A cycloaddition route to novel triazole boronic esters

Jianhui Huang,^a Simon J. F. Macdonald,^b Joseph P. A. Harrity*a

^aDepartment of Chemistry, University of Sheffield, Sheffield, S3 7HF, U. K. and ^bGlaxoSmithKline Research and Development, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, U.K.

j.harrity@sheffield.ac.uk

Supporting Information

Table of contents:

1.	General Information	<i>S2</i>
2.	Synthesis of TMS-triazole boronic esters	<i>S3</i>
3.	Functional Group Transformations of TMS- Triazole Boronic Esters	<i>S7</i>
4.	Other Triazole Boronic Ester and Derivatives	S14
5.	¹ H and ¹³ C NMR Spectra	S17
6.	Regiochemistry Assignment	<i>S3</i> 8

1. General Information

All reactions were conducted in oven or flame-dried glassware under an inert atmosphere of dry nitrogen. Flash chromatography was performed on silica gel (BDH Silica Gel 60 43-60, or Fluorochem Davisil silica gel 43-60). The solvent system used was a gradient of petroleum ether or cyclohexane/ ethyl acetate (90-10), increasing in polarity to ethyl acetate. Thin layer chromatography (TLC) was performed on aluminium backed plates pre-coated with silica (0.2 mm, Merck DC-alufolien Kieselgel 60 F254), which were developed using standard visualizing agents: Ultraviolet light or potassium permanganate. ¹H/¹³C NMR spectra were recorded on Bruker AC-250 or Av1-250 instruments or AMX-400 or AV1-400 instruments. ¹H: Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CHCl₃: δ 7.27 ppm). Data are reported as follows: chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, br=broad, m=multiplet), integration, coupling constants (J) in Hz, and assignment. ¹³C NMR spectra were with complete proton decoupling. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl₃: δ 77.0 ppm). Infrared (FTIR) spectra were recorded on a Perkin Elmer Paragon 100 FTIR spectrophotometer, v_{max} in cm⁻¹. Bands are characterized as broad (br), strong (s), medium (m) and weak (w). Samples were recorded as thin films using sodium chloride plates, as a DCM solution or as a KBr disc. Low resolution mass spectra were recorded on Micromass Autospec, operating in E.I., C.I. or FAB mode; or a Perkin-Elmer Turbomass Bench top GC-MS operating in either E.I. or C.I mode. High-resolution mass spectra (HRMS) recorded for accurate mass analysis, were performed on either a MicroMass LCT operating in Electrospray mode (TOF ES+) or a MicroMass Prospec operating in either FAB (FAB+), EI (EI+) or CI (CI+) mode. Melting points were performed on recryptalised solids and recorded on a Gallenkamp melting point apparatus and are uncorrected. All solvents and reagents were purified using standard, laboratory techniques according to methods published in "Purification of Laboratory Chemicals" by Perrin, Armarego, and Perrin (Pergamon Press, 1966).

2. Synthesis of TMS-triazole boronic esters

A mixture of benzyl azide (500 mg, 3.80 mmol) and alkyne **1** (1.01 g, 4.50 mmol) in 1,2dichlorobenzene (15 mL) was heated at 110 °C for 24 h under N₂. The crude product was purified by flash column chromatography on cyclohexane/ethyl acetate (4:1) to give triazole **2** (1.14 g, 84%) as a colourless solid. Mp 64-66 °C. ¹H NMR (250 MHz, CDCl₃) δ ; 7.29-7.26 (5 H, m), 5.82 (2 H, s), 1.29 (12 H, s), 0.37 (9 H, s). ¹³C NMR (62.9 MHz, CDCl₃) δ ; 156.6, 136.9, 128.4, 127.7 (x 2C), 84.7, 53.2, 24.8, -0.8. FTIR 2978 (m), 1503 (m), 1374 (s), 1348 (s), 1321 (s), 1142 (s), 1080 (s), 844 (s), 724 (m). HRMS (EI+) calculated for C₁₈H₂₈BN₃O₂Si: 357.2044. Found: 357.2059.

