Supporting Information

A Model Study for the Concise Construction of the Cortistatins Oxapentacyclic Core through Intramolecular Diels-Alder Reaction and Oxidative Dearomatization Cyclization

Lianzhu Liu^a, Yingxiang Gao^a, Chao Che^a, Na Wu^a, Zhigang Wang^a,* Chuang-chuang Li^a*

and Zhen $Yang^{a,\,b} {\boldsymbol *}$

^aLaboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China, 518055;

^bKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and the State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science Peking University, Beijing 100871

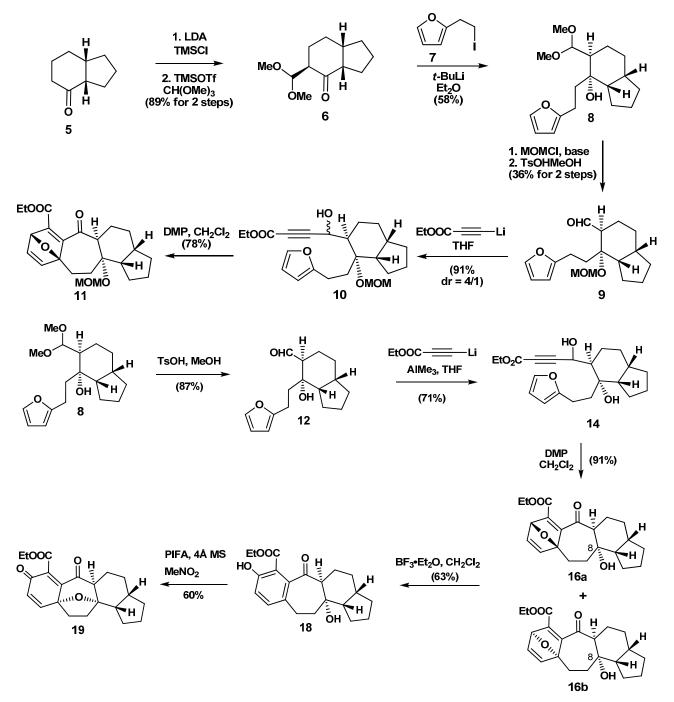
Tel: +86 10 6275 9105; fax: +86 10 6275 9105

<u>zyang@pku.edu.cn</u>

Table of Contents:

General Information	S3
Overall Synthetic Route	S4
Synthesis of Compound 6	\$5
Synthesis of Compound 8	\$5
Synthesis of Compound 8a	S6
Synthesis of Compound 9	S7
Synthesis of Compound 10	S8
Synthesis of Compound 11	S8
Synthesis of Compound 12	S9
Synthesis of Compound 14	S10
Synthesis of Compound 16a and 16b	S10
Synthesis of Compound 18	S11
Synthesis of Compound 19	S12
¹ H NMR, ¹³ C NMR and HRMS of Compound 6	S13
¹ H NMR, ¹³ C NMR and HRMS of Compound 8	S14
¹ H NMR, ¹³ C NMR and HRMS of Compound 8a	S16
¹ H NMR, ¹³ C NMR and HRMS of Compound 9	S17
¹ H NMR, ¹³ C NMR and HRMS of Compound 10	S19
¹ H NMR, ¹³ C NMR and HRMS of Compound 11	S20
¹ H NMR, ¹³ C NMR and HRMS of Compound 12	S22
¹ H NMR, ¹³ C NMR and HRMS of Compound 14	S25
¹ H NMR, ¹³ C NMR and HRMS of Compound 16a	S26
¹ H NMR, ¹³ C NMR of Compound 16b	S28
¹ H NMR, ¹³ C NMR and HRMS of Compound 18	S29
¹ H NMR, ¹³ C NMR, DEPT and HRMS of Compound 19	S30

General Information


All reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. All the chemicals were purchased commercially, and used without further purification. Anhydrous THF and diethyl ether were distilled from sodium-benzophenone, and dichloromethane was distilled from calcium hydride. Yields refer to chromatographically, unless otherwise stated.

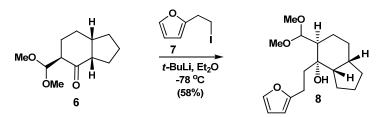
Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Tsingdao silica gel plates (60F-254) using UV light as visualizing agent and an ethanolic solution of phosphomolybdic acid and cerium sulfate, and heat as developing agents. Tsingdao silica gel (60, particle size 0.040–0.063 mm) was used for flash column chromatography.

Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. NMR spectra were recorded on either a Brüker Advance 300 (¹H: 300 MHz, ¹³C: 75.5 MHz), Brüker Advance 500 (¹H: 500 MHz, ¹³C: 125 MHz). High resolution mass spectrometric (HRMS) data were obtained using Bruker Apex IV RTMS.

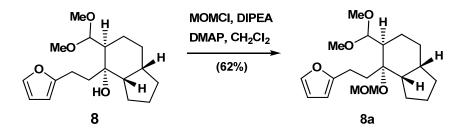
The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad.

Overall Synthetic Route:

16a : 16b = 3:1

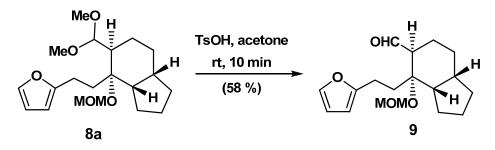

Synthesis of Compound 6:

To a solution of diisopropylamine (0.3 mL, 2.17 mmol) in THF (10 mL) was added *n*-BuLi (2.5 M, 0.9 mL, 2.17 mmol) at -78 °C in dropwise manner, and the mixture was stirred at 0 °C for 30 min. To this solution was added **5** (2.59 g, 18.8 mmol) in THF (3 mL) at -78 °C slowly, and the formed mixture was stirred at the same temperature for 30 min. followed by addition of TMSCl (3.6 mL, 28.2 mmol). The mixture was then warmed up room temperature, and the mixture was stirred at the same temperature for 2 h. Solvent was removed under vacuum, and the residue was diluted with hexane, and then filtered through a silica gel pad. The filtrate was concentrated under vacuum, and the residue was used for next step without further purification.


To a solution of the crude product made above in CH₂Cl₂ (100 mL) was added CH(OMe)₃ (2.5 mL, 22.6 mmol), and the mixture was stirred at room temperature for 10 min. To this solution was added TMSOTf (170 μ L, 0.94 mmol) in a dropwise manner at -78 °C, and the reaction mixture was stirred at this temperature for 12 h. The reaction was quenched with saturated aqueous solution of NaHCO₃ (60 mL) and extracted with Et₂O (60 mL \times 3). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by a flash column chromatography on silica gel (hexane/EtOAc = 20/1) to give acetal **6** (3.55 g) in 89%): R_f = 0.5 (hexane/EtOAc = 15/1). ¹H NMR (500 MHz, CDCl₃) δ 4.65 (d, *J* = 5.3 Hz, 1 H), 3.39 (s, 3 H), 2.67 - 2.64 (m, 2 H), 2.46 - 2.41 (m, 1H), 1.99 - 1.95 (m, 2 H), 1.89 - 1.86 (m, 1H), 1.75 - 1.70 (m, 4 H), 1.56 - 1.50 (m, 1 H), 1.32 - 1.30 (m, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 213.2, 104.6, 55.4, 55.1, 52.6, 51.5, 42.9, 32.5, 27.0, 26.9, 24.3, 23.7; HRMS (ESI) calcd for C₁₂H₂₀Na₁O₃ [M+Na]⁺: 235.1304; found: 235.1300.

