Supporting Information for:

Alkyl Dehydrogention in a Rh(I) Complex via an Isolated Agostic Intermediate.

Adrian B. Chaplin, Amalia I. Poblador-Bahamonde, Hazel A. Sparkes, Judith A. K. Howard, Stuart A. Macgregor, and Andrew S. Weller*

Experimental	S-2
Synthesis of new complexes	S-2
NMR experiments	S-5
Selected NMR spectra	S-7
Crystallography	S-9
Computational details	S-12
Optimised geometries and energies	S-13
References	S-19

Experimental

All manipulations, unless otherwise stated, were performed under an atmosphere of argon, using standard Schlenk and glove-box techniques. Glassware was oven dried at 130°C overnight and flamed under vacuum prior to use. CH₂Cl₂, THF, MeCN and pentane were dried using a Grubbs type solvent purification system (MBraun SPS-800) and degassed by successive freeze-pump-thaw cycles.ⁱ CD₂Cl₂, C₆H₅F, 1,2-C₆H₄F₂ and 1,3-C₆H₄(CH₃)F were distilled under vacuum from CaH₂ and stored over 3 Å molecular sieves. tert-butylethene was dried over sodium, vacuum distilled and stored over 3 Å molecular sieves. [Rh(BINOR-S)(PiPr₃)][BArF₄],ⁱⁱ [Rh(PiPr₃)₂Cl]₂,ⁱⁱⁱ and Na[BArF₄]^{iv} were prepared by literature methods. All other chemicals are commercial products and were used as received. NMR spectra were recorded on a Varian Unity or a Bruker AVC 500 MHz spectrometer at room temperature, unless otherwise stated. Chemical shifts are quoted in ppm and coupling constants in Hz. ESI-MS were recorded on a Bruker MicroOTOF-Q instrument.^v Microanalyses were performed by Elemental Microanalysis Ltd.

Synthesis of new complexes

[Rh(PⁱPr₃)₃][BAr^F₄]*

To a solution of [Rh(BINOR-S)(PⁱPr₃)]BAr^F₄ (0.30 g, 0.23 mmol) in C₆H₅F (15 mL) was added a solution of PⁱPr₃ in pentane (0.86 mL, 0.56 M, 0.48 mmol). The mixture was stirred at room temperature for 10 minutes, during which time the solution became dark purple, then layered with pentane and held at 5°C to give dark red crystals, which were isolated by decantation and washed with pentane (3 × 5 mL). Yield: 0.24 g. * Analysis of these crystals by ¹H NMR spectroscopy and X-ray diffraction indicated the presence of 20% [Rh(PⁱPr₃)₂(PⁱPr₂(C₃H₅))][BAr^F₄] as a cocrystalline impurity. Crystals could also be grown in a similar manor from CH₂Cl₂.

¹**H NMR** (CD₂Cl₂, 500 MHz): δ 7.71-7.75 (m, 8H, B<u>Ar</u>^F₄), 7.57 (br, 4H, B<u>Ar</u>^F₄), 1.89 (virtual sept, 9H, J = 7, PC<u>H</u>), 1.35-1.41 (m, 54H, PCH<u>Me</u>).

¹**H NMR** (CD₂Cl₂, 500 MHz, 200 K): 7.73 (br, 8H, B<u>Ar</u>^F₄), 7.56 (br, 4H, B<u>Ar</u>^F₄), 1.68-1.86 (m, 9H, PC<u>H</u>), 1.20-1.35 (m, 54H, PCH<u>Me</u>).

¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): 162.1 (q, $J_{BC} = 50$, $B\underline{Ar}^{F_4}$), 135.3 (s, $B\underline{Ar}^{F_4}$), 129.2 (qq, $J_{FC} = 32$, $J_{BC} = 3$, $B\underline{Ar}^{F_4}$), 125.1 (q, $J_{FC} = 272$, $B\underline{Ar}^{F_4}$), 117.8 (virtual sept, J = 4, $B\underline{Ar}^{F_4}$), 27.0 (dd, J = 14, J = 7, P<u>C</u>H), 20.7 (s, PCH<u>Me</u>).

³¹P{¹H} NMR (CD₂Cl₂, 202 MHz): δ47.1 (d, ¹J_{RhP} = 173).

³¹**P**{¹**H**} **NMR** (CD₂Cl₂, 202 MHz, 200 K): δ 41 (br, fwhm = 4000 Hz). ESI-MS (CH₂Cl₂, 100°C, 4.5 kV) positive ion: *m*/z, 421.16 [M-C₉H₂₃P]⁺ (58%, calc. 421.17), 581.30 [M-H₂]⁺ (100%, calc. 583.30). **Anal.** Calcd for C₅₉H_{74,60}BF₂₄P₃Rh (1446.44 gmol⁻¹): C, 48.99; H, 5.20. Found: C, 49.19; H, 5.19.

 $[Rh(P^{i}Pr_{3})_{2}(P^{i}Pr_{2}(C_{3}H_{5}))][BAr_{4}]$

To a schlenk flask charged with [Rh(PiPr₃)₃][BArF₄]* (0.050 g, 0.035 mmol) was added tert-butylethene (0.1 mL, excess) followed by 1,2-C₆H₄F₂ (1 mL). The resulting solution was stirred at room temperature for 72 h and then filtered. The filtrate was then concentrated in vacuo and the orange residue washed with pentane (3 × 4 mL) and dried in vacuo. Yield: 0.043 g (86%). Orange crystals suitable for X-Ray diffraction were obtained from a CH₂Cl₂ solution layered with pentane at 5°C.

 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\$ ¹**H NMR** (CD₂Cl₂, 500 MHz): δ7.76-7.79 (m, 8H, BAr^F₄), 7.60 (br, 4H, BAr^F₄), 4.18-4.25 (m, 1H, H¹), 3.19-3.21 (m, 1H, H¹), 2.30-2.45 (m, 8H, PCH+PCH²),

¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): 162.1 (q, J_{BC} = 50, B<u>Ar</u>^F₄), 135.2 (s, B<u>Ar</u>^F₄),

129.3 (qq, $J_{FC} = 31$, $J_{BC} = 3$, $BArF_4$), 125.0 (q, $J_{FC} = 272$, $BArF_4$), 117.9 (virtual sept,

J = 4, BAr^F₄), 84.8 (C²), 67.0 (C¹), 30.7 (d, J = 19, PCH[']), 28.2 (t, J = 9, PCH), 23.6 (br), 22.7 (br), 21.3 (br, PCHMe), 20.9 (s, PCHMe').

³¹**P**{¹**H**} **NMR** (CD₂Cl₂, 202 MHz): δ 55.8 (dt, J_{RhP} = 181, J_{PP} = 33, 1P, P^C), 41.9-42.7 (m, 2P, P^{A,B}). ³¹P{¹H} NMR (CD₂Cl₂, 202 MHz, 250 K): δ55.8 (ddd, J_{RhP} = 188, J_{PPA} = 40, J_{PP2} = 27, 1P, P^c), 44.2 (ddd, JPPB = 224, JRhP = 93, JPPC = 40, 1P, PA), 41.3 (ddd, JPPA = 224, JRhP = 159, JPPC = 27, 1P, P^B).

