Supporting Information

Insertion into dihydrogen employing the nitrogen centre of a borylnitrene

Holger F. Bettinger,^{a,b,*} Matthias Filthaus,^a and Patrik Neuhaus^a

^a Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany

^b Instiut für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany holger.bettinger@uni-tuebingen.de

I. Experimental and Computational Details

The azide **2** was synthesized as described previously.¹

Matrix experiments. Matrix experiments were carried out using standard techniques² with and Sumitomo closed-cycle helium cryostats. Matrices were produced by codeposition of a large excess of deuterium or mixtures of deuterium with neon (Messer-Griesheim, 99.9999%) and hydrogen (UCAR, ultra high purity) with neon and the azide **2** held at 0 °C by means of an ice bath on top of a cold CsI or quartz window. During the deposition the temperature of the window was maintained at 3 K. IR spectra were recorded with Bruker IFS 66/S FTIR spectrometer with a resolution of 0.5 cm⁻¹ in the range of 400 – 4000 cm⁻¹. EPR spectra were recorded with a Bruker Elexsys E500 spectrometer. The computer simulation of the EPR spectrum of **3** was performed by using the XSophe computer simulation software suite (version 1.0.4),³ developed by the Centre for Magnetic Resonance and Department of Mathematics, University of Queensland, Brisbane (Australia) and Bruker Analytik GmbH, Rheinstetten (Germany). The simulation was performed by using a matrix diagonalization method for S = 1 and setting the parameters $v_0 = 9.60934$ GHz, g = 2.0023, |D/hc| = 1.508 cm⁻¹ and |E/hc| = 0.003 cm⁻¹. Irradiations were carried out with a Gräntzel low pressure mercury lamp (254 nm) and an Osram HBO-500-W/2 high pressure mercury lamp in an Oriel housing with quartz optics, a dichroic mirror (420 – 680 nm), and a Schott cutoff filter (550 nm).

Computations. Geometry of **3** was optimized and vibrational frequencies were obtained using the B3LYP⁴ functional in conjunction with the $6-311+G^{**}$ basis set as included in the Gaussian 03 program.⁵

The CASSCF computation of the transition state for H–H insertion considered the lowest energy singlet state of boryl nitrene **1**, i.e., ${}^{1}A_{1}$. The active space was modified based on the 12 by 11 space (all 12 π electrons distributed over 10 π and one empty N(σ) orbital) employed in our previous investigation.⁶ Correlation of the two π lone pairs of oxygen atoms is not essential as indicated by their high occupations numbers of 1.99. In view of the reduced symmetry from $C_{2\nu}$ for **1** to C_1 for the TS of H₂ addition, these two π lone pairs of oxygen atoms were not included into the active space thus reducing it to 8 π electrons and 8 π orbitals. In addition, the σ/σ^* orbitals and the electron pair of the H–H molecule as well as the N(sp) lone pair and the vacant N(p) were included resulting in a 12 by 12 active space, (12,12)-CASSCF. In view of the large active space the 6-31G* basis set was used for the CASSCF calculations. Harmonic vibrational frequencies were computed analytically and the intrinsic reaction coordinate was computed using the default values of the GAMESS program.⁷ Energies were refined by single state multiconfiguration perturbation theory (MRMP2) single point computations with identical active spaces again using the 6-31G* basis set. The CASSCF and MRMP2 calculations were performed with GAMESS.⁷

As we have observed earlier⁶ that the multiconfiguration nature of borylnitrene **1** is handled well by coupled cluster theory with singles, double, and a perturbative estimate of triple excitations $[CCSD(T)]^8$ in conjunction with the correlation consistent triple- ζ basis set,⁹ this method has also been used for single point computations employing the (12,12)-CASSCF/6-31G* geometries. The MOLPRO¹⁰ program was employed for all CCSD(T) runs. II. Cartesian Coordinates and Energies of 2-amino-1,3,2-benzodioxaborole (3) as computed at the B3LYP/6-311+G** level of theory.