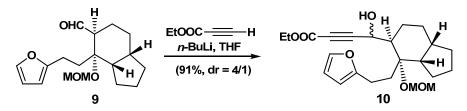
Synthesis of Compound 8:

To a solution of iodide **7** (4.48 g, 20.2 mmol) in Et₂O (100 mL) in a flame-dried flask was added *t*-BuLi (1.5 *M*, 27mL, 40.5 mmol) at -78 °C in a drop-wise manner, and the mixture was stirred at the same temperature for 30 min. To this solution was added ketone **6** (3.31 g, 15.6 mmol) in Et₂O (20 mL) at -78 °C slowly, and the mixture was stirred at the same temperature for 3 h. The reaction was quenched with saturated aqueous solution of NH₄Cl (60 mL), and the mixture was extracted with Et₂O (5 x 50 mL), and the combined organic phase was dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, the residue was purified by a flash column chromatography (hexane/EtOAc = 20/1) to give product **8** (2.78 g) in 58%: R_f = 0.5 (hexane/EtOAc = 15/1). ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, *J* = 1.7 Hz, 1H), 6.29 (dd, *J* = 2.9 Hz, 1.7 Hz, 1 H), 5.99 (d, *J* = 2.9 Hz, 1 H), 4.42 (d, *J* = 8.7 Hz, 1 H), 4.00 (s, 1 H), 3.43 (s, 3 H), 3.33 (s, 3 H), 2.91 – 2.85 (m, 1 H), 2.74 – 2.67 (m, 1 H), 2.19 - 2.14 (m, 1 H), 2.12 – 2.06 (m, 2 H), 1.90 – 1.86 (m, 1 H), 1.74 – 1.60 (m, 7 H), 1.44 – 1.38 (m, 2 H), 1.20 – 1.14 (m, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 140.7, 110.1, 107.1, 104.4, 73.6, 54.8, 51.5, 47.1, 42.3, 38.1, 33.7, 31.7, 26.5, 25.5, 23.8, 21.9, 20.7; HRMS (ESI) calcd for C₁₈H₂₈Na₁O₄ [M + Na]⁺ 331.1880; found: 331.1879.

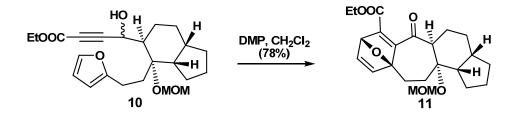

Synthesis of Compound 8a:

To a solution of alcohol **8** (2.13 g, 6.9 mmol) in CH₂Cl₂ (100 mL) in a flame-dried flask was added DIPEA (13.7 mL, 83 mmol) and DMAP (84.3 mg, 0.69 mmol), and the mixture was cooled to 0 °C. To this solution was added MOMCl (5.2 mL, 69 mmol) was added, and the mixture was first stirred at 0 °C for 10 min, and then stirred at room temperature for 4 days. The reaction was quenched with saturated aqueous NH₄Cl solution (60 mL), and the mixture was extracted with Et₂O (60 mL x 2), and the combined organic phase was dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography in silica gel (hexane/EtOAc = 60/1) to give product **8a** (1.50 g) in 62% yield: R_f = 0.6 (hexane/EtOAc = 15/1). ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, *J* = 1.8 Hz, 1 H), 6.27 (dd, *J* = 3.0 Hz, 1.9 Hz, 1 H), 5.97 (d,

J = 3.1 Hz, 1 H), 4.88 (d, J = 6.8 Hz, 1 H), 4.67 (d, J = 6.8 Hz, 1 H), 4.57 (d, J = 1.2 Hz, 1 H), 3.42 (s, 3 H), 3.41 (s, 3 H), 3.39 (s, 3 H), 2.90 - 2.83 (m, 1 H), 2.73 - 2.67 (m, 1 H), 2.26 - 2.21 (m, 1 H), 2.13 - 2.01 (m, 3 H), 1.91 - 1.85 (m, 1 H), 1.78 - 1.69 (m, 3 H), 1.63 - 1.59 (m, 3 H), 1.50 - 1.41 (m, 3 H), 1.17 - 1.08 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 140.7, 110.0, 105.4, 104.1, 90.5, 79.5, 56.0, 55.4, 54.9, 47.3, 45.0, 38.7, 33.2, 31.7, 26.6, 24.1, 22.5, 22.1, 20.5; HRMS (ESI) calcd for C₂₀H₃₂Na₁O₅ [M+Na]⁺: 375.2142; found: 375.2136.

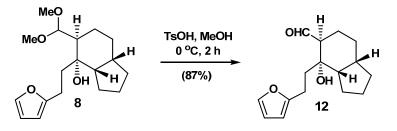

Synthesis of Compound 9:

To a solution of substrate **8a** (705 mg, 2.0 mmol) in acetone (20 mL) was added *p*-TsOH (34.4 mg, 0.20 mmol) at room temperature, and the mixture was stirred at the same temperature for 10 min. The reaction was quenched with saturated aqueous NaHCO₃ solution (15 mL), the organic solvent was removed under vacuum, and the residue was extracted with Et₂O (20 mL × 3), and the combined organic phase was dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (hexane/EtOAc = 30/1) to give product **9** (355 mg) in 58% yield: $R_f = 0.6$ (hexane/EtOAc = 15/1). ¹H NMR (500 MHz, CDCl₃) δ 10.20 (s, 1 H), 7.28 (d, *J* = 1.8 Hz, 1 H), 6.25 (dd, *J* = 2.9 Hz, 1.8 Hz, 1 H), 5.96 (d, *J* = 3.0 Hz, 1 H), 4.95 (d, *J* = 7.1 Hz, 1 H), 4.69 (d, *J* = 7.1 Hz, 1 H), 3.44 (s, 3 H), 2.71 – 2.65 (m, 1 H), 2.00 (dd, *J* = 12.4 Hz, 3.1 Hz, 1 H), 2.55 – 2.49 (m, 1 H), 2.27 – 2.20 (m, 2 H), 2.11 – 2.04 (m, 1 H), 2.01 – 1.96 (m, 2 H), 1.79 – 1.66 (m, 5 H), 1.54 – 1.51 (m, 1 H), 1.46 – 1.37 (m, 2 H), 1.15 – 1.06 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 205.3, 155.5, 140.9, 110.1, 104.6, 90.3, 81.1, 56.0, 53.6, 48.7, 38.7, 34.1, 31.6, 26.3, 23.9, 22.7, 22.1, 20.9; HRMS (ESI) calcd for C₁₈H₂₆Na₁O₄ [M+Na]⁺ 329.1723; found: 329.1721.

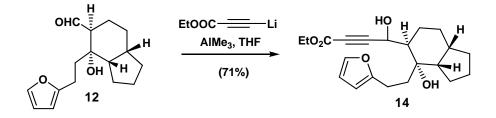

Synthesis of Compound 10:

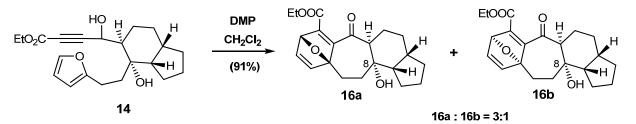
Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008

To a solution of ethyl propiolate (0.33 mL, 3.3 mmol) in THF (10 mL) in a flame-dried flask was added *n*-BuLi solution (2.5 *M*, 1.3 mL, 3.3 mmol) at -78 °C in a drop-wise manner, and the mixture was stirred at the same temperature for 30 min. To this solution was added aldehyde **9** (337 mg, 1.1 mmol) in THF (10 mL), and the reaction mixture was stirred at -78 °C for 1 h. The reaction was quenched with saturated aqueous NH₄Cl solution (20 mL), and the mixture was extracted with Et₂O (20 mL \times 3), and the combined organic phase was dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (hexane/EtOAc = 12/1) to give product **10** (404 mg) in 91% yield as two inseparable epimers (**dr** = **4/1**): R_f = 0.5 (hexane/EtOAc = 8/1); HRMS (ESI) calcd for C₂₃H₃₂Na₁O₆ [M+Na]⁺: 427.2091; found: 427.2091.