ESI-MS (CH₂Cl₂, 100°C, 4.5 kV) positive ion: *m*/z, 421.17 [M-C₉H₂₁P]⁺ (21%, calc. 421.17), 581.31 [M]⁺ (100%, calc. 583.30).

Anal. Calcd for C₅₉H₇₃BF₂₄P₃Rh (1444.83 gmol⁻¹): C, 49.05; H, 5.09. Found: C, 49.00; H, 4.86.

$[Rh(C_6H_5F)(P^iPr_3)_2][BAr_4]$

A suspension of $[Rh(P^{i}Pr_{3})_{2}Cl]_{2}$ (0.20 g, 0.22 mmol) and Na $[BAr_{4}]$ (0.39 g, 0.44 mmol) in C₆H₅F (12 mL) was stirred at room temperature for 1 h and then filtered. The filtrate was layered with pentane and held at room temperature to give the product as dark red crystals, which were isolated by decantation and washed with pentane (3 × 8 mL). Yield: 0.410 g (68%).

¹**H NMR** (C₆H₅F, 500 MHz): δ 8.31 (br, 8H, B<u>Ar</u>^F₄), 7.62 (br, 4H, B<u>Ar</u>^F₄), 1.58-1.71 (m, 6H, PC<u>H</u>), 0.89-1.09 (m, 32H, PCH<u>Me</u>). Signals from η^{6} -C₆H₅F not observed. ¹³C{¹H} NMR (C₆H₅F, 126 MHz): 135.7 (s, B<u>Ar</u>^F₄), 125.4 (q, *J*_{FC} = 276, B<u>Ar</u>^F₄), 118.0 (br, B<u>Ar</u>^F₄), 27.7 (t, *J* = 11, P<u>C</u>H), 18.5 (s, PCH<u>Me</u>). Signals from η^{6} -C₆H₅F not observed. Some signals from the anion are obscured by those of the solvent. ³¹P{¹H} NMR (C₆H₅F, 202 MHz): δ 55.5 (d, *J*_{RhP} = 210). **ESI-MS** (C₆H₅F, 100°C, 4.5 kV) positive ion: *m*/*z*, 423.18 [M-C₆H₅F]⁺ (calc. 423.18). **Anal.** Calcd for C₅₆H₅₉BF₂₅P₂Rh (1382.7086 gmol⁻¹): C, 48.64; H, 4.30. Found: C, 48.47; H, 4.14.

$[Rh(P^{i}Pr_{3})_{3}H_{2}][BAr^{F_{4}}]$

A solution of $[Rh(PiPr_3)_3H_2][BArF_4]$, $[Rh(PiPr_3)_3][BArF_4]$ and $[Rh(PiPr_3)_2(PiPr_2(C_3H_5))][BArF_4]$ (0.4:1:1 ratio) in C₆H₅F was prepared by equilibration of $[Rh(PiPr_3)_3][BArF_4]^*$ (0.010 g, 0.007 mmol) at room temperature over 24 h. A small quantity of H₂ was passed over the solution until the solution remained yellow and ³¹P NMR indicated reaction completion. The yellow solution was layered with pentane at room temperature to give the product as yellow crystals. Yield: 0.035 g (36%). Crystals grown in this manor were suitable for X-Ray diffraction (redissolving this material in C₆H₅F gave similar NMR data). Cooling in 1,3-C₆H₄(CH₃)F did not resolve the hydride signal in the ¹H NMR spectrum; it broadened into the baseline at 200K. A broad resonance was also observed by ³¹P{¹H} NMR at this temperature. The sample was not stable in CD₂Cl₂.

¹**H NMR** (C₆H₅F, 500 MHz): δ 8.32 (br, 8H, B<u>Ar</u>^F₄), 7.63 (br, 4H, B<u>Ar</u>^F₄), 2.18 (br, 9H, PC<u>H</u>), 1.01 (br, 54H, PCH<u>Me</u>), -21.04 (d, *J*_{RhH} = 28, 2H, Rh<u>H</u>, *T*₁ = 0.38 ± 0.2 s)

¹³C{¹H} NMR (C₆H₅F, 126 MHz): 135.8 (s, B<u>Ar</u>^F₄), 125.5 (q, J_{FC} = 276, B<u>Ar</u>^F₄), 118.0 (virtual sept, J = 4, B<u>Ar</u>^F₄), 27.0 (br, P<u>C</u>H), 18.6 (s, PCH<u>Me</u>). Some signals from the anion are obscured by those of the solvent.

³¹**P**{¹**H**} **NMR** (C₆H₅F, 202 MHz): δ 51.2 (d, J_{RhP} = 106).

ESI-MS (C₆H₅F, 100°C, 4.5 kV) positive ion: *m*/*z*, 423.18 [M-C₉H₂₃P]⁺ (54%, calc. 423.18),

425.20 [M-C₉H₂₁P]⁺ (100%, calc. 425.20), 583.32 [M-H₂]⁺ (3%, calc. 583.32), 585.34 [M]⁺ (1%, calc. 585.34).

NMR experiments

1. Preparation of [Rh(PⁱPr₃)₃][BAr^F₄]

From [*Rh*(*BINOR-S*)(*PiPr*₃)][*BAr*^{*F*}₄]: To a solution of [Rh(BINOR-S)(PiPr₃)][BAr^{*F*}₄] (10 mg, 0.0076 mmol) in C₆H₅F (0.4 mL) was added a solution of PiPr₃ in pentane (0.020 mL, 0.74 M, 2.0 eqv.). The resulting solution rapidly became purple and the products were immediately characterised in situ by NMR spectroscopy. Formation of [Rh(PiPr₃)₃][BAr^{*F*}₄] was quantitative by ³¹P{¹H} NMR spectroscopy (see Figure S-2). An equilibrium mixture containing [Rh(PiPr₃)₃H₂][BAr^{*F*}₄], [Rh(PiPr₃)₃][BAr^{*F*}₄] and [Rh(PiPr₃)₂(PiPr₂(C₃H₅))][BAr^{*F*}₄] (0.3:1:1 ratio) is observed after 24 h at RT. *From* [*Rh*(*C*₆H₅F)(*PiPr*₃)₂][*BAr^{<i>F*}₄]:To a solution of [Rh(C₆H₅F)(PiPr₃)₂][BAr^{*F*}₄] (10 mg, 0.0072 mmol) in C₆H₆F (0.4 mL) was added a solution of PiPr₃ in pentane (0.014 mL, 0.56 M, 1.1 eqv.). The resulting solution rapidly became purple and the products were immediately characterised in situ by NMR spectroscopy. Formation of [Rh(PiPr₃)₃][BAr^{*F*}₄] was quantitative by ³¹P{¹H} NMR resulting solution rapidly became purple and the products were immediately characterised in situ by NMR spectroscopy. Formation of [Rh(PiPr₃)₃][BAr^{*F*}₄] was quantitative by ³¹P{¹H} NMR spectroscopy. Formation of [Rh(PiPr₃)₃][BAr^{*F*}₄] was quantitative by ³¹P{¹H} NMR spectroscopy. An equilibrium mixture containing [Rh(PiPr₃)₃H₂][BAr^{*F*}₄], [Rh(PiPr₃)₃][BAr^{*F*}₄] and [Rh(PiPr₃)₃][BAr^{*F*}₄] (0.4:1:0.9 ratio) is observed after 24 h at RT.

