Relaying stereochemistry through aromatic ureas: 1,9 and 1,15 remote stereocontrol

Jonathan Clayden,* Mark Pickworth and Lyn H. Jones

SUPPORTING INFORMATION

General Information

NMR spectra were recorded on a Varian XL 300 or a Bruker Ultrashield 300, 400 or 500 spectrometer. The chemical shifts (δ) are reported in ppm downfield of trimethylsilane and coupling constants (J) reported in hertz and rounded to 0.5 Hz . Splitting patterns are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (br), or a combination of these. Solvents were used as internal standard when assigning NMR spectra ($\delta_{\mathrm{H}}: \mathrm{CDCl}_{3} 7.27 \mathrm{ppm} ; \delta_{\mathrm{C}}: \mathrm{CDCl}_{3} 77.0 \mathrm{ppm} ; \delta_{\mathrm{H}}:$ DMSO- $d_{6} 2.50 \mathrm{ppm} ; \delta_{\mathrm{C}}:$ DMSO- $d_{6} 39.4 \mathrm{ppm} ; \delta_{\mathrm{H}}$: $\mathrm{CD}_{3} \mathrm{OD} 3.31 \mathrm{ppm} ; \delta_{\mathrm{C}}: \mathrm{CD}_{3} \mathrm{OD} 49.0 \mathrm{ppm} ;$).

Low and high resolution mass spectra were recorded by staff at the University of Manchester. EI and CI spectra were recorded on a Fisons VG Trio 2000; and high resolution mass spectra (HRMS) were recorded on a Kratos Concept-IS mass spectrometer, and are accurate to ± 0.001. Infrared spectra were recorded on an Ati Matson Genesis Series FTIR spectrometer as a film on a sodium chloride plate. Absorptions reported are sharp and strong unless otherwise stated as broad (br), medium (m), or weak (w), only absorption maxima of interest are reported. Melting points (mpt) were determined on a Gallenkamp apparatus and are uncorrected.

Thin layer chromatography (TLC) was performed using commercially available pre-coated plates (MachereyNagel alugram Sil G/UV254) and visualised with UV light at 254 nm or phosphomolybdic acid dip (5 \% in ethanol). Flash chromatography was carried out using Fluorochem Davisil 40-63u 60 Å.

All reactions were conducted under an atmosphere of dry nitrogen in oven dried glassware. Tetrahydrofuran (THF) was distilled under nitrogen from sodium using benzophenone as indicator. Dichloromethane and toluene were obtained by distillation from calcium hydride under nitrogen. Petrol refers to the fraction of light petroleum ether boiling between $40-65^{\circ} \mathrm{C}$. All other solvents and commercially obtained reagents were used as received or purified using standard procedures.

2-(1,3-Dioxolan-2-yl)benzenamine, 4

2-Nitrobenzaldehyde ($15.0 \mathrm{~g}, 100 \mathrm{mmol}$) was dissolved in toluene $\left(200 \mathrm{~cm}^{3}\right)$ at room temperature, ethylene glycol $\left(30 \mathrm{~cm}^{3}\right)$ and PTSA $(0.20 \mathrm{~g}, 1.2 \mathrm{mmol})$ were added, the mixture heated to reflux temperature and maintained at this temperature for 18 h . Cooled to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3}\right)$ and saturated NaHCO_{3} $\left(50 \mathrm{~cm}^{3}\right)$ added and the organic layer separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 50 \mathrm{~cm}^{3}\right)$, the combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; 1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in petrol to $1 \% \mathrm{Et}_{3} \mathrm{~N}, 10 \% \mathrm{EtOAc}$ in petrol) to give 2-(2-nitrophenyl)-1,3-dioxolane ($19.1 \mathrm{~g}, 99 \%$), as a yellow oil; $R_{\mathrm{f}}\left(20 \%\right.$ EtOAc in petrol) 0.29 ; $\mathrm{v}_{\max }$ (film) $/ \mathrm{cm}^{-1} 1533\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.94(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{a}), 7.85(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.5 , CH-d), $7.67(1 \mathrm{H}$, ddd, $J 8.0,8.0$ and $1.5, \mathrm{CH}-\mathrm{c}), 7.55(1 \mathrm{H}, \mathrm{ddd}, J 8.0,8.0$ and $1.5, \mathrm{CH}-\mathrm{b}), 6.54\left[1 \mathrm{H}, \mathrm{s},\left(\mathrm{CHO}_{2}\right)\right]$ and 4.13-4.06 [4 H, m, $\left.\left(\mathrm{CH}_{2}\right) \times 2\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 149.1(\mathrm{C}), 133.5(\mathrm{C}), 133.2(\mathrm{CH}), 129.9(\mathrm{CH}), 127.9$ $(\mathrm{CH}), 124.7(\mathrm{CH}), 99.8(\mathrm{CH})$ and $65.6\left[\left(\mathrm{CH}_{2}\right) \times 2\right] ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 213\left(100 \%, \mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$; (Found: $\mathrm{M}+\mathrm{NH}_{4}{ }^{+}$, 213.0870, $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $M+H, 213.0870$).

The 2-(2-nitrophenyl)-1,3-dioxolane ($18.0 \mathrm{~g}, 92.0 \mathrm{mmol}$) was dissolved in IPA ($200 \mathrm{~cm}^{3}$), triethylamine $\left(50 \mathrm{~cm}^{3}, 36 \mathrm{mmol}\right), 10 \%$ palladium on carbon $(0.98 \mathrm{~g}, 0.92 \mathrm{mmol})$ added and the suspension stirred under a hydrogen atmosphere for 18 h . The suspension was filtered through celite and the filtrate dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(100 \mathrm{~cm}^{3}\right)$. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}\left(2 \times 50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; 1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in petrol to $1 \% \mathrm{Et}_{3} \mathrm{~N}, 10 \% \mathrm{EtOAc}$ in petrol) to give 2-(1,3-dioxolan-2-yl)benzenamine $4(15.2 \mathrm{~g}, 98 \%)$, as a yellow oil; $R_{\mathrm{f}}\left(20 \%\right.$ EtOAc in petrol) $0.25 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3490,3389$ and $1623(\mathrm{~N}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $7.36(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{d}), 7.22(1 \mathrm{H}, \mathrm{ddd}, J 8.0,8.0$ and $1.5, \mathrm{CH}-\mathrm{b}), 6.82(1 \mathrm{H}, \mathrm{ddd}, J 8.0,8.0$ and 1.5 , $\mathrm{CH}-\mathrm{c}), 6.77(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{a}), 5.88\left[1 \mathrm{H}, \mathrm{s},\left(\mathrm{CHO}_{2}\right)\right]$ and $4.20-4.07\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right) \times 2\right] ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 145.5(\mathrm{C}), 130.3(\mathrm{CH}), 127.8(\mathrm{CH}), 121.5(\mathrm{C}), 118.2(\mathrm{CH}), 116.8(\mathrm{CH}), 103.6(\mathrm{CH})$, and 65.1 $\left[\left(\mathrm{CH}_{2}\right) \times 2\right] ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 166\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right) ;\left(\right.$Found: $\mathrm{M}+\mathrm{H}^{+}, 166.0864, \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{2}$ requires $\left.M+H, 166.0863\right)$.