A mixture of 1-(azidomethyl)-4-*tert*-butylbenzene (76 mg, 0.40 mmol) and alkyne **1** (108 mg, 0.48 mmol) in 1,2-dichlorobenzene (1.6 mL) was heated at 110 °C for 24 h under N₂. The crude product was purified by flash column chromatography on cyclohexane/ethyl acetate (4:1) to give triazole **3** (114 mg, 69%) as a colourless solid. Mp 77-79 °C. ¹H NMR (400 MHz, CDCl₃) δ ; 7.32 (2 H, d, *J* = 8.0 Hz), 7.24 (2 H, d, *J* = 8.0 Hz), 5.77 (2 H, s), 1.29 (12 H, s), 0.36 (9 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 156.3, 150.8, 133.8, 127.6, 125.3, 84.6, 52.9, 34.5, 31.3, 24.7, -0.8. FTIR 2962 (m), 1510 (s), 1374 (s), 1344

(m), 1321 (s), 1246 (m), 1140 (s), 1070 (s), 841 (s), 727 (m). HRMS (ESI+) calculated for $C_{22}H_{36}BN_3O_2Si$: 414.2743. Found: 414.2744.

A mixture of 1-(azidomethyl)-3-methylbenzene (147 mg, 1.0 mmol) and alkyne **1** (288 mg, 1.2 mmol) in 1,2-dichlorobenzene (4.0 mL) was heated at 110 °C for 24 h under N₂. The crude product was purified by flash column chromatography on cyclohexane/ethyl acetate (4:1) to give triazole **4** (271 mg, 73%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 7.20-7.15 (2 H, m), 7.09 (1 H, d, *J* = 8.0 Hz), 7.06 (1 H, d, *J* = 8.0 Hz), 5.76 (2 H, s), 2.30 (3 H, s), 1.29 (12 H, s), 0.36 (9 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 156.4, 138.0, 136.6, 128.6, 128.5, 128.2, 124.9, 84.5, 53.1, 24.7, 21.3, -0.9. FTIR 2978 (w), 1508 (m), 1474 (s), 1323 (s), 1141 (s), 1070 (s), 840 (s), 747 (m). HRMS (ESI+) calculated for C₁₉H₃₀BN₃O₂Si: 372.2273. Found: 372.2273.

A mixture of 1-(4-azidophenyl)ethanone (48 mg, 0.30 mmol) and alkyne **1** (81 mg, 0.36 mmol) in 1,2-dichlorobenzene (1.2 mL) was heated at 110 °C for 48 h under N₂. The crude product was purified by flash column chromatography on DCM/ethyl acetate (4:1) to give triazole **5** (75 mg, 65%) as a colourless solid. Mp: 91-93 °C. ¹H NMR (400 MHz, CDCl₃) δ ; 8.08 (2 H, d, *J* = 8.0 Hz), 7.66 (2 H, d, *J* = 8.0 Hz), 2.68 (3 H, s), 1.27 (12 H, s), 0.43 (9 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 197.1, 164.7, 141.6, 137.2, 128.8,

125.5, 85.0, 26.8, 24.8, -0.7. FTIR 2924 (m), 1686 (s), 1605 (s), 1343 (s), 1262 (s), 1140 (s), 1051 (m), 843 (s), 762 (m). HRMS (ESI+) calculated for $C_{19}H_{29}BN_3O_3Si$: 386.2066. Found: 386.2069.

A mixture of octyl azide (115 mg, 1.0 mmol) and alkyne **1** (288 mg, 1.2 mmol) in 1,2dichlorobenzene (4 mL) was heated at 110 °C for 48 h under N₂. The crude product was purified by flash column chromatography on cyclohexane/ethyl acetate (4:1) to give triaozle **6** (258 mg, 68%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 4.59 (2 H, t, J = 8.0 Hz), 1.86-1.81 (2 H, m), 1.36 (12 H, s), 1.31-1.23 (10 H, m), 0.88 (3 H, t, J = 8.0Hz), 0.37 (9 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 156.1, 84.5, 50.0, 31.8, 31.5, 29.1 (x 2C), 26.6, 24.9, 22.6, 14.1, -0.8. FTIR 2928 (m), 2852 (m), 1508 (s), 1458 (m), 1374 (m), 1319 (s), 1142 (m), 843 (s). HRMS (EI+) calculated for C₁₉H₃₉BN₃O₂Si: 380.2905. Found: 380.2907.