Synthesis of Compound 11:

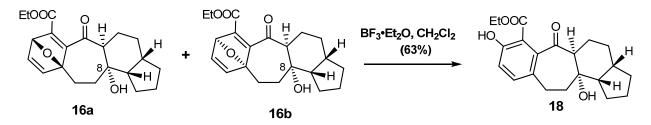
To a solution of alcohol **10** (307 mg, 0.76 mmol) in CH₂Cl₂ (8 mL) in a flame-dried flask was sequentially added NaHCO₃ (126 mg, 1.5 mmol) and DMP (466 mg, 1.1 mmol) at room temperature, and the mixture was stirred at the same temperature for 2 h. The reaction was first quenched with saturated aqueous NaHCO₃ solution (10 mL) and Na₂S₂O₃ solution (10 mL), then the aqueous phase was extracted with Et₂O (20 mL × 3), and the combined organic phase was dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (hexane/EtOAc = 10/1) to give product **11** (240 mg) in 78% yield: R_f = 0.3 (hexane/EtOAc = 8/1); ¹H NMR (500 MHz, CDCl₃) δ 7.28 (dd, J = 5.3 Hz, 1.9 Hz, 1 H), 6.79 (d, J = 5.3 Hz, 1 H), 5.61 (d, J = 1.9 Hz, 1 H), 4.84 (d, J = 6.7 Hz, 1 H), 4.63 (d, J = 6.7 Hz, 1 H), 4.17 (q, J = 7.1 Hz, 2 H), 3.41 (s, 3 H), 2.90 (dd, J = 13.3 Hz, 3.2 Hz, 1 H), 2.67 – 2.50 (m, 2 H), 2.17 – 2.07 (m, 2 H), 2.04 – 2.00 (m, 1 H), 1.91 – 1.85 (m, 2 H), 1.75 – 1.62 (m, 6 H), 1.48 – 1.45 (m, 2 H),


1.24 (t, J = 7.1 Hz, 3 H), 1.19 – 1.10 (m, 1 H); ¹³C NMR (75.5 MHz, CDCl₃) δ 204.2, 165.9, 162.3, 147.6, 146.4, 144.8, 95.6, 90.0, 83.2, 78.6, 61.0, 56.4, 56.2, 51.1, 38.3, 31.7, 29.9, 25.6, 25.4, 24.2, 24.0, 20.3, 14.0; HRMS (ESI) calcd for C₂₃H₃₁O₆ [M+H]⁺: 403.2115; found: 403.2110.

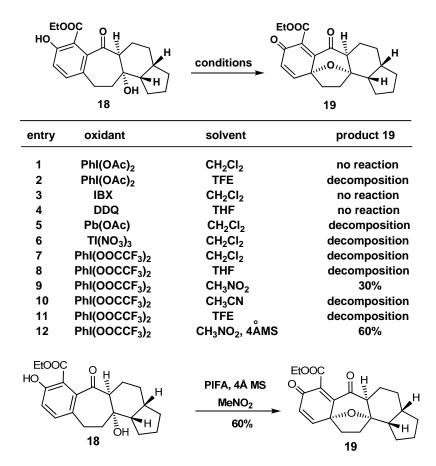

To a solution of acetal **8** (500 mg, 1.6 mmol) in acetone (30 mL) was added TsOH·H₂O (33 mg, 0. 16 mmol) in one portion at 0 °C, and the reaction mixture was stirred at 0 °C for 3 h. The reaction was quenched with saturated aqueous NaHCO₃ solution, and the mixture was evaporated under vacuum to remove organic solvent. The residue was extracted with Et₂O (3 × 50 mL), and the combined organic layer was dried with anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue obtained was purified by a flash column chromatography on silica gel (hexane/EtOAc = 7/1) to give aldehyde **12** (370 mg) in 87% as colorless oil: $R_f = 0.26$ (hexane/EtOAc = 10/1); ¹H NMR (500 MHz, CDCl₃) δ 9.97 (s, 1 H), 7.29 (d, J = 0.7 Hz, 1 H), 6.27 (dd, J = 3.1 Hz, 1.9 Hz, 1 H), 5.99 (dd, J = 3.1 Hz, 0.7 Hz, 1 H), 2.84 – 2.78 (m, 1 H), 2.76 – 2.70 (m, 1 H), 2.58 (dd, J = 13.0 Hz, 3.5 Hz, 1 H), 2.41 (s, 1 H), 2.24 – 2.19 (m, 1 H), 2.12 – 2.06 (m, 1 H), 1.99 – 1.95 (m, 2 H), 1.86 – 1.83 (m, 1 H), 1.81 – 1.77 (m, 1 H), 1.76 – 1.74 (m, 1 H), 1.73 – 1.65 (m, 3 H), 1.57 – 1.47 (m, 2 H), 1.46 – 1.43 (m, 1 H), 1.22 – 1.15 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 207.4, 155.7, 140.9, 110.1, 104.8, 75.3, 54.2, 47.8, 38.2, 34.3, 31.6, 26.0, 23.5, 22.9, 21.8, 20.9; HRMS (ESI-TOF) calcd for C₁₆H₂₂Na₁O₃ [M+Na]⁺: 285.1461; found: 285.1460.

Synthesis of Compound 14:

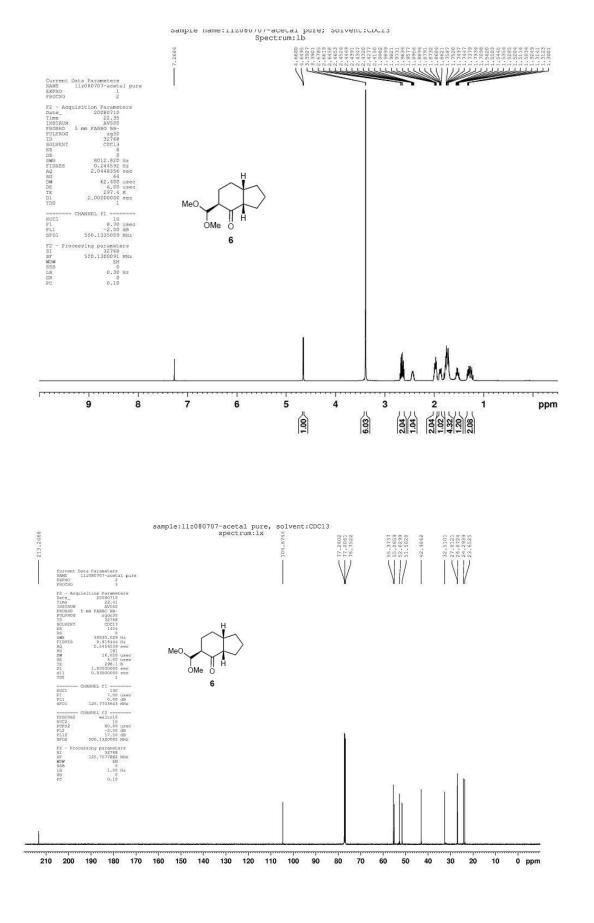
To a solution of **12** (350 mg, 1.3 mmol) in THF (15 mL) was added Me₃Al (1.0 *M*, 1.3 mL, 1.3 mmol) at -78 °C slowly, followed by addition of a solution of lithium ethyl propiolate generated by addition of *n*-BuLi (2.5 *M*, 1.6 mL, 4.0 mmol) to a solution of ethyl propiolate (0.4 mL, 4.0 mmol) in THF (10 mL) at -78 °C, and the resulting suspension was stirred vigorously at -78 °C for 1 h. The reaction was first quenched with saturated aqueous NH₄Cl solution, and then extracted with Et₂O (4 × 50 mL), and the combined organic phase was dried with anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (hexane/EtOAc = 7/1) to give **14** (340 mg) in 71% yield: $R_{\rm f} = 0.35$ (hexane/EtOAc = 5/1). ¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, *J* = 1.8 Hz, 1 H), 6.28 (dd, *J*=3.0 Hz, 1.8 Hz, 1 H), 6.02 (d, *J* = 3.0 Hz, 1 H), 4.62 (d, *J* = 10.2 Hz, 1 H), 4.45 (s, 1 H), 4.23 (t, *J* = 7.2 Hz, 2 H), 2.93 (s, 1 H), 2.86 - 2.72 (m, 2 H), 2.22 - 2.15 (m, 2 H), 2.07 - 1.96 (m, 2 H), 1.92 - 1.85 (m, 2 H), 1.69 - 1.66 (m, 5 H), 1.47 - 1.44 (m, 2 H), 1.30 (t, *J* = 7.2 Hz, 3 H), 1.28 - 1.15 (m, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 156.1, 153.4, 140.9, 110.2, 104.8, 87.6, 76.8, 76.5, 65.3, 62.1, 47.7, 46.0, 38.2, 31.8, 31.7, 26.4, 26.3, 23.3, 21.7, 20.8, 14.0; HRMS (ESI) calcd for C₂₁H₂₉O₅[M+H]⁺: 361.2009; found: 361.2010.