1-(2-(1,3-Dioxolan-2-yl)phenyl)-3-(2-bromophenyl)-1,3-dimethylurea, 5

2-(1,3-Dioxolan-2-yl)benzenamine $4(0.50 \mathrm{~g}, 3.0 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, 2bromophenylisocyanate $\left(0.36 \mathrm{~cm}^{3}, 3.0 \mathrm{mmol}\right)$ added dropwise and stirred for 18 h . The precipitate was isolated to give 1-(2-(1,3-dioxolan-2-yl)phenyl)-3-(2-bromophenyl)urea (1.05g, 97%), as colourless cubes, m.p. 195-198 ${ }^{\circ} \mathrm{C}$ (from EtOAc-pentane); $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.50 ; \mathrm{v}_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3435(\mathrm{NH}), 1686(\mathrm{C}=\mathrm{O})$ and $759(\mathrm{C}-\mathrm{Br}) ; \delta_{\mathrm{H}}(300$ MHz; d_{6}-DMSO) 8.67 [2 H, s, (NH) $\times 2$], $7.91(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.5 , CH-e), $7.71(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.5 , CHd), $7.61(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{h}), 7.45(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{a}), 7.35(1 \mathrm{H}, \mathrm{td}, J 8.0$ and 1.5 , CH-f), $7.31(1 \mathrm{H}, \mathrm{td}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{c}), 7.11(1 \mathrm{H}, \mathrm{td}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{b}), 6.99(1 \mathrm{H}, \mathrm{td}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{g}), 5.88$ $\left[1 \mathrm{H}, \mathrm{s},\left(\mathrm{CHO}_{2}\right)\right]$, 4.13-4.03 [2 H, m, $\left.\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right]$ and 4.03-3.93 [2 H, m, $\left.\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; d_{6}-\right.$ DMSO) 153.5 (C=O), 137.8 (C), 137.6 (C), 133.2 (CH), 129.9 (CH), 129.1 (C), 128.7 (CH), 127.6 (CH), 125.3 $(\mathrm{CH}), 124.6(\mathrm{CH}), 124.5(\mathrm{CH}), 124.0(\mathrm{CH}), 115.1(\mathrm{C}), 100.9(\mathrm{CH})$ and $65.5\left[\left(\mathrm{CH}_{2}\right) \times 2\right] ; \mathrm{m} / \mathrm{z}(\mathrm{ES}) 363(100 \%$, $\mathrm{M}+\mathrm{H}^{+}$); (Found: $\mathrm{M}+\mathrm{H}^{+}, 363.0349, \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M+H, 363.0345$).

The 1-(2-(1,3-Dioxolan-2-yl)phenyl)-3-(2-bromophenyl)urea ($2.0 \mathrm{~g}, 5.5 \mathrm{mmol}$) was dissolved in THF (40 cm^{3}) and cooled to $0{ }^{\circ} \mathrm{C}$. Sodium hydride ($0.66 \mathrm{~g}, 16 \mathrm{mmol}$) was added portionwise and stirred at room temperature for 1 h . Methyl iodide ($1.05 \mathrm{~cm}^{3}, 16 \mathrm{mmol}$) was added and stirred at room temperature for 19 h . Water $\left(50 \mathrm{~cm}^{3}\right)$ was added and extracted with EtOAc $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; 10 \% \mathrm{EtOAc}\right.$ and $2 \% \mathrm{Et}_{3} \mathrm{~N}$ in petrol) to give 1-(2-(1,3-dioxolan-2-yl)phenyl)-3-(2-bromophenyl)-1,3-dimethylurea 5 ($2.10 \mathrm{~g}, 98 \%$), as colourless cubes, m.p. 202-204 ${ }^{\circ} \mathrm{C}$ (from EtOAc-pentane); $R_{\mathrm{f}}\left(50 \%\right.$ EtOAc in petrol) $0.24 ; \mathrm{v}_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1711(\mathrm{C}=\mathrm{O})$ and $733(\mathrm{C}-\mathrm{Br}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.40-7.30(2$ H, m, CH-d and CH-e), 7.11-6.93 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{a}$ and CH-h), 6.91-6.80 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{c}$ and CH-f), 6.86-6.56 (2 H, $\mathrm{m}, \mathrm{CH}-\mathrm{b}$ and $\mathrm{CH}-\mathrm{g}), 5.70\left[1 \mathrm{H}, \mathrm{s},\left(\mathrm{CHO}_{2}\right)\right], 4.18-4.11\left[2 \mathrm{H}, \mathrm{m},\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right], 4.10-3.98[2 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right], 3.25\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}\right]$ and $3.17\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 157.5(\mathrm{C}=\mathrm{O}), 143.9(\mathrm{C})$, $143.1(\mathrm{C}), 133.3(\mathrm{CH}), 130.2(\mathrm{CH}), 130.0(\mathrm{CH}), 128.3(\mathrm{C}), 127.9(\mathrm{CH}), 127.7(\mathrm{CH}), 127.3(\mathrm{CH}), 126.9(\mathrm{CH})$, $126.8(\mathrm{CH}), 110.0(\mathrm{C}), 99.7(\mathrm{CH}), 65.5\left(\mathrm{CH}_{2}\right), 64.0\left(\mathrm{CH}_{2}\right), 40.7\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}$ and $39.1\left(\mathrm{NCH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 391(100$ \%, $\mathrm{M}+\mathrm{H}^{+}$); (Found: $\mathrm{M}+\mathrm{H}^{+}, 391.0660, \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $M+H, 391.0658$).