A mixture of ethyl azidoacetate (39 mg, 0.3 mmol) and alkyne **1** (81 mg, 0.36 mmol) in 1,2-dichlorobenzene (1.2 mL) was heated at 110 °C for 48 h under N₂. The crude product was purified by flash column chromatography on cyclohexane/ethyl acetate (2:1) to give triazole **7** (79 mg, 75%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 5.39 (2 H, s), 4.20 (2 H, q, *J* = 7.0 Hz), 1.31 (12 H, s), 1.26 (3 H, t, *J* = 7.0 Hz), 0.37 (9 H, s). ¹³C

NMR (100.6 MHz, CDCl₃) δ ; 167.3, 156.4, 84.7, 61.7, 51.1, 24.7, 14.1, -0.9. FTIR 2987(w), 1753 (s), 1464 (m), 1265 (s), 1212 (s), 1023 (m), 744 (m), 700 (s). HRMS (ESI+) calculated for C₁₅H₂₉BN₃O₄Si: 354.2015. Found: 354.2018.

3. Functional Group Transformations of TMS- Triazole Boronic Esters

A mixture of triazole boronic ester **2** (860 mg, 2.4 mmol), Pd₂dba₃ (100 mg, 5 mol%), ^tBu₃PH.BF₄ (80 mg, 12 mol%), K₃PO₄ (1020 mg, 4.8 mmol), iodobenzene (1.00 g, 4.8 mmol) in MeCN (20 mL) was heated at 50 °C under N₂ for 16 h, the reaction mixture was then filtered through celite and concentrated *in vacuo*. The crude product was purified by flash column chromatography on petroleum/ethyl acetate (10:1) to give triazole **8** (715 mg, 97 %) as a clear colourless solid. Mp 40-42 °C. ¹H NMR (250 MHz, CDCl₃) δ ; 7.46-7.39 (3 H, m), 7.28-7.23 (3 H, m), 7.11-7.07 (2 H, m), 7.03-6.99 (2 H, m), 5.38 (2 H, s), 0.14 (9 H, s). ¹³C NMR (62.9 MHz, CDCl₃) δ ; 146.2, 143.6, 135.7, 130.1, 129.4, 128.6, 128.5, 128.0, 127.6 (x 2C), 51.4, -0.9. FTIR 3072 (m), 2958 (s), 2895 (m), 1451 (s), 1412 (s), 1250 (s), 842 (s), 760 (s). HRMS (EI+) calculated for C₁₈H₂₁N₃Si: 307.1505. Found: 307.1510.

A mixture of triazole boronic ester **2** (43 mg, 0.12 mmol), Pd_2dba_3 (5 mg, 5 mol%), ^tBu₃PH.BF₄ (4 mg, 12 mol%), K_3PO_4 (51 mg, 0.24 mmol), 1-iodo-4-methoxybenzene (56 mg, 0.24 mmol) in MeCN (1 mL) was heated at 50 °C under N₂ for 16 h, the reaction mixture was then filtered through celite and concentrated *in vacuo*. The crude product was purified by flash column chromatography on petroleum/ethyl acetate (10:1) to give triazole **9** (29 mg, 72 %) as a clear colourless solid. Mp 71-72 °C. ¹H NMR (400 MHz, CDCl₃) δ ; 7.28-7.26 (3 H, m), 7.05-7.03 (2 H, m), 7.01 (2 H, d, *J* = 8.0 Hz), 6.92 (2 H, d, *J* = 8.0 Hz), 5.37 (2 H, s), 3.87 (3 H, s), 0.15 (9 H, s).¹³C NMR (100.6 MHz, CDCl₃) δ ; 160.4, 144.9, 143.4, 135.8, 131.3, 128.6, 128.0, 127.6, 120.4, 113.9, 55.3, 51.3, -0.8. FTIR 2965 (m), 1614 (s), 1481 (s), 1291 (s), 1250 (s), 1178 (s), 1034 (m), 843 (s). HRMS (EI+) calculated for C₁₉H₂₃N₃OSi : 337.1610. Found: 337.1613.