2. Dehydrogenation of [Rh(PⁱPr₃)₃][BAr^F₄]

Dehydrogenation reactions were carried out using isolated samples of $[Rh(P^{i}Pr_{3})_{3}][BArF_{4}]^{*}$. In a typical experiment, a youngs type NMR tube (ca. 2.5 mL total volume) was charged with $[Rh(P^{i}Pr_{3})_{3}][BArF_{4}]^{*}$ (10 mg) and $C_{6}H_{5}F$ (0.4 ml) and the reaction monitored in situ by NMR spectroscopy.

- a. An equilibrium mixture containing [Rh(PⁱPr₃)₃H₂][BAr^F₄], [Rh(PⁱPr₃)₃][BAr^F₄] and [Rh(PⁱPr₃)₂(PⁱPr₂(C₃H₅))][BAr^F₄] (0.4:1:1 ratio) is slowly established over 12 h at ambient temperature (t_{1/2} ~ 1.5 h, see Figure S-2). Trace quantities of [Rh(C₆H₅F)(PⁱPr₃)₂]⁺ and PⁱPr₃ can be observed during this equilibration process (< 3 % total by ³¹P NMR, only when run in C₆H₅F).
- b. Similar reactivity is observed in $1,2-C_6H_4F_2$ and $1,3-C_6H_4(CH_3)F$.
- c. Addition of excess tert-butylethene (ca. 0.1 mL) to the equilibrium mixture results in the immediate disappearance of [Rh(PⁱPr₃)₃H₂][BAr^F₄] and gradual disappearance of [Rh(PⁱPr₃)₃][BAr^F₄] to afford only [Rh(PⁱPr₃)₂(PⁱPr₂(C₃H₅))][BAr^F₄] after ca. 30 h (see Figure S-2).
- Addition of 10 equivalents of PⁱPr₃ does not halt the dehydrogenation process and a similar equilibrium distribution is found (0.3:1:1).

- e. The equilibrium distribution of [Rh(PⁱPr₃)₃H₂][BAr^F₄], [Rh(PⁱPr₃)₃][BAr^F₄] and [Rh(PⁱPr₃)₂(PⁱPr₂(C₃H₅))][BAr^F₄] is perturbed by repetitive freeze-pump-thaw cylces (ca. 20 over 2 days) from 0.4:1:1 to 0.3:1:1.2.
- f. Addition of 1 equivalent of 1,8-Bis(dimethylamino)naphthalene did not inhibit dehydrogenation.

3. Hydrogenation of $[Rh(P^iPr_3)_2(P^iPr_2(C_3H_5))][BAr^{F_4}]$

H₂ was passed over a solution of $[Rh(P^{i}Pr_{3})_{2}(P^{i}Pr_{2}(C_{3}H_{5}))][BArF_{4}]$ (0.008 g, 0.006 mmol) in C₆H₅F (0.5 mL) resulting in quantitative conversion to $[Rh(P^{i}Pr_{3})_{3}H_{2}][BArF_{4}]$ by NMR spectroscopy.

4. Reaction of $[Rh(P^{i}Pr_{3})_{3}H_{2}][BAr^{F_{4}}]$ with MeCN

To a solution of $[Rh(P^{i}Pr_{3})_{3}H_{2}][BAr^{F}_{4}]$ (0.007 mmol) in 1,3-C₆H₄(CH₃)F prepared in situ similarly to as described above was added MeCN (ca. 0.05 mL). The solution rapidly become colourless and the products were immediately characterised in situ by NMR spectroscopy. Formation of $[Rh(P^{i}Pr_{3})_{2}(NCMe)_{2}H_{2}][BAr^{F}_{4}]$ (and 1 equivalent of $P^{i}Pr_{3}$) was quantitative by ³¹P{¹H} NMR spectroscopy.^{vi}

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Figure S-1: Variable temperature ${}^{31}P{}^{1}H$ NMR spectra of [Rh(PiPr₃)₂(PiPr₂(C₃H₅))][BArF₄] (CD₂Cl₂, 202 MHz).

This journal is (c) The Royal Society of Chemistry 2008 $[\mathsf{Rh}(\mathsf{P^i}\mathsf{Pr}_3)_3][\mathsf{BAr^F}_4]$ (prepared in situ) $[Rh(P^{i}Pr_{3})_{3}][BAr^{F}_{4}]^{*}$ (isolated) + 20h Equilibrium composition + tbe Perturbed equilibrium West Hugen In Mary Madded And Market All the + 30h $[Rh(P^{i}Pr_{3})_{2}(P^{i}Pr_{2}(C_{3}H_{5}))][BAr_{4}]$ $[Rh(P^{i}Pr_{3})_{3}H_{2}][BAr^{F}_{4}]$

Supplementary Material (ESI) for Chemical Communications

Figure S-2: Selected ${}^{31}P{}^{1}H$ NMR spectra (C₆H₅F, 202 MHz).

Chemical Shift (ppm)

35

40

30

25

55

50

45

 $[Rh(P^{i}Pr_{3})_{2}(C_{6}H_{5}F)][BAr_{4}^{F}]$

20

/₩>>>+√√ -----15

Crystallography

Relevant details about the structure refinements are given in Table S-1. The structures of **4** and **5** are depicted in Figure S-3 and Figure S-4. Data were collected on a Bruker 1000 CCD diffractometer (**1**) and an Enraf Nonius Kappa CCD (**4**, **5**) diffractometer using graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) and an Oxford Cryostream low-temperature device.^{vii} Structures were solved by direct methods using SHELXS-97 (**1**),^{viii} SIR92 (**4**)^{ix} and SIR2004 (**5**),^x and refined by full-matrix least squares on *F*² using SHELXL-97.^{viii} The structure of **4** was refined with a twin scale factor of 0.064(15). All non-hydrogen atoms were refined anisotropically. H1A in **1** was located on the Fourier difference map and its position refined freely. The alkene protons in **4** were located on the Fourier difference map and the 1,2 and 1,3 bond lengths restrained. All other hydrogen atoms were placed in calculated positions using the riding model. The hydride ligands in **5** were not located. CCDC 705127 – 705129 contain the supplementary crystallographic data for this paper (see Table S-1).