1-(2-(1,3-Dioxolan-2-yl)phenyl)-3-(2-(tert-butylsulfinyl)phenyl)-1,3-dimethylurea, 6

1-(2-(1,3-Dioxolan-2-yl)phenyl)-3-(2-bromophenyl)-1,3-dimethylurea $\mathbf{5}$ ($2.0 \mathrm{~g}, 5.2 \mathrm{mmol}$) was dissolved in THF $\left(90 \mathrm{~cm}^{3}\right)$ and cooled to $-90^{\circ} \mathrm{C} . n$-Butyllithium $\left(2.40 \mathrm{~cm}^{3}, 5.72,2.38 \mathrm{mmol}\right.$ in hexanes) was added dropwise and stirred for 1 min at $-90^{\circ} \mathrm{C}$. After this time, (S)-tert-Butyl 2-methylpropane-2-sulfinothioate $[1.13 \mathrm{~g}, 5.72 \mathrm{mmol}$ in THF $\left.\left(10 \mathrm{~cm}^{3}\right)\right]^{1}$ was added in one portion and stirred at $-90^{\circ} \mathrm{C}$ for 5 min . After warming to room temperature over 18 h , saturated aqueous ammonium chloride $\left(10 \mathrm{~cm}^{3}\right)$ and water $\left(20 \mathrm{~cm}^{3}\right)$ were added and the aqueous layer extracted with EtOAc $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; 20 \%\right.$ EtOAc and $2 \% \mathrm{Et}_{3} \mathrm{~N}$ in petrol) to give 1-(2-(1,3-dioxolan-2-yl)phenyl)-3-(2-(tert-butylsulfinyl)phenyl)-1,3dimethylurea $6\left(1.41 \mathrm{~g}, 65 \%\right.$), as colourless cubes, m.p. 232-234 ${ }^{\circ} \mathrm{C}$ (from EtOAc-pentane); $[\alpha]_{\mathrm{D}}{ }^{22}=-36.0(\mathrm{c}=$ 0.5 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}(\mathrm{EtOAc}) 0.15 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1648(\mathrm{C}=\mathrm{O})$ and $1069(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.40-7.30$ (1 H, d, J 8.0, CH-d), 7.35 (1 H , br., CH-e), 7.20-6.66 (4 H, br., CH-a, CH-c, CH-f and CH-h), 6.66-6.30 (2 H, br., CH-b and CH-g), $5.68\left[1 \mathrm{H}\right.$, br., $\left.\left(\mathrm{CHO}_{2}\right)\right]$, $4.34-3.84\left[4 \mathrm{H}, \mathrm{br}\right.$., $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$], 3.27 [3 H, s, $\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}$], 3.23 [3 $\left.\mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}\right]$ and $1.20\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right) \times 3\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.7(\mathrm{C}=\mathrm{O}), 144.3(\mathrm{C}), 143.2(\mathrm{C}), 131.9$ $(\mathrm{CH}), 131.0(\mathrm{C}), 130.3(\mathrm{CH}), 130.1(\mathrm{CH}), 129.3(\mathrm{CH}), 129.2(\mathrm{CH}), 127.1(\mathrm{CH}), 126.4(\mathrm{CH}), 125.6(\mathrm{CH}), 110.0$ (C), $99.4(\mathrm{CH}), 65.4\left[\left(\mathrm{CH}_{2}\right) \times 2\right], 56.0(\mathrm{C}), 40.4\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}, 39.7\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}$ and $11.7\left[\left(\mathrm{CH}_{3}\right) \times 3\right] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 431$ (100 \%, $\mathrm{M}+\mathrm{H}^{+}$); (Found: $\mathrm{M}+\mathrm{H}^{+}, 418.1929, \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $M+H, 418.1927$).

1-(2-(tert-Butylsulfinyl)phenyl)-3-(2-formylphenyl)-1,3-dimethylurea, 7

1-(2-(1,3-Dioxolan-2-yl)phenyl)-3-(2-(tert-butylsulfinyl)phenyl)-1,3-dimethylurea 6 ($0.90 \mathrm{~g}, 2.2 \mathrm{mmol}$) was dissolved in THF $\left(40 \mathrm{~cm}^{3}\right), 1 \mathrm{~N}$ aqueous hydrochloric acid $\left(30 \mathrm{~cm}^{3}\right)$ added and stirred at room temperature for 16 h. The aqueous layer was extracted with EtOAc $\left(3 \times 20 \mathrm{~cm}^{3}\right)$, the combined organic fractions dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; 40 \%\right.$ EtOAc in petrol) to give 1-(2-(tert-butylsulfinyl)phenyl)-3-(2-formylphenyl)-1,3-dimethylurea 7
$(0.79 \mathrm{~g}, 98 \%)$, as colourless cubes, m.p. 224-226 ${ }^{\circ} \mathrm{C}$ (from EtOAc-pentane); $[\alpha]_{\mathrm{D}}{ }^{24}=-40.0\left(\mathrm{c}=0.2\right.$ in $\left.\mathrm{CDCl}_{3}\right)$; $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.12 ; \mathrm{v}_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1687(\mathrm{HC}=\mathrm{O}), 1660(\mathrm{C}=\mathrm{O})$ and $1034(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.05(1 \mathrm{H}$, s, $\mathrm{CH}=\mathrm{O}$), $7.68(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{d}), 7.61(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{a}), 7.22(1 \mathrm{H}$, br., CH-c), 7.15$7.03(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{g}$ and CH-f), $6.94(1 \mathrm{H}, \mathrm{td}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{b}), 6.87(1 \mathrm{H}, \mathrm{br} ., \mathrm{CH}-\mathrm{e}) 6.35(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{h}), 3.43\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}\right], 3.25\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}\right.$ and $1.21\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right) \times 3\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $190.0(\mathrm{HC=O}), 160.3(\mathrm{C}=\mathrm{O}), 143.5(\mathrm{C}), 139.2(\mathrm{C}), 138.1(\mathrm{C}), 134.9(\mathrm{CH}), 132.2(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH})$, $127.7(\mathrm{CH}), 126.6(\mathrm{CH}), 126.4(\mathrm{CH}), 125.9(\mathrm{CH}), 56.3(\mathrm{C}), 39.3\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}, 39.0\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}$ and $23.1\left[\left(\mathrm{CH}_{3}\right) \times 3\right]$; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 374\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{H}^{+}, 374.1667, \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\left.M+H, 374.1665\right)$.