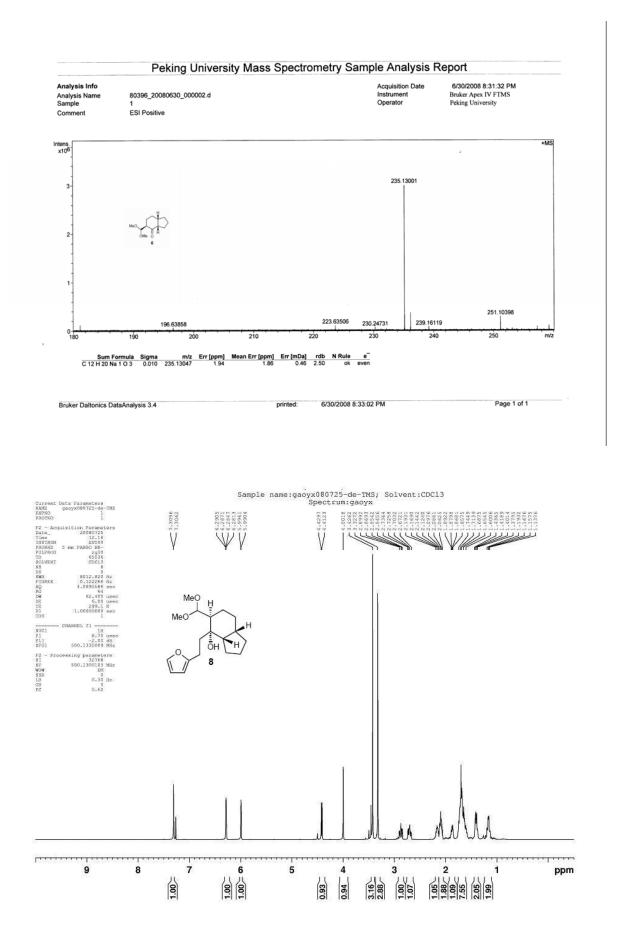

Synthesis of Compound 16a and 16b:

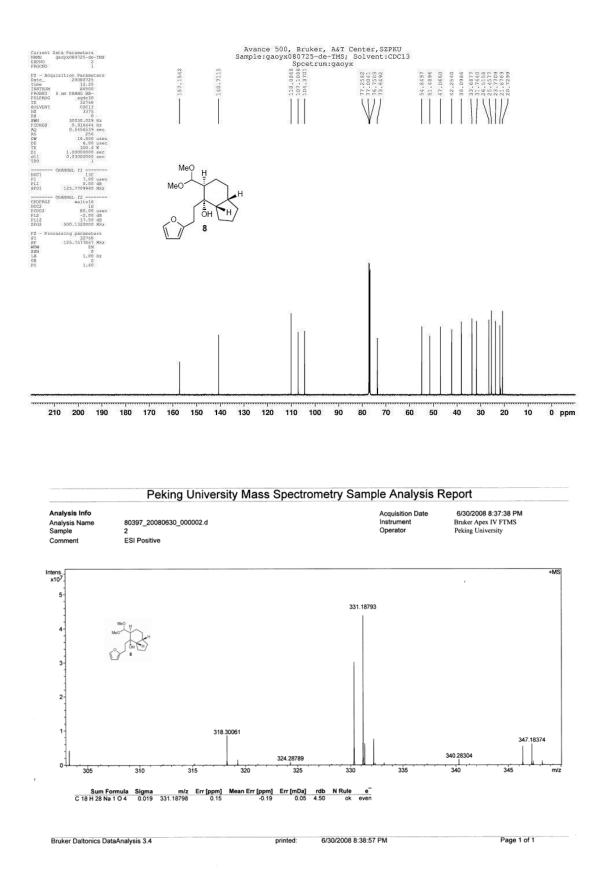
To a solution of **14** (300 mg, 0.83 mmol) in CH₂Cl₂ (30 mL) was sequentially added NaHCO₃ (210 mg, 2.5 mmol) and DMP (540 mg, 1.25 mmol), and the mixture was stirred at room temperature for 1 h. The reaction was quenched with aqueous Na₂S₂O₃ (30 mL and NaHCO₃ (30 mL), and the formed mixture was extracted with diethyl ether (3×60 mL), and the combined organic phase was dried with Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (hexane/EtOAc = 5/1) to give two isomers **16a** and **16b** (**16a/16b**= 3:1) (270 mg) in 91% yield. **16a**. ¹H NMR (500 MHz, CDCl₃) δ 7.27 (dd, *J* = 5.3 Hz, 1.9 Hz, 1 H), 6.81 (d, *J* = 5.3 Hz, 1 H), 5.62 (d, *J* = 1.8 Hz, 1 H), 4.19 – 4.15 (m, 2 H), 2.80 – 2.78 (m, 2 H), 2.61 – 2.55 (m, 1 H), 2.11 – 2.05 (m, 2 H), 2.00 – 1.91 (m, 2 H), 1.79 – 1.61 (m, 7 H), 1.51 – 1.44 (m, 2 H), 1.26 – 1.23 (m, 4 H), 1.16 – 1.08 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃)

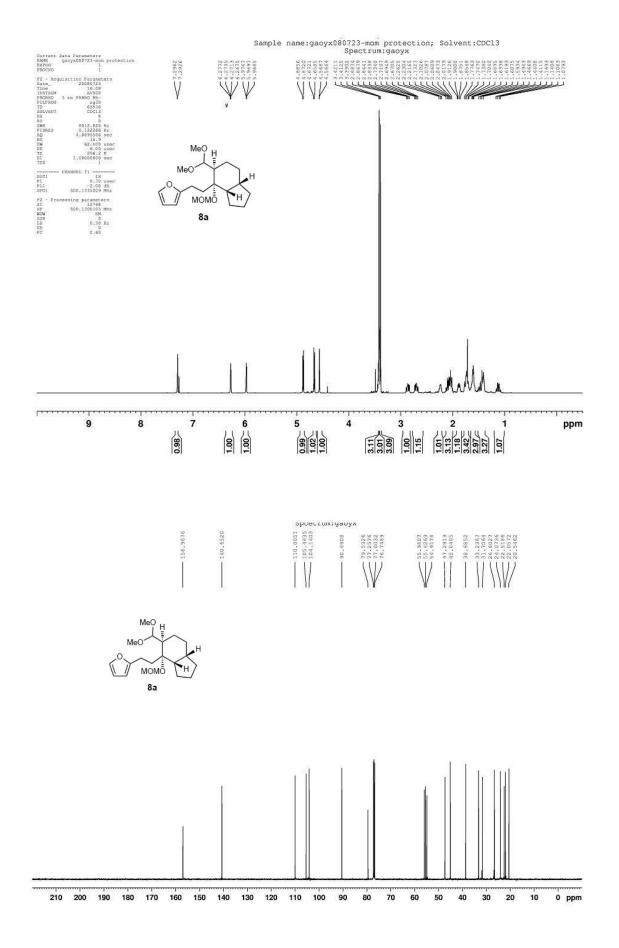

δ 205.3, 166.0, 162.2, 147.7, 146.4, 144.8, 95.8, 83.2, 72.6, 61.0, 58.2, 55.2, 38.3, 33.3, 31.9, 25.9, 25.7, 23.9, 23.4, 20.5, 14.1; HRMS (ESI) calcd for $C_{21}H_{27}O_5[M+H]^+$: 359.1853; found: 359.1857; **16b**: ¹H NMR (500 MHz, MeOD) δ 7.49 (d, *J* = 5.3 Hz, 1 H), 7.27 (m, 1 H), 5.52 (d, *J* = 2.1 Hz, 1 H), 4.16 (q, *J* = 7.1 Hz, 2 H), 2.82 (dd, *J* = 2.1 Hz, 13.5 Hz, 1 H), 2.74 – 2.68 (m, 1 H), 2.50 – 2.45 (m, 1 H), 2.21 – 2.16 (m, 1 H), 1.98 – 1.94 (m, 2 H), 1.90 – 1.85 (m, 1 H), 1.80 – 1.68 (m, 4 H), 1.64 – 1.59 (m, 1 H), 1.53 – 1.47 (m, 1 H), 1.46 – 1.40 (m, 2 H), 1.36 – 1.28 (m, 1 H), 1.22 (t, *J* = 7.1 Hz, 3 H), 1.18 – 1.11 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 200.6, 165.4, 162.3, 151.7, 144.7, 143.4, 94.2, 83.7, 74.3, 61.2, 58.4, 54.4, 38.9, 34.5, 31.9, 26.7, 24.2, 24.0, 23.6, 21.1, 13.9.