Table S-1: Crystallographic data for 1, 4 and 5.			
	1	4	5
CCDC	705127	705128	705129
Formula	C ₅₉ H _{74.60} BF ₂₄ P ₃ Rh	C ₅₉ H ₇₃ BF ₂₄ P ₃ Rh	C ₅₉ H ₇₅ BF ₂₄ P ₃ Rh
Μ	1446.42	1444.80	1446.82
Crystal System	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> 2₁/n	P21	<i>P</i> 2 ₁ /n
T [K]	120(2)	150(2)	150(2)
a [Å]	13.1039(6)	19.3219(2)	19.1792(2)
b [Å]	28.6518(12)	17.7292(2)	27.4349(3)
c [Å]	17.9634(8)	29.0445(3)	26.6460(3)
β [deg]	106.228(1)	96.6182(4)	105.5035(5)
V [Å ³]	6475.6(5)	9883.2(2)	13510.4(3)
Z	4(Z' = 1)	6 (Z' = 3)	8 (Z' = 2)
Density [gcm-3]	1.484	1.456	1.423
μ (mm ⁻¹)	0.444	0.436	0.426
hetarange [deg]	$1.38 \le \theta \le 26.37^{\circ}$	$5.12 \le \theta \le 26.37$	$5.11 \le \theta \le 26.37$
Refins collected	63360	31319	44330
<i>R</i> int	0.0395	0.0396	0.0337
No. of data/restr/	13255 / 500 / 1037	31319 / 442 / 2558	26498 / 480 / 1789
param	0.0455 0.4070		0.0504.0.4400
$R_1, WR_2 [I > 2\sigma(I)]$	0.0455, 0.1070	0.0506, 0.0882	0.0591, 0.1480
GoF	1.071	1.043	1.024
Largest diff. pk	0.964, -0.897	0.671, -0.385	2.015, -1.194

and hole [eÅ⁻³]

Figure S-3: Complex 4; ellipsoids are depicted at the 50% probability level. Independent molecules in the asymmetric unit (Z'=3, see Figure 2 in the main text for the other independent molecule) - the anions and most H atoms are omitted for clarity. Key bond lengths [Å] and angles [°]: Rh2-P11, 2.303(2); Rh2-P12, 2.397(2); Rh2-P13, 2.344(2); P11-Rh2-P12, 154.56(5); P11-Rh2-P13, 99.12(6); P12-Rh2-P13, 106.07(6); Rh2-C101, 2.193(5); Rh2-C102, 2.242(5); Rh2-P11-C101, 63.5(2); C101-C102, 1.389(7); C101-C103, 1.496(8); Rh3-P21, 2.303(2);Rh3-P22, 2.392(2); Rh3-P23, 2.347(2); P21-Rh3-P22, 154.19(6); P21-Rh3-P23, 99.53(6); P22-Rh3-P23, 105.95(6); Rh3-C201, 2.201(5); Rh3-C202, 2.239(5); Rh3-P21-C201, 63.8(2); C201-C202, 1.405(7); C201-C203, 1.505(8).

Figure S-4: Complex 5; ellipsoids are depicted at the 50% probability level. Independent molecules in

the asymmetric unit (Z'=2) - the anion and H atoms are omitted for clarity; the minor disordered component in one of the independent molecules is shown with dashed bonds. Key bond lengths [Å] and angles [°]: Rh1-P1, 2.3612(12); Rh1-P2, 2.3564(12); Rh1-P3, 2.4508(14); P1-Rh1-P2, 141.95(5); P1-Rh1-P3, 108.38(4); P2-Rh1-P3, 109.67(4), Rh2-P11, 2.3557(10); Rh2-P12, 2.3444(10); Rh2-P13, 2.4184(12); P12-Rh2-P12, 144.95(4); P11-Rh2-P13, 106.39(4); P12-Rh2-P13, 108.66(4).

Along with **1** some of the dehydrogenation product (**4**) had co-crystallised (20% occupancy; C3b-C1b-C2b), however, the presence of **4** did not distort the orientation or location of the rest of the molecule, see Figure S-5.

Figure S-5: Crystal structure of **1** (C1a-C2a-C3a), showing the presence of around 20% of the dehydrogentaiton product **4** (C1b-C2b-C4b) which had co-crystallised with **1**. Ellipsoids are depicted at the 50% probability level. All of the hydrogens, apart from H1a, and the anion are omitted for clarity.

The structure of **5** exhibits a significantly disordered phosphine ligand. This disorder was treated by modelling the appropriate phosphine substituents over two sites and restraining their geometry. In the absence of locating the hydride ligands, we note the lack of any significant agostic interactions (all Rh-C_{iPr} distances > 3.36 Å) and acute Rh-P-C_{iPr} angles (all > 105°) in this structure as seen in **1** [Rh1-C1a = 2.494(12) Å; Rh1-P1-C1a = 73.8(4)°]. The presence of relatively large Fourier peaks (6 peaks > 1.0 eÅ⁻³) near the two metal centers in this structure is attributed to Fourier truncation errors.

Rotational disorder of the CF₃ groups on the anions was present in all of the structures. The relevant fluorine atoms, or in some cases the entire CF₃, were modelled over two or more sites and the

geometries restrained where necessary.

Graphical representations of the structures were made with ORTEP3^{xi} or XP.^{viii}

Computational details

Calculations were carried out using Gaussian 03, Revision C.02^{xii} and employed the BP86 functional.^{xiii} Rh and P were described using the Stuttgart RECPs and the associated basis sets^{xiv} and a polarisation function was added for P ($\zeta = 0.387$).^{xv} 6-31G^{**} basis sets were used for C and H atoms.^{xvi} All stationary points were characterized via analytical frequency calculations, which furnished the zero-point energy corrections that are included in the figures quoted in the text. IRC calculations showed the local minima to which transition states connected, as reported in the text.^{xvii}

Optimised geometries and energies

 Interconversion between 1' isomers and C-H activation processes of 1'. 			
1'γ			
BP86 Energy = -253.551779083 Enthalpy 0K= -253.388225 Enthalpy 298K= -253.374108 Free Energy 298K= -253.430844			
Rh $0.45989 - 0.06565 - 0.02026$ P $2.22069 - 1.58378 0.03292$ P $1.81275 1.69056 0.07544$ H $2.38419 - 2.38105 1.21324$ H $2.24387 - 2.63311 - 0.94285$ H $3.57444 - 1.13735 - 0.10832$ H $3.23295 1.51086 0.00591$ H $1.66096 2.69956 - 0.92999$ H $1.74290 2.51111 1.24899$ P $-1.50766 1.15093 - 0.08766$ H $-1.85671 2.13605 - 1.06700$ H $-2.02245 1.79132 1.08721$ C $-2.62444 - 0.34693 - 0.38583$ C $-1.68222 - 1.52534 - 0.03001$ H $-0.74217 - 1.51620 - 0.68200$ H $-2.11419 - 2.50823 - 0.29222$ C $-3.95079 - 0.35623 0.37916$ H $-4.58742 0.49666 0.09316$ H $-4.51180 - 1.27960 0.15148$ H $-3.79233 - 0.31916 1.47048$ H $-2.81105 - 0.35204 - 1.47494$ H $-1.43831 - 1.55945 1.04815$			
ΤΣ 1'γ-6'γ			
BP86 Energy = -253.529217650 Enthalpy 0K= -253.369854			

Enthalpy 0K= -253.369854 Enthalpy 298K= -253.356167 Free Energy 298K= -253.411113 Frequency= -727.0274cm-1