1-(2-(1,3-Dioxolan-2-yl)phenyl)-1,3-dibenzyl-3-phenylurea, 8

2-(1,3-Dioxolan-2-yl)benzenamine $4(1.64 \mathrm{~g}, 10.0 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$. Phenyl isocyanate $\left(10.9 \mathrm{~cm}^{3}, 10.0 \mathrm{mmol}\right)$ was added dropwise, stirred for 60 h and concentrated under reduced pressure. The residue was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-petrol to give 1-(2-(1,3-Dioxolan-2-yl)phenyl)-3-phenylurea ($2.69 \mathrm{~g}, 95$ \%) as white cubes, m.p. $167-169{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-petrol); $R_{\mathrm{f}}\left(2 \% \mathrm{Et}_{3} \mathrm{~N}, 49 \%\right.$ EtOAc in petrol) 0.50 ; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3584(\mathrm{~N}-\mathrm{H})$ and $1710(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.39\left[1 \mathrm{H}, \mathrm{s},(\mathrm{NH})_{\mathrm{A}}\right], 8.06\left[1 \mathrm{H}, \mathrm{s},(\mathrm{NH})_{\mathrm{B}}\right], 7.87$ ($1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.0, CH-a), 7.55-7.44 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{d}$ and $\mathrm{CH}-\mathrm{e}$), 7.42-7.27 (3 H, m, CH-c and CH-f), 7.11 (1 H , ddd, $J 8.0,7.5$ and $1.0, \mathrm{CH}-\mathrm{b}), 7.01(1 \mathrm{H}, \mathrm{tt}, J 8.0$ and $1.0, \mathrm{CH}-\mathrm{g}), 5.87\left[1 \mathrm{H}, \mathrm{s},\left(\mathrm{CHO}_{2}\right)\right], 4.18-4.09[2 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right]$ and $4.09-4.00\left[2 \mathrm{H}, \mathrm{m},\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 153.3(\mathrm{C}=\mathrm{O}), 140.6(\mathrm{C}), 138.0(\mathrm{C})$, $130.0(\mathrm{CH}), 129.5(\mathrm{CH}), 127.7(\mathrm{CH}), 127.6(\mathrm{C}), 123.6(\mathrm{CH}), 123.3(\mathrm{CH}), 122.5(\mathrm{CH}), 119.0(\mathrm{CH}), 101.7(\mathrm{CH})$ and $65.5\left[\left(\mathrm{CH}_{2}\right) \times 2\right] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 307\left(100 \%, \mathrm{M}+\mathrm{Na}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{Na}^{+}, 307.1056, \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ requires $M+N a, 307.1053)$.
The 1-(2-(1,3-Dioxolan-2-yl)phenyl)-3-phenylurea ($1.60 \mathrm{~g}, 5.65 \mathrm{mmol}$) was dissolved in THF ($57 \mathrm{~cm}^{3}$) and cooled to $0{ }^{\circ} \mathrm{C}$. Sodium hydride $(0.90 \mathrm{~g}, 23 \mathrm{mmol})$ was added portionwise and stirred at room temperature for 2 h. Benzyl bromide ($2.74 \mathrm{~cm}^{3}, 23.0 \mathrm{mmol}$) was added dropwise and stirred at room temperature for 19 h . Water $\left(50 \mathrm{~cm}^{3}\right)$ was added and extracted with EtOAc $\left(3 \times 40 \mathrm{~cm}^{3}\right)$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; 2 \% \mathrm{Et}_{3} \mathrm{~N}, 10 \% \mathrm{EtOAc}\right.$ in petrol) to give 1-(2-(1,3-dioxolan-2-yl)phenyl)-1,3-dibenzyl-3phenylurea $8(1.33 \mathrm{~g}, 51 \%)$ as a colourless oil, $R_{\mathrm{f}}\left(2 \% \mathrm{Et}_{3} \mathrm{~N}, 49 \% \mathrm{EtOAc}\right.$ in petrol) 0.31 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1715$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.54-7.34(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.10(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $7.0, \mathrm{Ar}), 7.04-6.96(2 \mathrm{H}, \mathrm{br} ., \mathrm{Ar})$, $6.87(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $7.5, \mathrm{Ar}), 6.76-6.67(2 \mathrm{H}, \mathrm{br} ., \mathrm{Ar}), 6.35(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 5.66\left[1 \mathrm{H}, \mathrm{s},\left(\mathrm{CHO}_{2}\right)\right], 5.10-$
$4.70\left[4 \mathrm{H}\right.$, br., $\left.\left(\mathrm{NCH}_{2} \mathrm{Ar}\right) \times 2\right]$, $4.20-4.05\left[2 \mathrm{H}\right.$, br., $\left.\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right]$ and 4.04-3.80 [2 H, br., $\left.\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right]$; $\delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 161.5(\mathrm{C}=\mathrm{O}), 143.8(\mathrm{C}), 142.8(\mathrm{C}), 138.8(\mathrm{C}), 138.6(\mathrm{C}), 135.0(\mathrm{C}), 129.6(\mathrm{CH}), 129.2(\mathrm{CH})$, $129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 127.9(\mathrm{CH}), 127.6(\mathrm{CH}), 127.4(\mathrm{CH}), 126.8(\mathrm{CH})$, $126.0(\mathrm{CH}), 125.6(\mathrm{CH}), 99.9(\mathrm{CH}), 65.6\left[\left(\mathrm{CH}_{2}\right) \times 2\right], 56.4\left(\mathrm{NCH}_{2} \mathrm{Ar}_{\mathrm{A}}\right.$ and $56.1\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)_{\mathrm{B}} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 487(100$ $\%, \mathrm{M}+\mathrm{Na}^{+}$); (Found: $\mathrm{M}+\mathrm{Na}^{+}, 487.2001, \mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ requires $\mathrm{M}+\mathrm{Na}$, 487.1998).