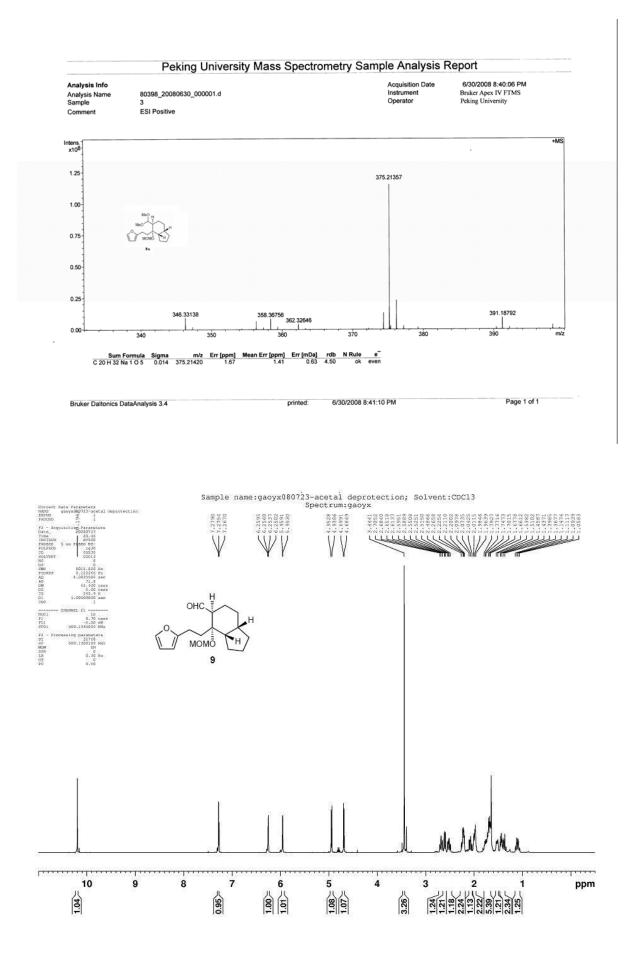
Synthesis of Compound 18:

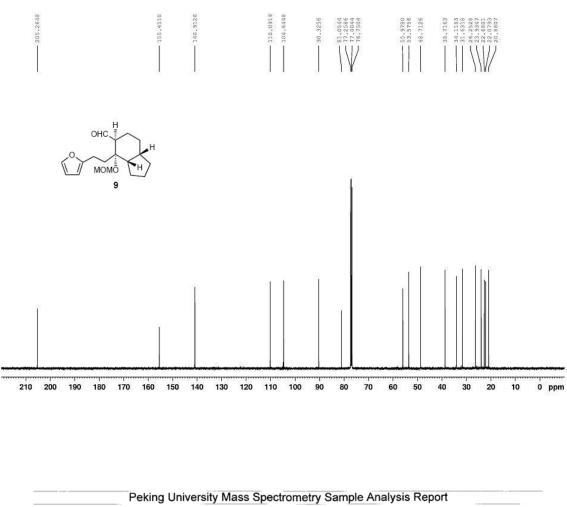


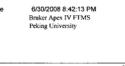

To a solution of **16a** and **16b** (40 mg, 0.11 mmol) in CH₂Cl₂ (5 mL) was added BF₃·Et₂O (48%, 42uL, 0.33 mmol) in a drop-wise manner at -20 °C, and the formed dark brown solution was stirred at the same temperature for 20 min. The reaction was first quenched with saturated aqueous NaHCO₃ solution (5 mL), and then extracted with Et₂O (3 × 10 mL), and the combined organic layer was finally dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (hexane/EtOAc = 10/1) to give **18** (25 mg) in 63% yield as slight yellow solid; $R_f = 0.65$ (hexane/EtOAc = 5/1); ¹H NMR (500 MHz, CDCl₃) δ 10.71 (s, 1 H), 7.24 (d, *J* = 8.3 Hz, 1 H), 6.90 (d, *J* = 8.3 Hz, 1 H), 4.38 - 4.33 (m, 2 H), 3.03 (t, *J* = 14.4 Hz, 1 H), 2.74 (d, *J* = 12.7 Hz, 1 H), 2.62 (bs, 1 H), 2.41 (dd, *J* = 15.3, 6.0 Hz, 1 H), 2.28 (t, *J* = 13.5 Hz, 1 H), 1.97 - 1.69 (m, 9 H), 1.42 - 1.33 (m, 6 H), 1.15 - 1.10 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 209.6, 168.8, 160.2, 143.5, 136.2, 127.1, 117.9, 108.7, 75.1, 62.1, 55.6, 53.7, 38.4, 36.6, 31.8, 28.1, 26.3, 25.6, 23.9, 20.6, 13.5; HRMS (ESI) calcd for C₂₁H₂₇O₅ [M+H]⁺: 359.1853; found: 359.1854.

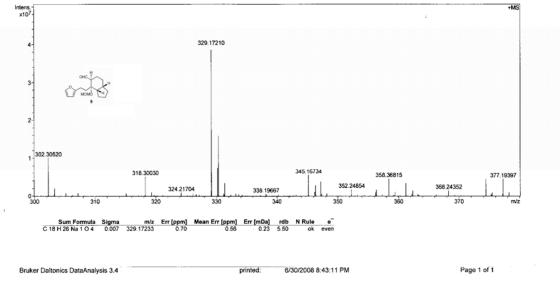

Synthesis of Compound 19:

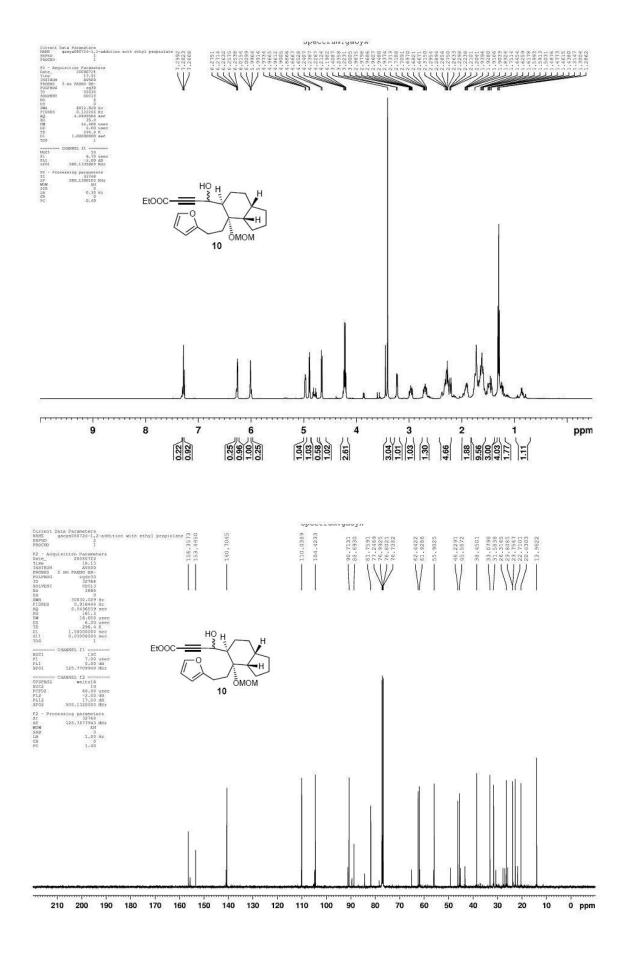


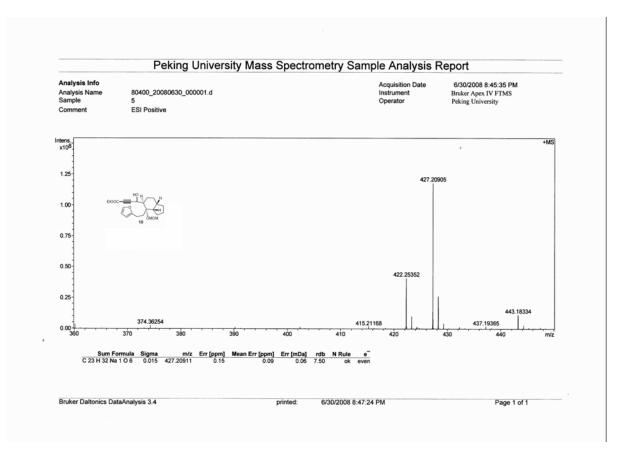

To a solution of compound **18** (40 mg, 0.11 mmol) in dry nitromethane (10 mL) in a flame-dried flask was added activated 4 Å molecular sieves (50 mg) was added PhI(OOCCF₃)₂ (58 mg, 0.13 mmol), and the formed suspension was stirred at room temperature for 30 min. The reaction was quenched with aqueous NaHCO₃ (10 mL), followed by filtration through a silica gel pad. The filtrate was extracted with Et₂O (4 × 20 mL), and combined organic layer was dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (hexane/EtOAc = 5/1) to give the desired product **19** (24 mg) in 60% yield: $R_f = 0.7$ (hexane/EtOAc = 2/1); ¹H NMR (500 MHz, CDCl₃) δ 6.91 (d, *J* = 10.1 Hz, 1 H), 6.35 (d, *J* = 10.1 Hz, 1 H), 4.39 – 4.31 (m, 2 H), 2.80 (dd, *J* = 11.4 Hz, 1.5 Hz, 1 H), 2.29 – 2.19 (m, 3 H), 2.15 – 2.11 (m, 1 H), 2.04 – 2.00 (m, 1 H), 1.96 – 1.92 (m, 1 H), 1.92 – 1.85 (m, 2 H), 1.82 – 1.79 (m, 1 H), 1.73 – 1.69 (m, 3 H), 1.48 – 1.43 (m, 1 H), 1.34 (t, *J* = 7.2 Hz, 3 H), 1.26 (m, 3 H), 1.19 – 1.10 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 198.4, 182.0, 164.4, 148.0, 147.5, 129.2, 129.1, 87.5, 78.7, 61.9, 54.8, 50.8, 39.6, 37.5, 34.4, 31.4, 26.1, 24.3, 22.8, 21.3, 13.9; DEPT 135 (500 MHz, CDCl₃) δ CH and CH₃: 147.6, 129.2, 54.8, 50.8, 39.6, 13.9; CH₂: 61.9, 37.5, 34.4, 31.4, 26.1, 24.3, 22.8, 21.3; HRMS (ESI) calcd for C₂₁H₂₅O₅ [M+H]⁺ 357.1697; found: 357.1700.