10

A mixture of triazole boronic ester **2** (71 mg, 0.2 mmol), Pd₂dba₃ (9 mg, 5 mol%), ^tBu₃PH.BF₄ (7 mg, 12 mol%), K₃PO₄ (85 mg, 0.4 mmol), 1-iodo-4-nitrobenzene (100 mg, 0.4 mmol) in MeCN (2 mL) was heated at 50 °C under N₂ for 16 h, the reaction mixture was then filtered through celite and concentrated *in vacuo*. The crude product was purified by flash column chromatography on petroleum/ethyl acetate (10:1) to give triazole **10** (46 mg, 66 %) as a clear colourless solid. Mp 100-102 °C. ¹H NMR (400 MHz, CDCl₃) δ ; 8.23 (2 H, d, *J* = 9.0 Hz), 7.26-7.22 (5 H, m), 6.98-6.93 (2 H, m), 5.41 (2 H, s), 0.14 (9 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 148.4, 145.9, 141.2, 135.7, 135.1, 131.1, 128.9, 128.4, 127.4, 123.6, 51.9, -0.8. FTIR 2928 (m), 1721 (m), 1524 (s), 1341 (s), 1249 (m), 842 (s). HRMS (EI+) calculated for C₁₈H₂₀N₄O₂Si: 352.1356. Found: 352.1369.

A mixture of triazole boronic ester **2** (36 mg, 0.1 mmol) and copper(II) chloride (27 mg, 0.2 mmol) in MeCN (2 mL) was heated at 50 °C under N₂ for 16 h the reaction was then filtered through celite and concentrated *in vacuo*. The product was purified by flash column chromatography on petroleum/ethyl acetate (10:1) to give triazole **11** (20 mg, 75%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 7.39-7.30 (5 H, s), 5.53 (2 H, s), 0.36 (9 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 142.7, 134.2, 131.1, 128.9, 128.5, 127.9, 51.4, -1.6. FTIR 2958 (m), 1727 (w), 1467 (s), 1456 (s), 1250 (s), 840 (s), 721 (s). HRMS (ESI+) calculated for C₁₂H₁₇³⁵ClN₃Si: 266.0875. Found: 266.0876.

12

A mixture of triazole boronic ester **2** (71 mg, 0.2 mmol) and copper(II) bromide (89 mg, 0.4 mmol) in MeCN (4 mL) was heated at 50 °C under N₂ for 16 h the reaction was then filtered through celite and concentrated *in vacuo*. The product was purified by flash column chromatography on petroleum/ethyl acetate (10:1) to give triazole **12** (51 mg, 82%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 7.37-7.29 (5 H, s), 5.57 (2 H, s), 0.38 (9 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 145.7, 134.3, 128.8, 128.4, 127.8, 117.1, 52.1, -1.5. FTIR 2957 (m), 1453 (s), 1250 (s), 1203 (s), 1026 (m), 837 (s), 720 (s). HRMS (ESI+) calculated for C₁₂H₁₇N₃Si⁷⁹Br: 310.0375. Found: 310.0372.

13

A mixture of triazole **8** (123 mg, 0.4 mmol) and NBS (356 mg, 2.0 mmol) in MeCN (10 mL) was heated at reflux under N₂ for 16 h the reaction was then filtered through celite and concentrated *in vacuo*. The product was purified by flash column chromatography on petroleum ether/ethyl acetate (5:1) to give triazole **13** (125 mg, 99%) as a yellow solid. Mp 90-92 °C. ¹H NMR (250 MHz, CDCl₃) δ ; 7.49-7.46 (3 H, m), 7.29-7.23 (5 H, m), 7.07-7.03 (2 H, m), 5.49 (2 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 136.2, 134.7, 130.1, 129.7, 129.0, 128.9, 128.5, 127.5, 125.4, 120.7, 53.1. FTIR 3068 (m) 3026 (m), 1496 (s), 1450 (s), 1265 (s), 988 (m), 767 (s), 694 (s). HRMS (EI+) calculated for C₁₅H₁₂N₃⁷⁹Br: 313.0215. Found: 313.0208.