1,3-Dibenzyl-1-(2-formylphenyl)-3-phenylurea, 9

1-(2-(1,3-Dioxolan-2-yl)phenyl)-1,3-dibenzyl-3-phenylurea 8 ($1.30 \mathrm{~g}, 2.80 \mathrm{mmol}$) was dissolved in THF (28 $\left.\mathrm{cm}^{3}\right), 1 \mathrm{~N}$ aqueous hydrochloric acid ($30 \mathrm{~cm}^{3}$) added and stirred at room temperature for 16 h . The aqueous layer was extracted with EtOAc $\left(3 \times 20 \mathrm{~cm}^{3}\right)$, the combined organic fractions dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography ($\mathrm{SiO}_{2} ; 40 \% \mathrm{EtOAc}$ in petrol) to give 1,3-dibenzyl-1-(2-formylphenyl)-3-phenylurea 9 (1.18 g, 99%) as a colourless oil, $R_{\mathrm{f}}\left(2 \% \mathrm{Et}_{3} \mathrm{~N}, 49 \%\right.$ EtOAc in petrol) 0.76 ; $v_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 1715(\mathrm{C}=\mathrm{O})$ and $1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.59(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$, $7.54(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 2.0, Ar), 7.30-7.23 ($10 \mathrm{H}, \mathrm{m} \mathrm{Ar}$), $7.19(1 \mathrm{H}, \mathrm{ddd}, 8.0,8.0$ and 2.0 , Ar), $7.11(1 \mathrm{H}, \mathrm{dd}, J$ 7.5 and 7.0, Ar), 6.95-6.89 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.63(1 \mathrm{H}$, dd, $J 8.0$ and 1.0, Ar), 6.54-6.47 (2 H, m, Ar), 4.91 [2 H, s, $\left.\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)_{\mathrm{A}}\right]$ and $4.77\left[2 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)_{\mathrm{B}}\right] ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 189.4(\mathrm{CHO}), 161.1(\mathrm{C}=\mathrm{O}), 145.7(\mathrm{C}), 142.8$ (C), $137.5(\mathrm{C}), 136.6(\mathrm{C}), 134.0(\mathrm{CH}), 132.2(\mathrm{C}), 129.5(\mathrm{CH}), 129.4(\mathrm{CH}), 129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 128.3(\mathrm{CH})$, $128.1(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 127.3(\mathrm{CH}), 126.5(\mathrm{CH}), 125.9(\mathrm{CH}), 56.4\left(\mathrm{NCH}_{2} \mathrm{Ar}_{\mathrm{A}}\right.$ and $55.8\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)_{\mathrm{B}} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 423\left(100 \%, \mathrm{M}+\mathrm{Na}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{Na}^{+}, 423.1742, \mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ requires $M+\mathrm{Na}$, 423.1730).

(S,S)-1-(2-(tert-Butylsulfinyl)phenyl)-3-(2-(hydroxy(phenyl)methyl)phenyl)-1,3-dimethylurea) 10a ($\mathrm{Nu}=\mathrm{Ph}$)

1-(2-(tert-Butylsulfinyl)phenyl)-3-(2-formylphenyl)-1,3-dimethylurea 7 ($0.10 \mathrm{~g}, 0.27 \mathrm{mmol}$) was dissolved in THF ($5 \mathrm{~cm}^{3}$), cooled to $-78{ }^{\circ} \mathrm{C}$ and DMPU $\left(0.10 \mathrm{~cm}^{3}, 1.0 \mathrm{mmol}\right)$ added. $\mathrm{PhMgBr}\left(0.54 \mathrm{~cm}^{3}, 0.54 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in hexanes) was added dropwise and stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 h . $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ was added, warmed to room temperature and water $\left(10 \mathrm{~cm}^{3}\right)$ added. The aqueous layer was extracted with EtOAc $\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and the
combined organic fractions dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ;\right.$ Pentane to EtOAc$)$ and recrystallisation to give 1-(2-(tert-butylsulfinyl)phenyl)-3-(2-(hydroxy-(phenyl)methyl) phenyl) -1,3-dimethylurea $\mathbf{1 0 a}(\mathrm{Nu}=\mathrm{Ph})(0.115 \mathrm{~g}, 95 \%)$, as colourless cubes, m.p. $189-191^{\circ} \mathrm{C}$ (from EtOAc-pentane); $[\alpha]_{\mathrm{D}}{ }^{24}=-353\left(\mathrm{c}=0.2\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}(\mathrm{EtOAc}) 0.48$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3390(\mathrm{OH})$ and $1648(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.62(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 7.32-6.40(12 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}), 5.89,[1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}(\mathrm{CH}) \mathrm{OHAr}], 3.28\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}\right], 2.91\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}\right]$ and $1.15\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right) \times 3\right] ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $159.8(\mathrm{C}=\mathrm{O}), 144.8(\mathrm{C}), 144.4(\mathrm{C}), 140.7(\mathrm{C}), 137.8(\mathrm{C}), 137.7(\mathrm{C}), 132.2(\mathrm{CH}), 129.3(\mathrm{CH})$, $128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 127.2(\mathrm{CH}), 126.9(\mathrm{CH}), 126.5(\mathrm{CH}), 125.9(\mathrm{CH}), 125.6$ $(\mathrm{CH}), 71.1(\mathrm{CH}), 56.0(\mathrm{C}), 40.0\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}, 39.7\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}$ and $23.1\left[\left(\mathrm{CH}_{3}\right) \times 3\right] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 451\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{H}^{+}, 451.2044, \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $M+H, 451.2050$).

This procedure was repeated as above at different temperatures, using different reaction conditions and with different Grignard reagents as described in Chapter 2.
(S,R)-1-(2-(tert-Butylsulfinyl)phenyl)-3-(2-(hydroxy(phenyl)methyl)phenyl)-1,3-dimethylurea, 10b ($\mathrm{Nu}=\mathrm{Ph}$)