Method: Stoichior Framewor	B3LYP/6-311 metry C6H6B1 rk group C2V[0	.+G** NO2 C2(BN),SGV((С6Н6О2)]		
Full por	int group		C2V	NOn	Д	
Largest	Abelian subara	מווכ	C2V	NOp	4	
Largest	concise Abelia	an subaroup	C2	NOp	2	
1019020		Standard	orien	tation:	_	
Center	Atomic	Atomic		Coor	dinates (Angs	stroms)
Number	Number	Туре		X	Y	Z
1	6	0	0	.000000	0.697718	-2.545609
2	6	0	0	.000000	1.427217	-1.347544
3	6	0	0	.000000	0.697627	-0.175843
4	6	0	0	.000000	-0.697627	-0.175843
5	6	0	0	.000000	-1.427217	-1.347544
6	6	0	0	.000000	-0.697718	-2.545609
7	8	0	0	.000000	1.155020	1.124797
8	5	0	0	.000000	0.00000	1.916740
9	7	0	0	.000000	0.000000	3.313208
10	8	0	0	.000000	-1.155020	1.124797
11	1	0	0	.000000	2.509889	-1.335837
12	1	0	0	.000000	-2.509889	-1.335837
13	1	0	0	.000000	-1.231399	-3.488667
14	1	0	0	.000000	1.231399	-3.488667
15	1	0	0	.000000	0.849312	3.852027
16	1	0	0	.000000	-0.849312	3.852027
Rotation SCF Done	nal constants : E(RB+HF-LYP)	(GHZ): = -462.5	3.824 717243	7061 63 A	1.0263398 .U. after	0.8091962 1 cycles
	Convg = S**2 =	0.4284D-0 0.0000	8		-V/T = 2.00)39
	Item	Value	Г	'hreshold	Converged?	
Maximum	Force	0.00014	1	0.000015	YES	
RMS	Force	0.00000	3	0.00010	YES	
Maximum	Displacement	0.000029	9	0.000060	YES	
RMS	Displacement	0.00011	1	0.000040	YES	
Predicte	ed change in Er	nergy=-1.57	5223D-	09		

III. Cartesian Coordinates computed at the (12,12)-CASSCF/6-31G* level of theory.

1) Transition state for insertion of 1 into the H-H bond

THE POINT GROUP OF THE MOLECULE IS C1 THE ORDER OF THE PRINCIPAL AXIS IS 0 АТОМ ATOMIC COORDINATES (BOHR) CHARGE Х Ζ Y -4.8929550233 С -0.0153855207 -1.1307364583 6.0 C C 6.0 -2.7233727731 -2.6677917247 -0.0296916160 6.0 -0.4309610279 -1.4352116152 0.0003193867 C C 6.0 1.1864992218 -0.2510300779 0.0431946238 6.0 -2.3520453653 2.7226728029 0.0586233381 С -4.7121702055 1.4984481856 6.0 0.0276305573 0 8.0 1.9541490653 -2.4498521020 -0.0023247417 В 3.5372681295 0.0360302177 -0.3862505967 5.0 Ν 7.0 6.2309768265 -0.7881320580 -0.0471601739 0 8.0 2.2523903031 1.8668079571 0.0670194270 Η 1.0 -2.8387199976 -4.6924678589 -0.0620931566 Η 1.0 -2.1886406443 4.7441073370 0.0921438686 -6.4072397781 2.6164086984 0.0374732221 Η 1.0 Η 1.0 -6.7253317364 -2.0054738739 -0.0380410562 7.2168962849 2.8709668340 0.7263194970 Н 1.0 7.3477052021 2.7806281260 Η 1.0 -0.7009335466 FINAL MCSCF ENERGY IS -459.6247046191 AFTER 2 ITERATIONS TOTAL MRPT2, E(MP2) OTH + 1ST + 2ND ORDER ENERGY = -460.8352363370 CCSD(T) HF-SCF

-461.43954121 -459.65861510

2) Endpoint of the IRC calculation – forward side

THE POINT GROUP OF THE MOLECULE IS C1 THE ORDER OF THE PRINCIPAL AXIS IS

ATOM	ATOMIC		COORDINATES (BOHR))
	CHARGE	Х	Y	Z
С	6.0	-4.9225573744	-1.0855819808	-0.0156888326
С	6.0	-2.7834719123	-2.6641598871	-0.0329370203
С	6.0	-0.4682325330	-1.4753169244	-0.0012442806
С	6.0	-0.2366779327	1.1422515574	0.0463545344
С	6.0	-2.3077863401	2.7187461471	0.0643985866
С	6.0	-4.6905320173	1.5397468908	0.0316494260
0	8.0	1.8990989139	-2.5400958324	-0.0078026797
В	5.0	3.5092133297	-0.5085899292	0.0328106001
Ν	7.0	6.2203794328	-0.7704804210	-0.0423279493
0	8.0	2.2817454005	1.7742719517	0.0710904657
Η	1.0	-2.9372649042	-4.6861579931	-0.0691215151
Η	1.0	-2.1052587064	4.7364517942	0.1012122478
Η	1.0	-6.3636457777	2.6901593611	0.0434691719
Η	1.0	-6.7714769731	-1.9245135915	-0.0396943550
Η	1.0	7.3876127914	5.0295320281	0.1686690024
Η	1.0	8.6123918346	4.4394268912	-0.2527576779
ΓΤΝΔΤ.	MCSCF ENERCY	TS -459 6267	380176 AFTER 2 ITER	ATTONS
TOTAL	MRPT2, E(MP2)	0TH + 1ST + 2ND	ORDER ENERGY =	-460.8341691132
	CCSD(T)	HF-SCF		