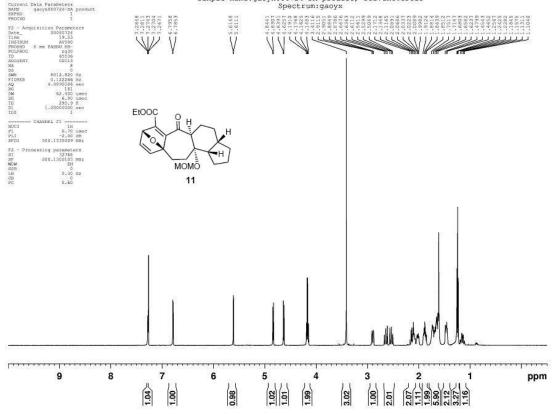


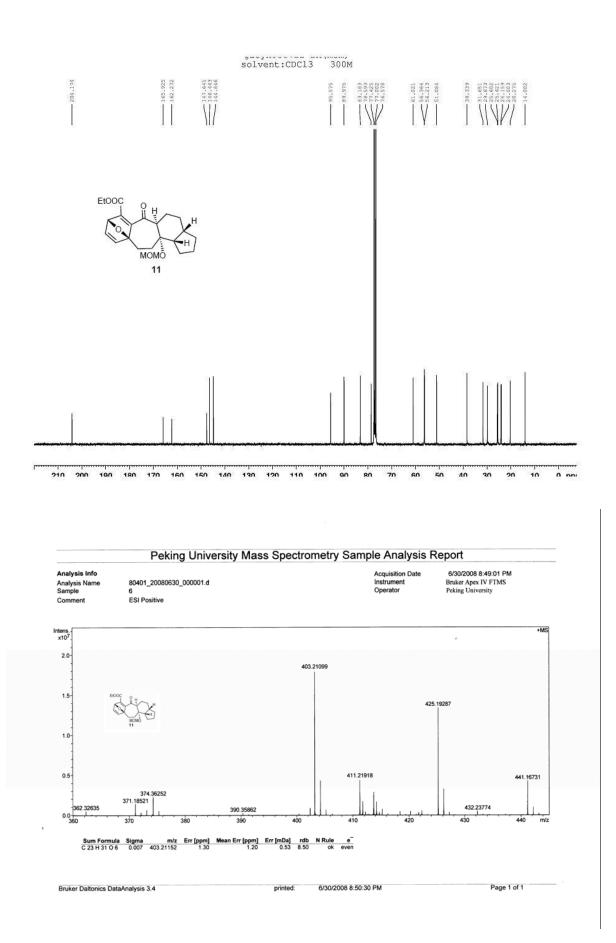


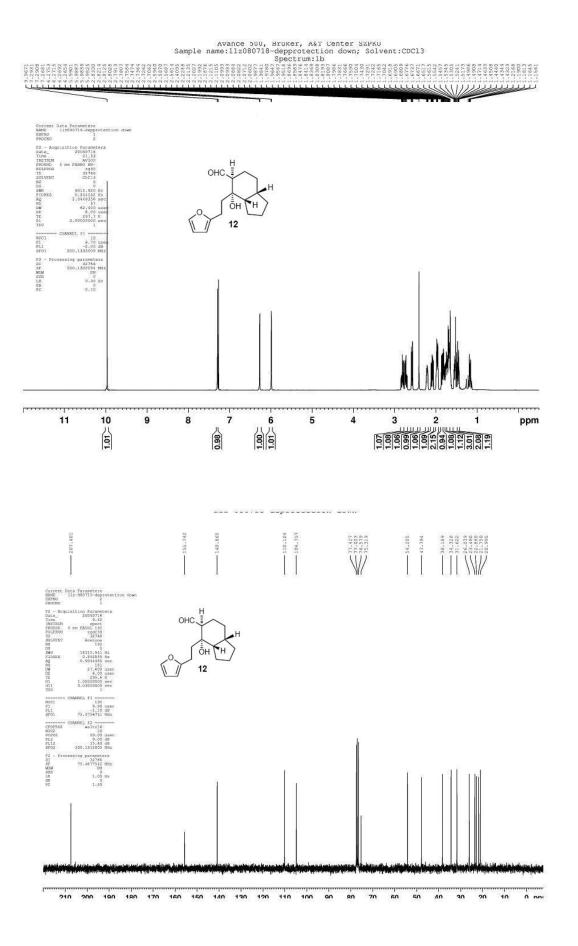


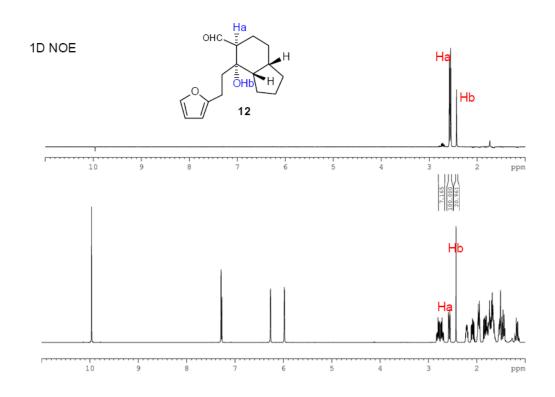

Acquisition Da

Acquisition Date 6/30 Instrument Bruke Operator Peking

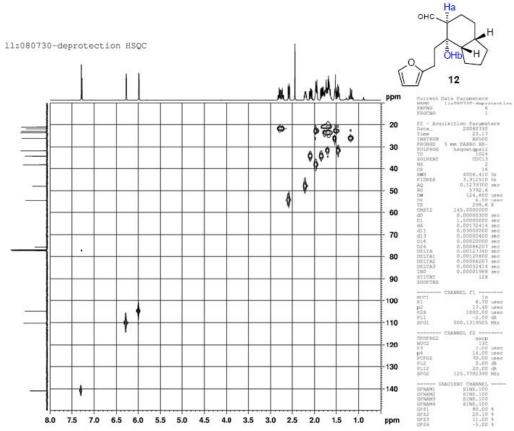


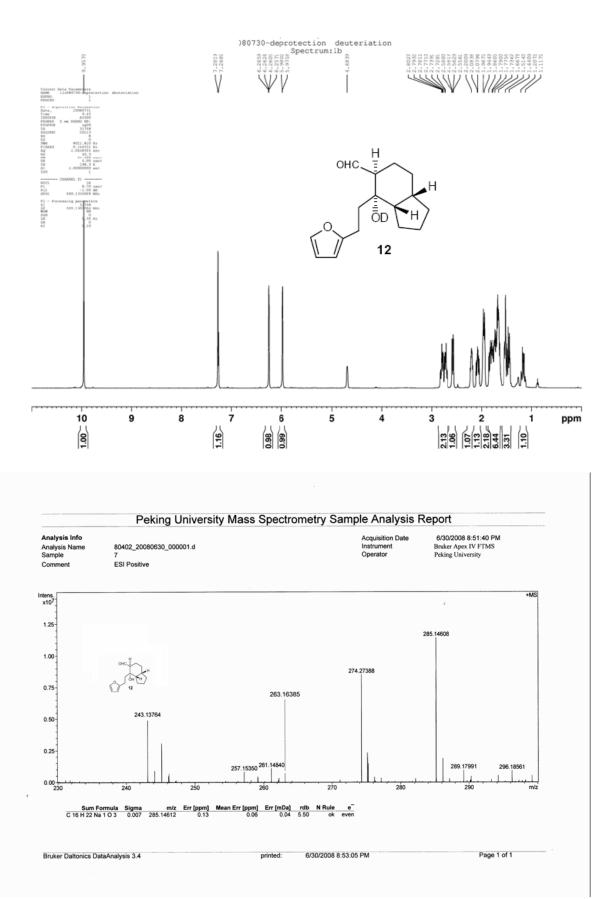


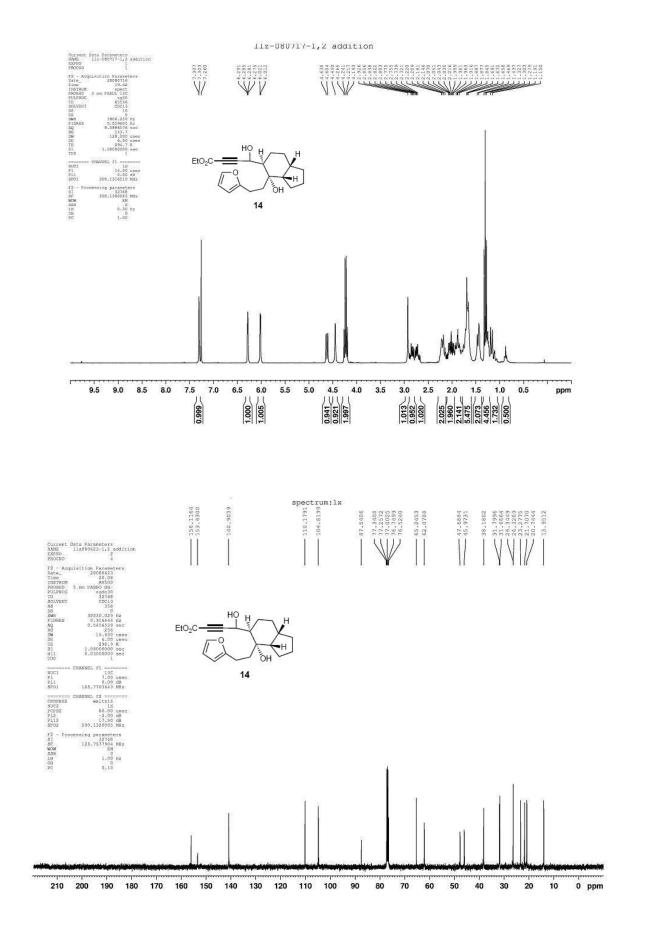


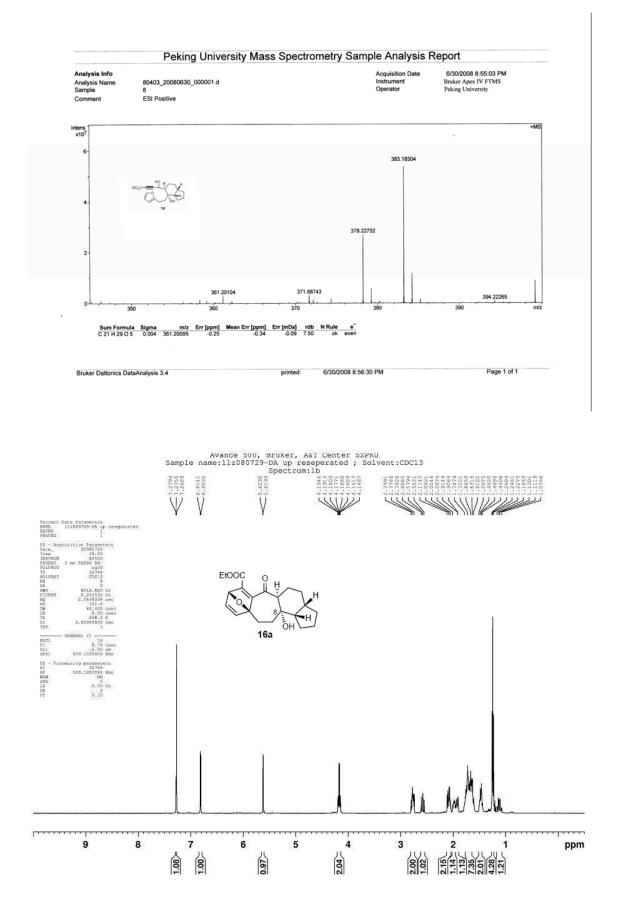


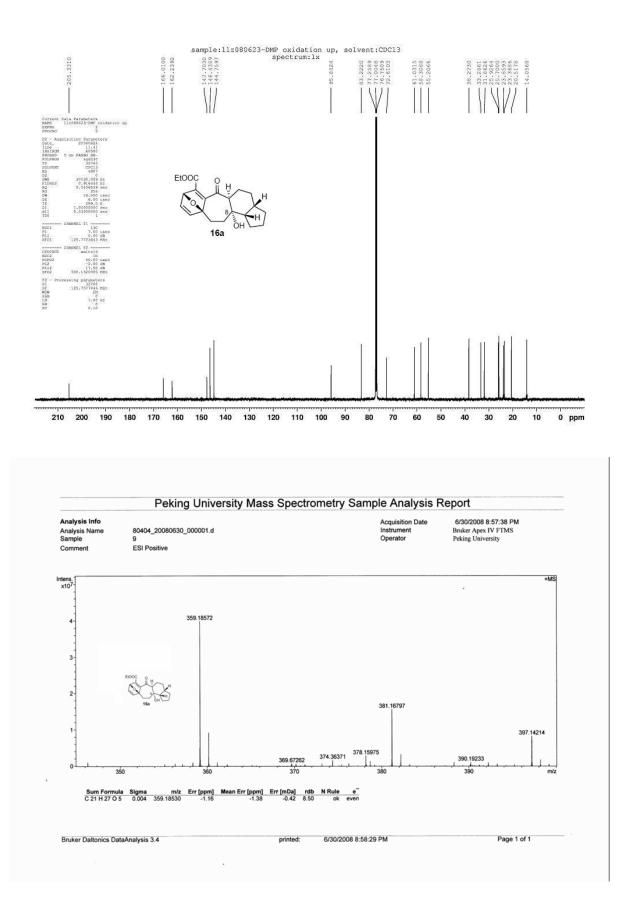
Sample name:gaoyx080724-DA product; Solvent:CDCl3 Spectrum:gaoyx