1-(2-(tert-Butylsulfinyl)phenyl)-3-(2-(benzoyl)phenyl)-1,3-dimethylurea $11(0.10 \mathrm{~g}, 0.22 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and cooled to $-78^{\circ} \mathrm{C}$. DibalH $\left(0.44 \mathrm{~cm}^{3}, 0.44 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in hexanes) was added dropwise and stirred at $-78{ }^{\circ} \mathrm{C}$ for 8 h . $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ was added, warmed to room temperature and water $\left(10 \mathrm{~cm}^{3}\right)$ added. The aqueous layer was extracted with EtOAc $\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and the combined organic fractions dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ;\right.$ Pentane to EtOAc) and recrystallisation to give 1-(2-(tert-butylsulfinyl)phenyl)-3-(2-(hydroxy(phenyl)methyl) phenyl) -1,3-dimethylurea $\mathbf{1 0 b}(\mathrm{Nu}=\mathrm{Ph})(0.115 \mathrm{~g}, 95 \%)$, as colourless cubes, m.p. $189-191{ }^{\circ} \mathrm{C}$ (from EtOAc-pentane); $[\alpha]_{\mathrm{D}}{ }^{24}=+80\left(\mathrm{c}=0.2\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}(\mathrm{EtOAc}) 0.48 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3390(\mathrm{OH})$ and 1648 $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.62(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar}), 7.32-6.40(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.81,[1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}(\mathrm{C} H) \mathrm{OHAr}]$, $3.28\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}\right], 2.91\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}\right]$ and $1.15\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right) \times 3\right] ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.8(\mathrm{C}=\mathrm{O})$, $144.8(\mathrm{C}), 144.4(\mathrm{C}), 140.7(\mathrm{C}), 137.8(\mathrm{C}), 137.7(\mathrm{C}), 132.2(\mathrm{CH}), 129.3(\mathrm{CH}), 128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 127.6$ $(\mathrm{CH}), 127.5(\mathrm{CH}), 127.2(\mathrm{CH}), 126.9(\mathrm{CH}), 126.5(\mathrm{CH}), 125.9(\mathrm{CH}), 125.6(\mathrm{CH}), 71.1(\mathrm{CH}), 56.0(\mathrm{C}), 40.0$ $\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}, 39.7\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}$ and $23.1\left[\left(\mathrm{CH}_{3}\right) \times 3\right] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 451\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{H}^{+}, 451.2044$, $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$ S requires $M+H, 451.2050$).

1-(2-(tert-Butylsulfinyl)phenyl)-3-(2-(benzoyl)phenyl)-1,3-dimethylurea, 11

PCC $(0.10 \mathrm{~g}, \quad 0.50 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at room temperature, 1-(2-(tert-Butylsulfinyl)phenyl)-3-(2-(hydroxy(phenyl)methyl)phenyl)-1,3-dimethylurea $\mathbf{1 0}(\mathrm{Nu}=\mathrm{Ph})(0.15 \mathrm{~g}, 0.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ added dropwise and stirred for 2 h . Diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$ was added, the precipitate isolated, washed with ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$ and the combined organics concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ;\right.$ Pentane to EtOAc) and precipitation to give 1-(2-(tert-butylsulfinyl)phenyl)-3-(2-(benzoyl)phenyl)-1,3-dimethylurea 11 ($0.14 \mathrm{~g}, 98 \%$), as a colourless foam, m.p. 165$167{ }^{\circ} \mathrm{C}$ (from EtOAc-pentane); $[\alpha]_{\mathrm{D}}{ }^{24}=-18.0\left(\mathrm{c}=0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}(\mathrm{EtOAc}) 0.46 ; \mathrm{v}_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1686$ $(\mathrm{C}=\mathrm{O})$ and $1650(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.62(2 \mathrm{H}, \mathrm{dd}, J 8.0$ and $2.0, \mathrm{CH}-\mathrm{i}), 7.58(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{a}$ and CHb) $7.46(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{e}$ and $\mathrm{CH}-\mathrm{k})$, $7.21(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{f}), 6.96(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{c}, \mathrm{CH}-\mathrm{g}$ and CH-j), $6.79(1 \mathrm{H}, \mathrm{d}, J 8.0$, CH-d), $6.71(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{CH}-\mathrm{h}), 3.02\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}\right], 2.99\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}\right]$ and $1.05\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right) \times 3\right]$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 197.1(\mathrm{C}=\mathrm{O}), 158.1(\mathrm{C}=\mathrm{O}), 144.0(\mathrm{C}), 143.0(\mathrm{C}), 138.0(\mathrm{C}), 137.0(\mathrm{C}), 136.0(\mathrm{C}), 133.7$ $(\mathrm{CH}), 132.0(\mathrm{CH}), 131.8(\mathrm{CH}), 131.0(\mathrm{CH}), 129.7(\mathrm{CH}), 129.2(\mathrm{CH}), 128.5(\mathrm{CH}), 127.8(\mathrm{CH}), 127.0(\mathrm{CH}), 126.5$ $(\mathrm{CH}), 125.5(\mathrm{CH}), 56.0(\mathrm{C}), 39.5\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}, 38.6\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}$ and $22.9\left[\left(\mathrm{CH}_{3}\right) \times 3\right] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 449\left(50 \%, \mathrm{M}+\mathrm{H}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{H}^{+}, 449.1892, \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $M+H, 449.1894$).