A mixture of triazole **8** (200 mg, 0.65 mmol) and NIS (731 mg, 3.25 mmol) in MeCN (15 mL) was heated at reflux under N₂ for 4 days the reaction was then filtered through celite and concentrated *in vacuo*. The product was purified by flash column chromatography on petroleum ether/ethyl acetate (5:1) to give triazole **14** (219 mg, 94%) as a yellow solid. Mp 68-70 °C. ¹H NMR (400 MHz, CDCl₃) δ ; 7.53-7.45 (3 H, m), 7.30-7.26 (3 H, m), 7.23-7.20 (2 H, m), 7.05-7.03 (2 H, m), 5.51 (2 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 140.4, 134.8, 130.1, 129.9, 129.0, 128.8, 128.4, 127.5, 126.2, 90.4, 53.0. FTIR 3067 (m) 3037 (m), 1476 (s), 1450 (s), 1245 (s), 987 (s), 844 (s), 731 (s), 694 (s). HRMS (EI+) calculated for C₁₅H₁₂N₃I: 313.0215. Found: 313.0208.

A mixture of triazole **14** (54 mg, 0.15 mmol), Pd₂dba₃ (7 mg, 5 mol%), ¹Bu₃PH.BF₄ (5 mg, 12 mol%), K₃PO₄ (64 mg, 0.30 mmol), 4-chlorobenzene boronic acid pinacol ester (64 mg, 0.30 mmol) in MeCN (2 mL) was heated at 50 °C under N₂ for 48 h, the reaction mixture was then filtered through celite and concentrated *in vacuo*. The crude product was purified by flash column chromatography on petroleum/ethyl acetate (10:1) to give triazole **15** (39 mg, 75 %) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 7.52-7.42 (5 H, m), 7.28-7.22 (5 H, m), 7.14 (2 H, dd, *J* = 7.0, 1.5 Hz), 7.04-7.02 (2 H, m), 5.42 (2 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 143.6, 135.2, 134.0, 133.6, 131.6, 130.0, 129.9, 129.4, 129.3, 128.7 (x 2C), 128.2, 127.9, 127.5, 52.1. FTIR 2924 (m) 1455 (s), 1243 (s), 1026 (m), 983 (s), 794 (m), 763 (s). HRMS (ESI+) calculated for C₂₁H₁₆³⁵ClN₃: 346.1106.

A mixture of triazole **14** (54 mg, 0.15 mmol), Pd_2dba_3 (7 mg, 5 mol%), ${}^{t}Bu_3PH.BF_4$ (5 mg, 12 mol%), K_3PO_4 (64 mg, 0.30 mmol), 3-methoxylphenyl boronic acid pinacol ester (74 mg, 0.30 mmol) in MeCN (2 mL) was heated at 50 °C under N₂ for 48 h, the reaction mixture was then filtered through celite and concentrated *in vacuo*. The crude product

was purified by flash column chromatography on petroleum/ethyl acetate (10:1) to give triazole **16** (33 mg, 65 %) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 7.51-7.41 (3 H, m), 7.27-7.25 (3 H, m), 7.19-7.13 (4 H, m), 7.11-7.08 (1 H, m), 7.04-7.02 (2 H, m), 6.81-6.78 (1 H, m), 5.42 (2 H, s), 3.68 (3 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 175.8, 159.6, 144.4, 135.3, 134.0, 132.2, 130.2, 129.7, 129.5, 129.2, 128.7, 128.2, 127.5, 119.0, 114.3, 111.4, 55.1, 52.1. FTIR 1604 (m), 1584 (m), 1455 (m), 1290 (m), 1238 (s), 1042 (m), 854 (m), 701 (s). HRMS (ESI+) calculated for C₂₂H₂₀N₃O: 342.1601. Found: 342.1598.