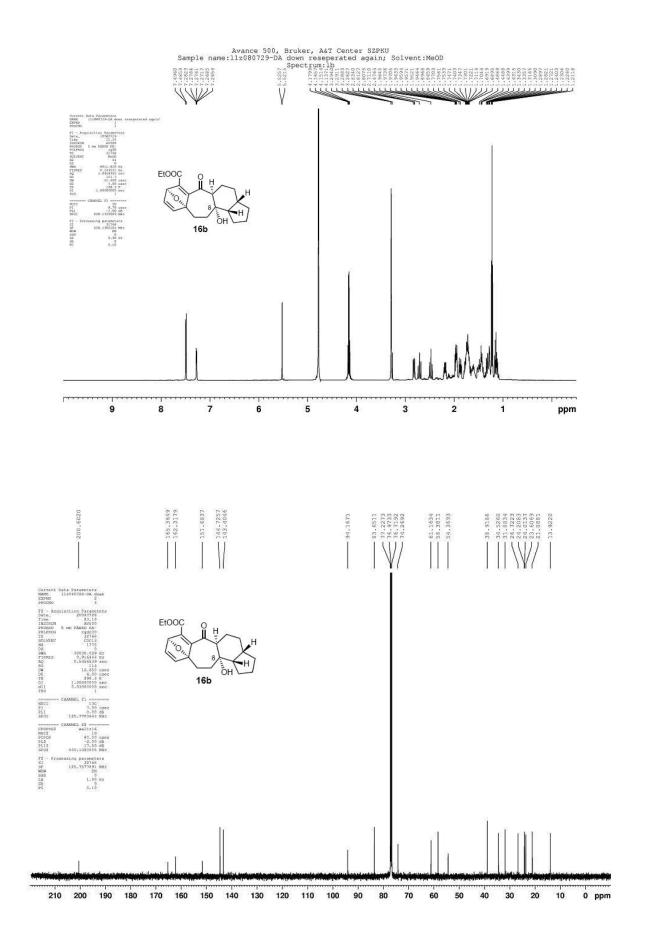


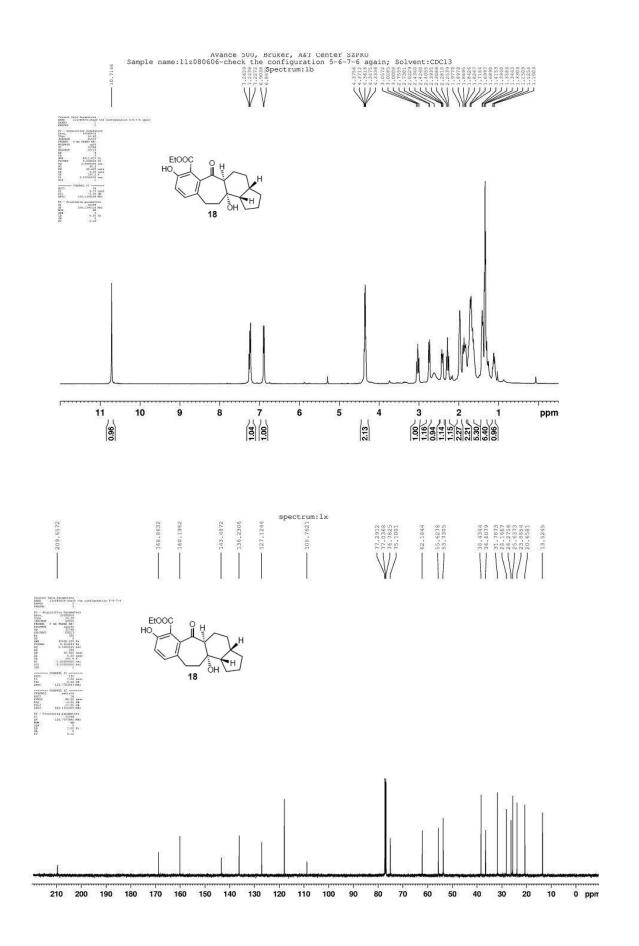


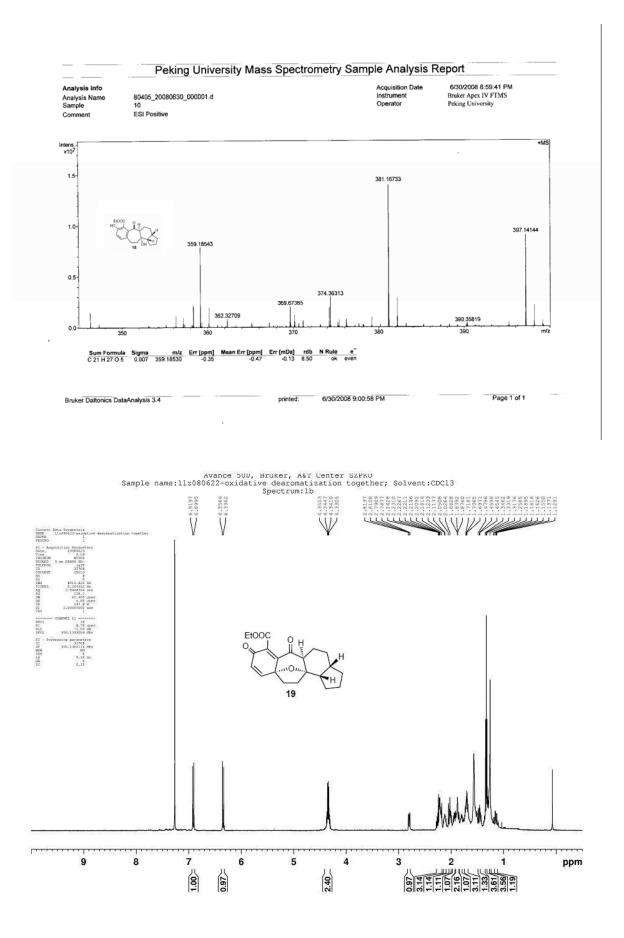

1 D NOE, HSQC and deuteration result of compound 12

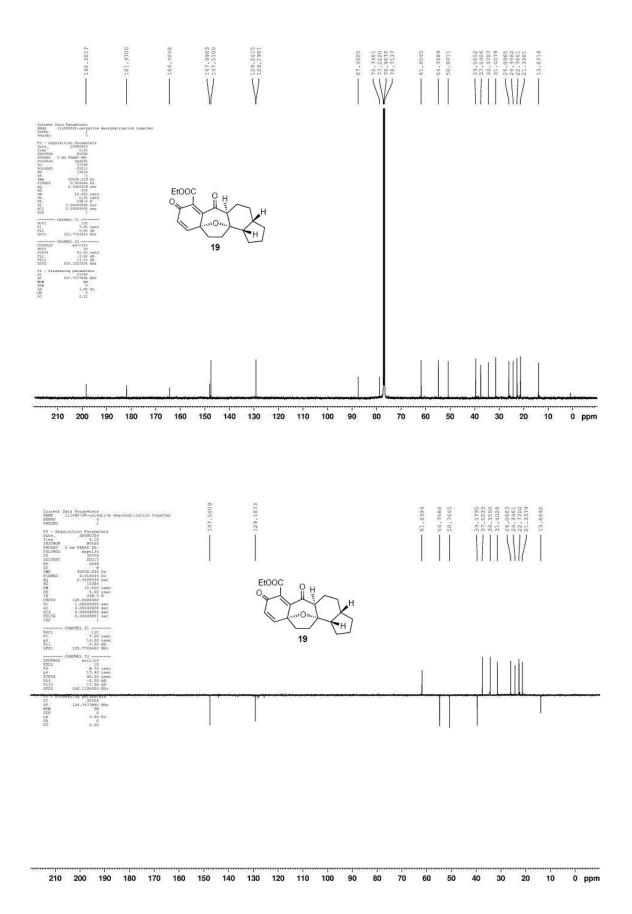





Deuteration







S31