1-(2-(1,3-Dioxolan-2-yl)phenyl)-3-(3-aminophenyl)urea, 12

2-(1,3-Dioxolan-2-yl)benzenamine $4(4.1 \mathrm{~g}, 25 \mathrm{mmol})$ was dissolved in THF ($150 \mathrm{~cm}^{3}$). 3-Nitrophenyl isocyanate $(4.1 \mathrm{~g}, 25 \mathrm{mmol})$ was added portionwise and stirred at room temperature for 18 h . The mixture was concentrated under reduced pressure and the residue purified by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petrol to give 1-(2-(1,3-dioxolan-2-yl)phenyl)-3-(3-nitrophenyl)urea (7.22 g, 88%) as pale yellow cubes, m.p. 191-193 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-petrol); $R_{\mathrm{f}}\left(2 \% \mathrm{Et}_{3} \mathrm{~N}, 48 \% \mathrm{EtOAc}\right.$ in petrol) 0.22 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3438(\mathrm{NH}), 1663(\mathrm{C}=\mathrm{O}), 1551$ and $1351\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; d_{6}-\mathrm{DMSO}\right) 9.91\left[1 \mathrm{H}, \mathrm{s},(\mathrm{NH})_{\mathrm{A}}\right], 9.50\left[1 \mathrm{H}, \mathrm{s},(\mathrm{NH})_{\mathrm{B}}\right], 8.58(1 \mathrm{H}$, ddd, $J 2.0,2.0$ and 2.0 , CH-h), $7.88(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.0, \mathrm{CH}-\mathrm{a}), 7.80(1 \mathrm{H}, \mathrm{ddd}, J 8.0,2.0$ and $1.0, \mathrm{CH}-\mathrm{g}), 7.76(1 \mathrm{H}, \mathrm{ddd}, J 8.0$, 2.0 and 1.0, CH-e), $7.60(1 \mathrm{H}$, ddd, $J 8.0,8.0$ and $2.0, \mathrm{CH}-\mathrm{f}), 7.47(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $2.0, \mathrm{CH}-\mathrm{d}), 7.40(1 \mathrm{H}$, ddd,
$J 8.0,8.0$ and 2.0, CH-b), $7.14(1 \mathrm{H}, \mathrm{ddd}, J 8.0,8.0$ and $1.0, \mathrm{CH}-\mathrm{c}), 5.87\left[1 \mathrm{H}, \mathrm{s},\left(\mathrm{CHO}_{2}\right)\right], 4.19-4.09[2 \mathrm{H}, \mathrm{m}$, $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$] and 4.09-4.00 [2 H, m, $\left.\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; d_{6}\right.$-DMSO) $153.2(\mathrm{C}=\mathrm{O}), 148.9(\mathrm{C}), 141.9$ (C), $141.4(\mathrm{C}), 137.4(\mathrm{C}), 130.9(\mathrm{CH}), 130.0(\mathrm{CH}), 128.0(\mathrm{CH}), 125.4(\mathrm{CH}), 124.9(\mathrm{CH}), 123.9(\mathrm{CH}), 117.0$ $(\mathrm{CH}), 112.8(\mathrm{CH}), 101.8(\mathrm{CH})$ and $65.5\left[\left(\mathrm{CH}_{2}\right) \times 2\right] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 330\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{H}^{+}, 330.1091$, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $M+H, 330.1084$).
The 1-(2-(1,3-Dioxolan-2-yl)phenyl)-3-(3-nitrophenyl)urea ($4.4 \mathrm{~g}, 15 \mathrm{mmol}$) was dissolved in THF ($100 \mathrm{~cm}^{3}$), IPA $\left(100 \mathrm{~cm}^{3}\right)$, triethylamine $\left(2.7 \mathrm{~cm}^{3}, 20 \mathrm{mmol}\right), 10 \%$ palladium on carbon $(0.16 \mathrm{~g}, 0.15 \mathrm{mmol})$ added and the suspension stirred under a hydrogen atmosphere for 18 h . The suspension was filtered through celite and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; 1 \%\right.$ $\mathrm{Et}_{3} \mathrm{~N}, 49$ \% EtOAc in petrol) to give 1-(2-(1,3-dioxolan-2-yl)phenyl)-3-(3-aminophenyl)urea 12 ($3.62 \mathrm{~g}, 80$ \%), as white plates, m.p. $189-191{ }^{\circ} \mathrm{C}$ (from EtOAc-petrol); $R_{\mathrm{f}}\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in EtOAc$) 0.18 ; \mathrm{v}_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3351(\mathrm{~N}-$ $\mathrm{H})$ and $1672(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$; d_{6}-DMSO) $8.97\left[1 \mathrm{H}, \mathrm{s},(\mathrm{NH})_{\mathrm{A}}\right], 7.94\left[1 \mathrm{H}, \mathrm{s},(\mathrm{NH})_{\mathrm{B}}\right], 7.87(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.0, \mathrm{CH}-\mathrm{a}$), 7.41 (1 H , dd, $J 8.0$ and 1.0, CH-d), 7.30 ($1 \mathrm{H}, \mathrm{ddd}, J 8.0,8.0$ and 1.0, CH-b), 7.02 (1 H , ddd, $J 8.0$, 8.0 and 1.0, CH-c), $6.90(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $8.0, \mathrm{CH}-\mathrm{f}), 6.85(1 \mathrm{H}, \mathrm{dd}, J 2.0$ and $2.0, \mathrm{CH}-\mathrm{h}), 6.60(1 \mathrm{H}, \mathrm{ddd}, J 8.0$, 2.0 and $1.0, \mathrm{CH}-\mathrm{e}), 6.24(1 \mathrm{H}$, ddd, $J 8.0,2.0$ and $1.0, \mathrm{CH}-\mathrm{g}), 5.82\left[1 \mathrm{H}, \mathrm{s},\left(\mathrm{CHO}_{2}\right)\right], 4.76\left[2 \mathrm{H}, \mathrm{s},\left(\mathrm{NH}_{2}\right)\right]$ and 4.15-4.08 [2 H, m, $\left.\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right]$ and 4.07-3.97 [2 H, m, $\left.\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; d_{6}-\mathrm{DMSO}\right) 153.2(\mathrm{C}=\mathrm{O})$, $149.4(\mathrm{C}), 141.0(\mathrm{C}), 138.1(\mathrm{C}), 129.7(\mathrm{CH}), 129.6(\mathrm{CH}), 127.5(\mathrm{CH}), 127.2(\mathrm{C}), 123.4(\mathrm{CH}), 122.8(\mathrm{CH}), 109.1$ $(\mathrm{CH}), 107.6(\mathrm{CH}), 105.2(\mathrm{CH}), 101.9(\mathrm{CH})$ and $65.4\left[\left(\mathrm{CH}_{2}\right) \times 2\right] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 300\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$; (Found: M+H ${ }^{+}$, 300.1339, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $M+H, 300.1343$).

1-(2-(1,3-Dioxolan-2-yl)phenyl)-1,3-dimethyl-3-(3-(3-(2-bromophenyl)-1,3-dimethyl-ureido)phenyl)urea, 13