17

A mixture of triazole **14** (54 mg, 0.15 mmol), Pd_2dba_3 (7 mg, 5 mol%), ¹Bu₃PH.BF₄ (5 mg, 12 mol%), K₃PO₄ (64 mg, 0.30 mmol), 3-nitrophenyl boronic acid pinacol ester (75 mg, 0.30 mmol) in MeCN (2 mL) was heated at 50 °C under N₂ for 16 h, the reaction mixture was then filtered through celite and concentrated *in vacuo*. The crude product was purified by flash column chromatography on petroleum/ethyl acetate (10:1) to give triazole **17** (37 mg, 70 %) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 8.40 (1 H, app t, *J* = 2.0 Hz), 8.08 (1 H, dd, *J* = 8.0, 2.0 Hz), 7.92 (1 H, dd, *J* = 6.5, 1.5 Hz), 7.57-7.53 (1 H, m), 7.50-7.42 (3 H, m), 7.29-7.26 (3 H, m), 7.18-7.15 (2 H, m), 7.05-7.03 (2 H, m), 5.44 (2 H, s, CH₂). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 148.4, 142.4, 134.9 (x 2C), 132.7, 132.2, 130.3, 129.9, 129.6, 129.4, 128.8, 128.4, 127.6, 126.9, 122.3, 121.3, 52.2. FTIR 1616 (m), 1526 (s), 1344 (s), 1122 (m), 1112 (m), 851 (m), 693 (s). HRMS (EI+) calculated for C₂₁H₁₇N₄O₂: 357.1346. Found: 357.1344.

18

A mixture of triazole **14** (54 mg, 0.15 mmol), Pd₂dba₃ (7 mg, 5 mol%), ¹Bu₃PH.BF₄ (5 mg, 12 mol%), K₃PO₄ (64 mg, 0.30 mmol), 4-dimethylaminopnenyl boronic acid pinacol ester (74 mg, 0.30 mmol) in MeCN (2 mL) was heated at 50 °C under N₂ for 16 h, the reaction mixture was then filtered through celite and concentrated *in vacuo*. The crude product was purified by flash column chromatography on petroleum/ethyl acetate (10:1) to give triazole **18** (36 mg, 68 %) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 7.47-7.39 (5 H, m, Ar), 7.28-7.25 (3 H, m), 7.92 (1 H, d, *J* = 7.0 Hz), 7.17 (2 H, d, *J* = 8.0 Hz), 7.05-7.03 (2 H, m), 6.63 (2 H, d, *J* = 8.0 Hz), 5.44 (2 H, s), 2.93 (6 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 149.9, 145.0, 135.6, 132.4, 130.3, 129.4, 129.0, 128.6, 128.4, 128.0, 127.6, 127.5, 119.0, 112.2, 52.0, 40.4. FTIR 2922 (m), 2851 (m), 1615 (s), 1518 (s), 1356 (m), 1198 (s), 944 (m), 823 (s). HRMS (ESI+) calculated for C₂₃H₂₃N₄: 355.1917. Found: 355.1914.

4. Other Triazole Boronic Ester and Derivatives

A mixture of benzyl azide (40 mg, 0.3 mmol) and alkyne **19** (82 mg, 0.36 mmol) in 1,2dichlorobenzene (1.2 mL) was heated at 150 °C for 16 h under N₂. The crude product was purified by flash column chromatography on petroleum ether/ethyl acetate (2:1) to give triazole **22a** (27 mg, 25%) as a colourless oil and triazole **22b** (41 mg, 38%) as a colourless oil. **22a**: ¹H NMR (400 MHz, CDCl₃) δ ; 7.95 (2 H, dd, *J* = 8.0, 1.5 Hz), 7.41-7.34 (3 H, m), 7.31-7.25 (3 H, m), 7.20 (2 H, dd, *J* = 8.0, 1.5Hz), 5.85 (2 H, s), 1.21 (12 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 156.0, 136.7, 131.5, 128.5 (x 2C), 128.2, 128.0, 127.9, 127.2, 84.7, 54.0, 24.6. FTIR 2978 (m), 1496 (s), 1455 (s), 1371 (s), 1325 (s), 1221 (m), 1137 (s), 1080 (s), 852 (s), 729 (s). HRMS (ESI+) calculated for C₂₁H₂₅BN₃O₂: 362.2034. Found: 362.2035. **22b**: ¹H NMR (400 MHz, CDCl₃) δ ; 7.49-7.39 (3 H, m), 7.28-7.25 (5 H, m), 7.05-7.02 (2 H, m), 5.53 (2 H, s), 1.29 (12 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 145.4, 135.6, 129.9, 129.3, 128.7, 128.2, 128.0, 127.2, 127.1, 83.9, 51.4, 24.7. FTIR 2977 (m), 2926 (m), 1496 (m), 1456 (s), 1372 (s), 1332 (s), 1211 (m), 1142 (s), 853 (m), 698 (s). HRMS (ESI+) calculated for C₂₁H₂₅BN₃O₂: 362.2034. Found: 362.2036.