0

-461.43190571 -459.65801733

3) Endpoint of the IRC calculation – reverse side

THE POINT GROUP OF THE MOLECULE IS C1 THE ORDER OF THE PRINCIPAL AXIS IS 0

ATOM	ATOMIC		COORDINATES (BOHR)	
	CHARGE	Х	Y	Z
С	6.0	-4.8794527745	-1.1627351236	-0.0254289318
С	6.0	-2.6869235383	-2.6687271462	-0.0769639839
С	6.0	-0.4077410146	-1.4124046058	-0.0309434767
С	6.0	-0.2606656397	1.2145565140	0.0621782602
С	6.0	-2.3852557904	2.7173811192	0.1135907415
С	6.0	-4.7322586173	1.4655106908	0.0674447440
0	8.0	1.9797053755	-2.3910251649	-0.0652160463
В	5.0	3.5740664738	-0.3173723663	0.0075865762
Ν	7.0	6.2074404911	-0.4638126631	0.0002318159
0	8.0	2.2210129135	1.9208857419	0.0879424761
Η	1.0	-2.7783987774	-4.6942158318	-0.1489010384
Н	1.0	-2.2498509460	4.7404385926	0.1849594217
Н	1.0	-6.4413938324	2.5621733522	0.1047190454
Η	1.0	-6.7003850746	-2.0618503197	-0.0586696746
Η	1.0	7.3245306097	1.0894214877	0.0508493930
Η	1.0	7.1458540123	-2.1308245451	-0.0596000902

FINAL MCSCF ENERGY IS-459.8517262531 AFTER2 ITERATIONSTOTAL MRPT2, E(MP2) OTH +1ST +2ND ORDER ENERGY =-461.0631834796

CCSD(T)	HF-SCF
-461.67054182	-459.87344782

IV. Experimental and Computed Vibrational Data for **3**, CatBND₂.

Table S1. Co	mputed and	Experiment	al Vibrati	onal Data	of 3 .					
	B3LYP/6-311+G**						3 at 3 K in D ₂ ^[a]			
		¹¹ B Isoto	pomer	¹⁰ B Isot	opomer	¹¹ B/ ¹⁰ B	¹¹ B	¹⁰ B	¹¹ B/ ¹⁰ B	rel. Int.
number ^[b]	sym	₀/cm ^{−1}	rel. Int.	₀/cm ^{−1}	rel. Int.		$\widetilde{\nu}$ /cm ⁻¹	$\widetilde{\nu}$ /cm ⁻¹		
42	A ₁	3204	0	3204	0	1.000				
41	B ₂	3200	1	3200	1	1.000				
40	A ₁	3187	2	3187	2	1.000				
39	B ₂	3173	0	3173	0	1.000				
38	B ₂	2757	5	2757	4	1.000	2666.6			W
37	A ₁	2627	13	2627	12	1.000	2543.8 2541.5			m
36	A ₁	1655	1	1657	4	0.999				
35	B ₂	1646	1	1647	1	1.000	1625.3 ^[e]			VW
34	A ₁	1516	49	1504	39	1.008	1506.5			S
33	A ₁	1502	100 ^[c]	1563	100 ^[d]	0.961	1481.9 1493.8 1487.2	1544.3	0.960	VS
32	B ₂	1496	0	1496	0	1.000				
31	A ₁	1382	16	1383	12	1.000	1356.9			S
30	B ₂	1302	1	1305	9	0.998	1296.4			
29	B ₂	1272	16	1298	8	0.980	1264.4	1282.2 ^[e]	0.986	m
28	A ₁	1261	40	1261	34	1.000	1236.4 1241.5			S
27	A ₁	1176	1	1177	1	0.999				
26	A ₁	1167	0	1171	0	0.996				
25	B ₂	1149	4	1156	2	0.994	1139.5			W
24	B ₂	1099	0	1103	0	0.996				
23	A ₁	1026	2	1026	2	1.000	1006.0			W
22	A ₂	973	0	973	0	1.000				
21	B ₁	934	1	934	1	1.000	918 ^[e]			VW
20	A ₁	884	6	884	5	1.000	875.0			m
19	B ₂	881	1	882	1	1.000				

