dt}, J=3.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.97(\mathrm{dd}, J=3.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44 \sim 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.51 \sim 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.82 \sim 7.84(\mathrm{~m}, 2 \mathrm{H})$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}$ 66.86; H 7.59; N 4.59. Found: C 66.68; H 7.49; N 4.55.

HPLC analysis using CHIRALCEL OD-H and n-hexane $/ i-\operatorname{PrOH}(85 / 15,0.5 \mathrm{~mL} / \mathrm{min}$), Retention time for ($2 R$, $3 R): 11.0 \mathrm{~min}$ [major], $(2 S, 3 S): 15.2 \mathrm{~min}$ [minor].

[^0]: a) Determined after N -benzoylation. b) Estimated by ${ }^{1} \mathrm{H}$ NMR spectra.
 c) Determined after N -benzoylation by HPLC analysis.