Rh	-0.38981	0.04791	-0.03374
Ρ	-1.95934	1.76166	0.02529
Ρ	-2.01224	-1.66766	0.15386
Η	-2.57791	2.06597	1.28200
Η	-1.54273	3.07956	-0.34295
Η	-3.13883	1.66825	-0.78079
Η	-3.41060	-1.41498	-0.02784
Η	-1.88376	-2.77914	-0.73638
Η	-2.10356	-2.39633	1.38595
Ρ	1.53706	-1.25420	-0.16968
Η	1.87100	-2.15476	-1.23045
Η	2.02912	-1.98644	0.95977
С	2.55484	0.32251	-0.34751
С	1.39767	1.30658	-0.03554
Η	0.25661	0.86191	-1.20297
Η	1.47128	2.26473	-0.57545
С	3.80867	0.46853	0.51779
Η	4.57299	-0.27861	0.24730
Η	4.25233	1.46846	0.37167
Η	3.57740	0.35673	1.59078
Η	2.81587	0.38235	-1.41992

ΤS 1'β-6'β

BP86 Energy = -253.518736806 Enthalpy 0K= -253.360324 Enthalpy 298K= -253.345986 Free Energy 298K= -253.402730 Frequency= -468.3463cm-1 Rh -0.31764 -0.01554 -0.15037 2.01408 -0.01128 P -1.39601 Ρ -2.28446 -1.31095 0.12419 Η -2.70290 -2.01918 -1.04599 Η -2.26736 -2.40356 1.04837 -3.54672 -0.74691 0.50017 Н Η -1.98612 2.55173 -1.20033 -2.51382 2.15400 0.87312 Η Η -0.64618 3.16177 0.39494 Ρ 1.36786 -1.57138 0.02093 1.91982 0.16906 0.09083 С 2.09221 -2.25766 -1.00074 Η Η 1.71453 -2.27244 1.21515 С 2.89296 0.62765 -0.99919 0.19370 -1.98716 Η 2.67207 Η 3.91849 0.33010 -0.71341 C 2.17558 0.78653 1.45884 Η 2.08550 1.88485 1.40609 Η 1.49404 0.41919 2.24155 0.56017 1.77015 3.21444 Η 0.64005 0.94124 -0.94922 Η Η 2.88436 1.72677 -1.09660 6'β BP86 Energy = -253.533809141Enthalpy 0K= -253.374490 Enthalpy 298K= -253.359879 Free Energy 298K= -253.416219 0.33391 -0.07117 0.00467 Rh 2.56087 -0.96394 0.07505 Ρ н 0.38388 -0.01232 -1.51283 3.71608 -0.20068 -0.29812 3.06269 -1.45537 1.32626 Η Η 2.84133 -2.12607 -0.71201 Η -1.28025 -1.70650 -0.23109 Ρ н -1.75131 -2.65638 0.72836 -1.75339 -2.19090 -1.48361 -1.83139 0.00074 0.07443 Η С С -2.19205 0.32439 1.52345 Н -1.49828 -0.12437 2.26154 -3.20344 -0.04976 1.77633 -2.65139 0.72034 -0.98411 Η С Н -3.72850 0.50078 -0.86069 -2.53185 1.81354 -0.88305 Η Н -2.36274 0.44344 -2.01065 Η -2.19834 1.41645 1.68379 2.19984 -0.08461 Ρ 0.80140 1.92773 2.65933 -0.83863 Η Η -0.18800 3.09246 -0.60793 Η 1.07697 2.87861 1.14831

TS $1'\beta-1'an$

BP86 Energy = -253.542230280 Enthalpy 0K= -253.378857 Enthalpy 298K= -253.365205 Free Energy 298K= -253.421259

R Р Р Н Н Н Н Н Р Н Н С С Н Н С Н Н Н Н	0.50291 2.04129 2.02348 2.45150 1.65803 3.33550 3.37001 1.79465 2.27505 2.27505 -1.38787 -1.866701 -2.35313 -3.19730 -2.60644 -3.62041 -3.13182 -2.49524 -3.55078 -3.97087 -1.52787	0.05136 1.79810 -1.54129 2.38275 2.99567 1.62457 -1.22487 -2.65632 -2.23346 -1.21123 -1.98784 -1.97787 0.41318 0.60986 0.47800 1.62825 0.61913 0.48952 1.63890 -0.09357 1.19412	-0.02809 0.00864 0.03036 -1.23403 0.696633 0.59771 0.40615 0.89894 -1.19982 -0.00713 1.09674 -1.10291 0.01059 -1.26316 -2.18405 -1.27436 1.32376 2.21394 1.35111 1.38824 -0.01298
Н	-3.97087	-0.09357	1.38824
Н	-1.52787	1.19412	-0.01298
Η	-4.03604	-0.10579	-1.28248

Frequency= -46.2322cm-1

1'an

BP86 Energy = -253.547862259 Enthalpy 0K= -253.383659 Enthalpy 298K= -253.369075 Free Energy 298K= -253.428348

Rh	-0.69581	-0.18692	-0.20599
Ρ	-2.79305	-1.19819	-0.04026
Ρ	-1.42928	1.76333	0.46869
Η	-3.62022	-1.30835	-1.20578
Η	-2.79485	-2.57498	0.36188
Η	-3.77957	-0.71159	0.87644
Η	-2.64046	1.81120	1.23279
Η	-0.58859	2.56694	1.30555
Η	-1.74559	2.72092	-0.55199
Ρ	1.46744	0.63604	-0.37391
Η	1.86055	1.71960	0.48121
Η	1.79906	1.23661	-1.63526
С	2.87116	-0.60382	-0.10191
С	4.22696	0.04839	-0.42513
Η	4.28103	0.41843	-1.46178
Η	5.02806	-0.70019	-0.29616
С	2.79482	-1.16466	1.33050
Η	1.82085	-1.63482	1.54745
Η	3.57744	-1.92964	1.46723
Η	2.96963	-0.37453	2.08100
Η	2.66700	-1.41274	-0.82955
Η	4.44301	0.88735	0.25825
2.	H-transfe	er: Pathwa	ay 1.

TS 6' β -7'trans

BP86 Energy = -253.506166272 Enthalpy 0K= -253.350564 Enthalpy 298K= -253.337000 Free Energy 298K= -253.390940 Frequency= -482.6061cm-1

Rh 0.25474 -0.06843 0.03527 P 0.94491 2.13134 -0.20881

P 2.36972 - H 0.12441 H 1.11845 H 2.19870 H 3.49092 - H 2.96284 - H 2.96284 - H 2.49638 - P -1.43594 - H -1.95578 - H -2.04283 - C -1.92163 C -1.39476 H 0.43861 - H -1.45993 - C -2.81404 H -3.87055 H -2.58518 H -2.71646 H -1.47548 H 0.41486 7'trans	1.09402 -0.00850 3.01261 -0.98084 2.94739 0.95514 2.38051 -0.84951 0.35543 -0.50600 1.60405 1.18721 2.25145 -0.83705 1.61660 -0.37296 2.64418 0.48219 1.87927 -1.63380 0.04280 0.20234 0.23971 1.53584 0.10251 1.66886 0.55990 2.28166 1.01249 -0.53110 0.82290 -0.26689 2.05185 -0.23967 0.92507 -1.62437 1.24572 1.96713 0.00942 -1.57985
BP86 Energy =	-253.510506493
Enthalpy 0K=	-253.352773
Enthalpy 298K	= -253.339256
Free Energy 2	98K= -253.393194
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.05575 $0.114381.97262$ $-0.080791.35402$ $-0.255943.05640$ $-0.621082.60518$ $1.090652.05070$ $-0.928630.71844$ $-0.763112.07828$ $0.832842.40361$ $-1.216711.52536$ $0.104212.16811$ $1.239112.19111$ $-1.014320.24728$ $0.029500.93212$ $1.180960.22768$ $1.685760.47924$ $2.174220.89281$ $-1.130950.89612$ $-0.920671.94082$ $-1.252770.36334$ $-2.080732.02899$ $1.171670.04328$ -1.53269
TS 7'trans-7'	cis
BP86 Energy =	-253.495298096
Enthalpy 0K=	-253.339300
Enthalpy 298K	= -253.326018
Free Energy 2	98K= -253.378280
Frequency= -1	63.9905cm-1
Rh -0.27297 -	0.14487 0.02122
P -2.42599 -	1.02220 -0.02670
P 1.63567	0.13971 1.33442