S14

A mixture of benzyl azide (40 mg, 0.30 mmol) and alkyne **20** (59 mg, 0.30 mmol) in 1,2dichlorobenzene (1.2 mL) was heated at 150 °C for 24 h under N₂ to give an inseperable 40:60 mixture of **23a** and **23b** (98 mg, 99%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ; 7.32-7.22 (5 H, m), 5.76 (0.8 H, s), 5.66 (1.2 H, s), 4.69 (0.8 H, s), 4.57 (1.2 H, s), 3.42 (1.2 H, s), 3.25 (1.8 H, s), 1.35 (7.2 H, s), 1.28 (4.8 H, s). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 153.5, 140.7, 136.2, 134.9, 128.7, 128.4, 128.1, 127.9, 127.6, 127.5, 84.6, 84.1, 65.1, 61.7, 58.1, 57.6, 53.6, 51.9, 24.7, 24.6. FTIR 2981 (m), 1561 (m), 1456 (s), 1372 (s), 1333 (s), 1140 (s), 1083 (s), 908 (s), 726 (m). HRMS (ESI+) calculated for C₁₇H₂₅BN₃O₃: 330.1984. Found: 330.1981.

A mixture of benzyl azide (40 mg, 0.30 mmol) and alkyne **21** (58 mg, 0.30 mmol) in 1,2dichlorobenzene (1.2 mL) was heated at 150 °C for 24 h under N₂ to give an inseperable 40:60 mixture of **24a** and **24b** (96 mg, 98%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ; 7.31-7.20 (3 H, m), 7.13-7.11 (2 H, m), 5.71 (0.8 H, s), 5.51 (1.2 H, s), 2.82 (0.8 H, t, J = 7.0 Hz), 2.70 (1.2 H, t, J = 7.0 Hz), 1.68 (1.2 H, m), 1.54 (0.8 H, m), 1.32 (7.2 H, s), 1.23 (4.8 H, s), 0.91 (1.2 H, t, J = 7.0 Hz), 0.81 (1.8 H, t, J = 7.0 Hz). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 136.7, 135.3, 130.4, 128.7, 128.3, 128.0, 127.7, 127.5, 126.9, 84.2, 83.7, 53.5, 51.1, 27.8, 24.8, 24.7, 24.6, 23.4, 22.5, 21.5, 21.4. FTIR 1558 (m), 1454 (s), 1368 (s), 1342 (s), 1137 (s), 1085 (s), 912 (m), 730 (m). HRMS (ESI+) calculated for C₁₈H₂₆BN₃O₂: 328.2256. Found: 328.2254.

5. ¹H and ¹³C NMR Spectra

6. Regiochemistry Assignment

08/09/2008 14:48:40

Acquisition Time (sec)	1.9923	Comment	X132253 R1	6647-51 DEBPIN J Huang 1H	CDCI3 Position: 58
Date	e 21 May 2008 21:58:24		Date Stamp	21 May 2008 21:58:24	
File Name	me C:\DATA\CHEMIST\NMR\X132253\10\FID		Frequency (MHz)	400.13	
Nucleus	1H	Number of Transients	16	Origin	spect
Original Points Count	16384	Owner	root	Points Count	32768
Pulse Sequence	zg30	Receiver Gain	322.50	SW(cyclical) (Hz)	8223.68
Solvent	CHLOROFORM-d			Spectrum Offset (Hz)	2465.4834
Sweep Width (Hz)	8223.43	Temperature (degree C	27.000		1.20030202000

¹H NMR (400 MHz, CHLOROFORM-*d*) δ ppm 8.12 (1 H, d, *J*=8.5 Hz), 8.03 (1 H, s), 7.89 (1 H, d, *J*=8.8 Hz), 2.66 (2 H, s), 0.39 (6 H, s)