18	A ₂	861	0	861	0	1.000				
17	A ₁	822	3	822	3	1.000	806.9			W
16	B ₁	752	15	752	14	1.000	744.9			m
15	A ₂	745	0	745	0	1.000				
14	B ₂	736	0	736	0	1.000				
13	B ₁	673	4	697	3	0.965	661.9	686.3	0.964	W
12	A ₁	635	0	636	0	0.999				
11	B ₂	620	0	621	0	0.999				
10	A ₂	581	0	581	0	1.000				
9	A ₁	480	0	482	0	0.995				
8	B ₂	445	0	447	0	0.995				
7	B ₁	431	1	431	1	0.999	425.0 ^[d]			vw
6	A ₂	339	0	339	0	1.000				
5	B ₁	316	2	317	2	0.997				
4	B ₁	274	14	274	13	0.999				
3	A ₂	230	0	230	0	1.000				
2	B ₂	225	0	225	0	0.998				
1	B ₁	111	1	111	1	1.000				

^[a] These signals increase during $\lambda \ge 550$ nm irradiation. ^[b] Mode numbers taken from the computed spectrum. ^[c] Absolute intensity: 663.3 km mol⁻¹. ^[d] Absolute intensity: 755.7 km mol⁻¹. ^[e] Tentative assignment.

Table S2. Comparison of the bands disappearing during
$\lambda \ge 550$ nm irradiation in solid D ₂ at 3 K with those
assigned previously to 1 isolated in solid argon at 10K.

D ₂ , $\widetilde{\nu}$ /cm ⁻¹	Ar, $\widetilde{\nu}$ /cm ^{-1 [b]}	rel. Int. ^[b]
	3080	4
	3074	1
	3068	3
	3056	1
	1597	2
1598	1594	7
	1476	5
1471	1470	44
	1283	2
1270, 1287	1267, 1285	18
1245, 1234	1230, 1241	100
	1148	3
1144	1143	15
	1129	6
	1007	8
	924	4
881	880	11
865	865	10
809	809	36
749	745	66
649		
629	628	19
468	467	9

^[a] Bands disappear during $\lambda \ge 550$ nm irradiation. ^[b] Taken from Reference 6.

V. ESR Spectrum of 1 in solid deuterium at 4 K.

References

¹ Fraenk, W.; Habereder, T.; Klapötke, T. M.; Nöth, H.; Polborn, K. J. Chem. Soc., Dalton Trans. **1999**, 4283.

² I. R. Dunkin, *Matrix Isolation Techniques: A Practical Approach*, Oxford University Press, Oxford, **1998**.

³ Griffin, M.; Muys, A.; Noble, C.; Wang, D.; Eldershaw, C.; Gates, K. E.; Burrage, K.; Hanson, G. R. *Mol. Phys. Rep.* **1999**, *26*, 6084

⁴ a) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648 ;b) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. **1994**, *98*, 11623; c) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785.

⁵ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.4, Gaussian, Inc., Pittsburgh PA, **2003.**

⁶ H. F. Bettinger, H. Bornemann, J. Am. Chem. Soc. 2006, 128, 11128.

⁷ M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, *J. Comput. Chem.* **1993**, *14*, 1347.

⁸ a) K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, *Chem. Phys. Lett.* 1989, *157*, 479; b) C. Hampel, K. Peterson, H.-J. Werner, *Chem. Phys. Lett.* 1992, *190*, 1; c) J. D. Watts, J. Gauss, R. J. Bartlett, *J. Chem. Phys.* 1993, *98*, 8718; d) P. J. Knowles, C. Hampel, H.-J. Werner, *J. Chem. Phys.* 1993, *99*, 5129.

⁹ T. H. Dunning, J.Chem.Phys. 1989, 90, 1007.

¹⁰ MOLPRO, a package of *ab initio* programs designed by H.-J. Werner and P. J. Knowles, version 2002.1, R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P. J. Knowles, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and H.-J. Werner.