Rh	-0.27297	-0.14487	0.02122
Ρ	-2.42599	-1.02220	-0.02670
Ρ	1.63567	0.13971	1.33442
Η	-3.24388	-1.03455	1.14531
Η	-2.57649	-2.38551	-0.42725
Η	-3.34260	-0.40961	-0.93795
Η	2.09350	-0.71488	2.38427

H C C C	2.41587 1.94625 1.26909 2.74428	1.32328 -0.52324 -1.74652 0.23232	1.49853 -0.33373 -0.56986 -1.37078
н	3.80400	-0.0/63/	-1.31208
Η	2.37803	-0.00257	-2.38340
Η	2.70831	1.32435	-1.23121
Η	1.15983	-2.50929	0.20524
Η	1.24199	-2.12284	-1.59866
Η	-0.50392	-1.15460	1.25547
Η	-0.53376	-0.05764	-1.55385
Ρ	-0.92174	2.10095	-0.20810
Η	-2.12041	2.37190	-0.93998
Н	-1.20522	2.87404	0.96395
Η	-0.06815	3.04126	-0.87143

7'cis

BP86 Energy = -253.525255650 Enthalpy 0K= -253.367068 Enthalpy 298K= -253.353302 Free Energy 298K= -253.407252

Rh	0.36079	-0.16961	0.33784
Ρ	2.55700	-0.54528	-0.22128
Ρ	-1.21389	-1.35043	-1.09611
Η	2.82577	-1.59642	-1.15074
Η	3.43991	-0.91627	0.83540
Н	3.32668	0.50626	-0.81461
Н	-1.59425	-2.69831	-0.81100
Η	-2.01933	-1.06817	-2.24657
С	-1.94172	-0.29022	0.22370
С	-1.56139	-0.56862	1.54507
С	-2.79622	0.89941	-0.14920
Η	-3.85071	0.56782	-0.17870
Η	-2.72673	1.69923	0.60658
Η	-2.56402	1.31276	-1.14408
Η	-1.37056	-1.58255	1.90283
Η	-1.80985	0.16503	2.32086
Η	0.64313	-1.55878	1.03358
Η	0.90390	0.37406	1.70113
Ρ	0.33895	2.14204	-0.37248
Η	1.61185	2.79496	-0.41906
Η	-0.14445	2.58962	-1.64716
Η	-0.34173	3.10519	0.43945

Alternative trans-cis Isomerisation.

TS 7'trans-7'cis (2)

BP86 Energy = -253.501466110 Enthalpy 0K= -253.345239 Enthalpy 298K= -253.332110 Free Energy 298K= -253.384172 Frequency= -128.9859cm-1

Rh	0.28439	-0.00823	-0.06169
Ρ	2.14894	-1.40343	0.01580
Ρ	1.02815	2.19194	0.30458
Н	2.33675	-2.17637	1.20287
Η	2.28116	-2.43977	-0.95913
Η	3.45152	-0.82425	-0.09083
Η	2.31554	2.37158	0.90058

Η	1.18694	3.07126	-0.81276
Η	0.28456	3.06532	1.15975
Ρ	-1.68355	0.26925	-1.25114
Η	-2.11087	-0.53527	-2.35413
Η	-2.55099	1.40153	-1.28668
С	-1.84008	-0.58791	0.33872
С	-1.05365	-1.78201	0.29931
Η	1.03764	0.06107	-1.49663
Η	-1.00647	-2.40056	-0.60374
С	-2.66252	-0.10565	1.50725
Η	-3.68553	-0.51697	1.42743
Η	-2.22684	-0.45880	2.45589
Η	-2.74274	0.99183	1.54586
Η	-0.90641	-2.32412	1.24125
Η	0.47272	0.07090	1.53605

7'cis (2)

BP86 Energy = -253.526697527
Enthalpy 0K= -253.368574
Enthalpy 298K= -253.354686
Free Energy 298K= -253.409042

0.36445	0.43390	0.01082
2.61663	-0.14923	0.13050
-1.35341	1.98207	-0.15466
3.05135	-1.34732	0.78829
3.31952	-0.30151	-1.10418
3.47502	0.78811	0.77736
-0.94764	3.34472	-0.05870
-2.14059	2.05989	-1.34769
-2.40649	1.97998	0.81525
-0.46598	-1.47574	-1.25330
0.18866	-2.74535	-1.35915
-1.61315	-1.70752	-2.07694
-1.15261	-1.38061	0.46092
-0.23993	-1.40847	1.50492
1.02948	1.50833	-0.91073
0.71660	-1.93200	1.43546
-2.62779	-1.12299	0.66800
-3.14739	-2.09754	0.71497
-2.81513	-0.60159	1.62111
-3.09598	-0.55544	-0.15350
-0.58098	-1.17178	2.51915
0.72997	1.36927	1.21114
H-transfe	er: Pathwa	ay 2.
	0.36445 2.61663 -1.35341 3.05135 3.31952 3.47502 -0.94764 -2.14059 -0.46598 0.18866 -1.61315 -1.15261 -0.23993 1.02948 0.71660 -2.62779 -3.14739 -2.81513 -3.09598 -0.58098 0.72997 H-transfe	0.36445 0.43390 2.61663 -0.14923 -1.35341 1.98207 3.05135 -1.34732 3.31952 -0.30151 3.47502 0.78811 -0.94764 3.34472 -2.14059 2.05989 -2.40649 1.97998 -0.46598 -1.47574 0.18866 -2.74535 -1.61315 -1.70752 -1.15261 -1.38061 -0.23993 -1.40847 1.02948 1.50833 0.71660 -1.93200 -2.62779 -1.12299 -3.14739 -2.09754 -2.81513 -0.60159 -3.09598 -0.55544 -0.58098 -1.17178 0.72997 1.36927 H-transfer: Pathwa

TS $6'\beta-6'\beta(PH_3)$

BP86 Energy = -253.515538632 Enthalpy 0K= -253.356575 Enthalpy 298K= -253.342667 Free Energy 298K= -253.397391 Frequency= -110.9702cm-1

Rh	0.44433	0.08328	0.15048
Ρ	2.64242	-0.61430	-0.11534
Ρ	-0.78115	-1.91048	-0.23614
Η	2.88977	-1.41308	-1.27655
Η	3.27800	-1.43696	0.87005
Η	3.67631	0.35920	-0.27982
Η	-1.09479	-2.86518	0.77335
Η	-1.11047	-2.54657	-1.46920
С	-1.72681	-0.38177	-0.01239
С	-2.35741	-0.18742	1.36630
С	-2.54184	0.14658	-1.18675

Η	-3.52152	-0.36536	-1.23094
Η	-2.75636	1.22322	-1.06387
Η	-2.04244	0.00684	-2.15908
Η	-3.32093	-0.73070	1.41949
Η	-2.57269	0.87979	1.54576
Η	-1.72163	-0.54465	2.19334
Η	1.34393	0.80276	1.19496
Ρ	-0.04118	2.29569	-0.14747
Η	0.98310	3.28039	0.00813
Η	-0.50730	2.65164	-1.45385
Η	-1.06286	2.92326	0.63782

$6'\beta(PH_3)$

BP86 Energy = -253.523882887 Enthalpy 0K= -253.365192 Enthalpy 298K= -253.351121 Free Energy 298K= -253.405995

Rh	-0.31501	-0.09520	-0.23221
Ρ	-2.55149	-0.85323	0.07518
Ρ	1.33506	-0.65662	1.49670
Η	-2.99157	-1.24174	1.38155
Η	-3.00197	-2.00985	-0.63950
Η	-3.64714	0.00717	-0.25772
Η	1.97595	-1.88154	1.88643
Η	2.07404	0.29492	2.26542
С	1.80416	-0.29820	-0.25603
С	1.45032	-1.45047	-1.15189
С	2.85263	0.70233	-0.67392
Η	3.86249	0.25317	-0.61992
Η	2.68857	1.02805	-1.71609
Η	2.85822	1.59291	-0.02496
Η	1.78385	-2.44338	-0.79992
Η	1.73734	-1.28570	-2.20046
Η	0.28216	-1.64547	-1.18442
Η	-0.74295	0.42455	-1.64594
Ρ	-0.60097	2.11843	0.14378
Η	-1.83706	2.70204	-0.27315
Η	-0.55733	2.59367	1.49415
Η	0.30913	3.04430	-0.45971

TS $6'\beta(PH_3) - 7'$ cis

BP86 Energy = -253.514092714 Enthalpy 0K= -253.358174 Enthalpy 298K= -253.344292 Free Energy 298K= -253.399388 Frequency= -654.4997cm-1

Rh	-0.31812	-0.15534	-0.27459
Ρ	-2.55334	-0.72602	0.11804
Ρ	1.33360	-0.77976	1.46438
Η	-2.85866	-1.44343	1.31776
Η	-3.22209	-1.56705	-0.82333
Η	-3.54824	0.29972	0.22010
Η	1.95676	-2.03578	1.77430
Η	2.08288	0.10216	2.30480
С	1.86844	-0.33152	-0.25094
С	1.41307	-1.30409	-1.20769
С	2.80702	0.79830	-0.60216
Η	3.85288	0.44438	-0.54456
Η	2.62890	1.15105	-1.63231
Η	2.71365	1.65434	0.08519
Η	1.45566	-2.37387	-0.96253
Η	1.57934	-1.08934	-2.27062

H H P H H	- - - -	0 0 0 1 0		20 77 52 79 26 27	1 1 0 8 1 6	2 0 2 1 9 0	0 9 9 5 8	_	1 2 2 3	• • • •	5 3 1 7 6 0	634576	8 0 6 2 5 8	507601	2 1 5 7 1 8	-	1 0 0 1 0		0 6 2 0 5 5	6 8 1 0 2 3	0 5 7 4 5 4	6 7 8 0 4 3	2 5 2 7 0 4	
4.	н	-	tı	ra	n	s	fe	r	:		P	a	t	h	wa	ıy	-	3	•					
TS	6	'	β.	- 6	,	β	(P	н	2)														
BP8 Ent Ent Fre	36 :h :h	a a	Eı lp lp Eı	ne py py	er er	g 0 2 g	У К= 98 У	= K 2	- = 9	- 2 8	2 5 - K	5 3 2 =	3 5	3 3 -	51 58 .3 25	-7 35 34 53	333	8 6 5 3	8 5 9	6 7 9	7 5	0 7	7	
R P P H H H H H C C C H H H H H H H P H H H		0212331112232223020100		6275210809970169531215	9809504649234494175906	6773568514853850388142	6243273971552215005132		0012002100001000112232		1750506901869750412709	8499879606996720191920	8625944724932040742153	5071166138876777231140	0146090794971057272510		0000110101110221110001		1043003804017013071581	3448644021566368680925	6534217469295739630482	6973037053725219892020	3225274242958894514314	
6'f	3 (P	H ₂)																				
BP8 Ent Ent Fre	36 :h :h	a .a	Eı ly ly Eı	ne py py ne	er er	9 0 2 9	У К= 98 У	= K 2	- = 9	- 2 8	2 5 - K	5 3 2 =	3 5	3 -	52 60 .3 25	20)8 34 53	5 8 6	8 3 4	7 4 0	1 7 2	3 8	9 3	6	
R Р Р Н Н Н Н Н С С С Н Н Н Н Н Н Р Н		02123311122322230201		362956446644399046837	28379176814647849909	66175956078870374041	62154156418164855868		00011020011111211022		28892021101078017616	01426912678550866363	75871596956106681184	95247519165028645787	93521766999297329407		00101012010010110200		10272354120007224205	89749567688225555669	10032421899971362995	84482639941509989995	25289031411585946444	

H 0.12595	2.99273 0.87092
H -0.71151	2.98654 -1.10917
TS 6' β (PH ₂)-	-7'cis (2)
BP86 Energy	= -253.505336805
Enthalpy 0K	= -253.349095
Enthalpy 29	8K= -253.335650
Free Energy	298K= -253.388723
Frequency=	-755.4400cm-1
Rh 0.33942 P 2.60148 P -1.45437 H 3.04328 H 3.32690 H 3.44749 H -1.84901 H -2.46876 C -1.89755 C -1.40341 C -2.72162 H -3.78780 H -2.46474 H -2.63467 H -1.34581 H -1.70602 H 0.54110 H 0.06687 P 0.51243 H 1.82801 H -0.11840 H 0.09021	$\begin{array}{ccccc} -0.22994 & 0.17015 \\ -0.59272 & -0.05135 \\ -1.26637 & -1.07207 \\ -1.53821 & -1.02979 \\ -1.08408 & 1.07759 \\ 0.50840 & -0.40178 \\ -2.59320 & -0.71599 \\ -0.93947 & -2.03770 \\ -0.17267 & 0.33665 \\ -0.45624 & 1.66368 \\ 1.06872 & 0.07266 \\ 0.82473 & 0.23840 \\ 1.88658 & 0.76747 \\ 1.43382 & -0.96364 \\ -1.48800 & 2.02309 \\ 0.26220 & 2.43905 \\ -1.74753 & 0.55721 \\ -0.07982 & 1.79245 \\ 2.11522 & -0.36372 \\ 2.62921 & -0.59826 \\ 2.68586 & -1.51814 \\ 3.10606 & 0.58251 \\ \end{array}$

5. Final Product Formation from 7'cis.

TS cis-7'- 4' $(\eta^2 - H_2)$

BP86 Energy = -253.510224310 Enthalpy 0K= -253.355258 Enthalpy 298K= -253.341434 Free Energy 298K= -253.395763 Frequency= -720.1921cm-1

Rh P	0.31843 2.42477	-0.13486 -0.68104	0.40554-0.37765
Ρ	-1.17219	-1.58756	-0.74910
Η	2.51382	-1.57155	-1.49137
Η	3.30755	-1.34369	0.52903
Η	3.30409	0.35296	-0.83488
Η	-1.70321	-2.77565	-0.15488
Η	-1.76373	-1.63260	-2.05320
С	-1.93814	-0.14126	0.06323
С	-1.70608	-0.04388	1.45333
С	-2.65779	0.91834	-0.73578
Η	-3.72708	0.64165	-0.79077
Η	-2.60433	1.90198	-0.23967
Η	-2.28990	1.00933	-1.77012
Η	-1.66441	-0.92815	2.09395
Η	-1.96798	0.89253	1.96015
Η	0.68297	-1.03583	1.72858
Η	0.91003	0.03877	1.91888
Ρ	0.52473	2.11636	-0.35428

1.63940

Н 1.83967 2.68047 -0.41436 C 2.34616 0.91639 1.49287 1.50270 3.45099 0.97015 1.96351 1.93979 0.07076 2.57894 -1.63636 -0.08529 3.14390 0.43646 Н н -0.08529 Η Η 2.03334 0.29519 2.34669 Н Η 1.69955 0.75983 -1.99026 4' $(\eta^2 - H_1)$ 1.53083 2.21944 -0.87321 Η Η -0.75037 -0.51331 -2.28776 BP86 Energy = -253.519434587Enthalpy 0K= -253.363236 Η -1.31969 -0.15750 -2.66488 P -1.39316 1.88395 0.16943 Enthalpy 298K= -253.348895 H -2.57925 1.85887 0.97342 Free Energy 298K= -253.403900 H -0.68493 2.90966 0.87320 H -1.88955 2.67791 -0.91572 Rh -0.23884 -0.05836 -0.44600 -1.49672 -1.72282 0.65939 P 4' Ρ 1.81295 -1.12523 -0.32126 -1.06264 -2.20027 1.93962 Η BP86 Energy = -252.339734907 Enthalpy 0K= -252.198560 -1.70246 -2.99810 0.04077 Н Enthalpy 0K= -252.198560 Enthalpy 298K= -252.185004 Free Energy 298K= -252.239780 -2.85943 -1.45437 1.01311 Η Н 2.80216 -1.24405 -1.35101 2.25970 -2.03174 0.68580 Η 1.72034 0.55676 0.35678 Rh -0.23508 -0.05435 -0.16329 P -1.98952 -1.47459 0.33043 P 1.61975 -1.42657 -0.23698 H -1.72092 -2.67189 1.06415 H -2.67711 -2.05164 -0.78689 H -3.12973 -1.02142 1.07066 H 2.29711 -1.88344 -1.41250 H 2.24961 -2.16925 0.80678 C 1.95954 0.34939 0.03325 C 1.45958 1.14686 -1.01537 C 2.54574 0.87820 1.31694 H 3.64942 0.85363 1.24848 С С 1.36488 1.44513 -0.71349 С 2.01726 0.94966 1.78120 3.09179 1.18902 1.88484 1.45039 1.85275 2.06238 Η Η 1.77976 0.14904 2.49918 Н 1.77408 1.31694 -1.72227 Η 1.15396 2.49067 -0.45338 -1.15308 -0.58061 -2.00136 Н Η -0.70145 0.06658 -2.23257 Η -1.67808 1.63990 0.19602 Ρ Н -2.88485 1.34562 0.91091 Н 1.24848 -1.15706 2.65694 1.05835 -2.23027 2.48081 -0.82328 3.64942 0.85363 Η Η 2.24244 1.92382 1.48753 Η Н 2.25410 0.27733 2.19329 TS H2 loss Η 1.40619 0.79185 -2.05267 BP86 Energy = -253.515529336 Enthalpy 0K= -253.362103 Enthalpy 298K= -253.347044 Н 1.49029 2.23701 -0.89664 P -1.48099 1.86979 0.05924 H -2.77748 1.85251 0.66912 H -0.91575 2.95628 0.79981 H -1.81733 2.57474 -1.14247 Free Energy 298K= -253.403268 Frequency= -230.1714cm-1 н2 Rh -0.23608 -0.06275 -0.30422 P -1.88856 -1.45777 0.56460 BP86 Energy = -1.1764650908 Enthalpy 0K= -1.166537 Enthalpy 298K= -1.163232 Free Energy 298K= -1.178044 BP86 Energy = -1.17646509080Ρ 1.62346 -1.41595 -0.15415 н -1.50231 -2.54161 1.41518 Η -2.71945 -2.19848 -0.33926 -2.92603 -0.91383 1.39059 Η 2.47695 -1.87404 -1.21042 Η H 0.00000 0.00000 0.37519 H 0.00000 0.00000 -0.37519 Н 2.06829 -2.16692 0.97467 0.35786 0.16969 1.12661 -0.96970 С 1.89131 C 1.53682

References

- A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics **1996**, *15*, 1518.
- ii S. K. Brayshaw, J. C. Green, G. Kociok-Köhn, E. L. Sceats, A. S. Weller, Angew. Chem. Int. Ed. 2006, 45, 452.
- iii P. Binger, J. Haas, G. Glaser, R. Goddard, C. Krüger, Chem. Ber. 1994, 127, 1927.
- iv W. E. Buschmann, J. S. Miller, K. Bowman-James, C. N. Miller, Inorg. Synth. 2002, 33, 83.

- A.T. Lubben, J. S. McIndoe, A. S. Weller, *Organometallics* **2008**, 27, 3303.
- M. J. Ingleson, S. K. Brayshaw, M. F. Mahon, G. D. Ruggiero, A. S. Weller, *Inorg. Chem.* 2005, 44, 3162.
- vii J. Cosier, A. M. Glazer, *J. Appl. Cryst.* **1986**, *19*, 105
- viii G. M. Sheldrick, *Acta Cryst.* **2008**, *A64*, 112.
- A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Cryst., 1994, 27, 435.
- M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, *J. Appl. Cryst.* 2005, 38, 381.
- ^{xi} L. J. Farrugia, *J. Appl. Cryst.* **1997**, 30, 565.
- Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- (a) H. L. Schmider and A. D. Becke, *J. Chem. Phys.* **1998**, *108*, 9624; (b) J. P. Perdew, *Phys. Rev. B* **1986**, 33, 8822.
- xiv D. Andrae, U. Häusserman, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta* **1990**, 77, 123.
- A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.* **1993**, *208*, 237.
- (a) W. J. Hehre, R. Ditchfield and J. A. Pople, *J. Chem. Phys.* **1972**, *56*, 2257; (b) P. Hariharan and J. A. Pople, *Theor. Chim. Acta* **1973**, *28*, 213.
- (a) C. Gonzalez and H. B. Schlegel, *J. Phys. Chem.* **1990**, *94*, 5523; (b) C. Gonzalez and H. B. Schlegel, *J. Chem. Phys.* **1989**, *90*, 2154.