1-(2-(1,3-Dioxolan-2-yl)phenyl)-3-(3-aminophenyl)urea $12(1.0 \mathrm{~g}, 3.3 \mathrm{mmol})$ was dissolved in THF $\left(50 \mathrm{~cm}^{3}\right)$, 2bromophenylisocyanate $\left(0.41 \mathrm{~cm}^{3}, 3.3 \mathrm{mmol}\right)$ added dropwise, stirred for 18 h and concentrated. The residue was purified by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-petrol to give 1-(2-(1,3-dioxolan-2-yl)phenyl)-3-(3-(3-(2bromophenyl)ureido)phenyl)urea ($1.59 \mathrm{~g}, 97 \%$) as colourless prisms, m.p. $106-108{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-petrol); $R_{\mathrm{f}}\left(2 \% \mathrm{Et}_{3} \mathrm{~N}, 49 \% \mathrm{EtOAc}\right.$ in petrol) $0.70 ; \mathrm{v}_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3412$ and $3312(\mathrm{~N}-\mathrm{H}), 1738$ and $1715(\mathrm{C}=\mathrm{O})$ and 747 (C-Br); $\delta_{H}\left(300 \mathrm{MHz} ; d_{6}\right.$-DMSO) $9.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9.44(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.15(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.13(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{l}), 8.05(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.88(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{a}), 7.80(1 \mathrm{H}, \mathrm{t}, J 1.5, \mathrm{CH}-\mathrm{h}), 7.64(1 \mathrm{H}, \mathrm{dd}, J$ 8.0 and $1.5, \mathrm{CH}-\mathrm{i}), 7.45(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{d}), 7.37(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{e}$ and $\mathrm{CH}-\mathrm{g}), 7.25-7.05(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{c}$,

CH-f, CH-j and CH-k), $6.99(1 \mathrm{H}, \mathrm{ddd}, J 8.0,8.0$ and $1.5, \mathrm{CH}-\mathrm{b}), 5.87\left[1 \mathrm{H}, \mathrm{s},\left(\mathrm{CHO}_{2}\right)\right]$ and $4.19-3.99[4 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; d_{6}\right.$-DMSO) $153.2(\mathrm{C}=\mathrm{O}), 152.8(\mathrm{C}=\mathrm{O}), 141.1(\mathrm{C}), 140.7(\mathrm{C}), 138.0(\mathrm{C}), 137.8(\mathrm{C})$, $133.2(\mathrm{CH}), 129.9(\mathrm{CH}), 128.8(\mathrm{CH}), 127.7(\mathrm{C}), 127.5(\mathrm{CH}), 124.7(\mathrm{CH}), 124.4(\mathrm{CH}), 123.5(\mathrm{CH}), 123.2(\mathrm{CH})$, $122.7(\mathrm{CH}), 113.6(\mathrm{C}), 112.8(\mathrm{CH}), 112.4(\mathrm{CH}), 108.7(\mathrm{CH}), 101.7(\mathrm{CH})$, and $65.5\left[\left(\mathrm{CH}_{2}\right) \times 2\right] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{\dagger}\right) 519$ (100 \%, M $+\mathrm{Na}^{+}$); (Found: $\mathrm{M}^{2} \mathrm{Na}^{+}, 519.0642, \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{BrNa}$ requires $M+\mathrm{Na}, 519.0638$).
The 1-(2-(1,3-Dioxolan-2-yl)phenyl)-3-(3-(3-(2-bromophenyl)ureido)phenyl)urea ($1.58 \mathrm{~g}, 3.18 \mathrm{mmol}$) was dissolved in DMF $\left(50 \mathrm{~cm}^{3}\right)$ and cooled to $0^{\circ} \mathrm{C}$. Sodium hydride $(0.64 \mathrm{~g}, 16.0 \mathrm{mmol})$ was added portionwise and stirred at room temperature for 1 h . Methyl iodide ($1.12 \mathrm{~cm}^{3}, 18.0 \mathrm{mmol}$) was added and stirred at room temperature for 21 h . Water $\left(50 \mathrm{~cm}^{3}\right)$ was added and extracted with EtOAc ($3 \times 40 \mathrm{~cm}^{3}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; 10 \% \mathrm{EtOAc}\right.$ and $2 \% \mathrm{Et}_{3} \mathrm{~N}$ in petrol) to give 1-(2-(1,3-dioxolan-2-yl)phenyl)-1,3-dimethyl-3-(3-(3-(2-bromophenyl)-1,3-dimethyl-ureido)phenyl)urea $\mathbf{1 3}$ (1.65 $\mathrm{g}, 94 \%$), as colourless cubes, m.p. $190-192{ }^{\circ} \mathrm{C}$ (from EtOAc-pentane); $R_{\mathrm{f}}\left(2 \% \mathrm{Et}_{3} \mathrm{~N}, 49 \% \mathrm{EtOAc}\right.$ in petrol) 0.35 ; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1738$ and $1716(\mathrm{C}=\mathrm{O})$ and $735(\mathrm{C}-\mathrm{Br}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.33(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-1), 7.06$ $(1 \mathrm{H}, \mathrm{td}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{j}), 7.00(1 \mathrm{H}, \mathrm{td}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{k}), 6.94(1 \mathrm{H}, \mathrm{td}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{b}), 6.85(1 \mathrm{H}$, dd, $J 8.0$ and 1.5, CH-i), $6.79(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{CH}-\mathrm{f}) 6.78(1 \mathrm{H}, \mathrm{td}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{c}), 6.69(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.5, CH-d), $6.58(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{a}), 6.51(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{e}$ or $\mathrm{CH}-\mathrm{g}), 6.44(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{g}$ or $\mathrm{CH}-\mathrm{e}), 6.11$ $(1 \mathrm{H}, \mathrm{d}, J 1.5$ and $1.5, \mathrm{CH}-\mathrm{h}), 5.58\left[1 \mathrm{H}, \mathrm{s},\left(\mathrm{CHO}_{2}\right)\right], 4.18-3.97\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right], 3.17\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}\right]$, $3.13\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}\right], 3.03\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}\right]$ and $2.98\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 161.4(\mathrm{C}=\mathrm{O})$, 160.5 (C=O), 146.0 (C), 145.8 (C), 144.2 (C), $144.0(\mathrm{C}), 134.7(\mathrm{C}), 133.4(\mathrm{CH}), 130.2(\mathrm{CH}), 129.8(\mathrm{CH}), 129.2$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 127.6(\mathrm{CH}), 127.4(\mathrm{CH}), 126.8(\mathrm{CH}), 123.7(\mathrm{CH}), 123.4(\mathrm{CH}), 123.3(\mathrm{CH}), 122.9$ (C), $99.7(\mathrm{CH}), 65.5\left[\left(\mathrm{CH}_{2}\right) \times 2\right], 40.5\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}, 40.0\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}, 39.9\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}$ and $38.8\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}} \mathrm{m} / \mathrm{z}\left(\mathrm{ES}{ }^{+}\right) 575$ $\left(100 \%, \mathrm{M}+\mathrm{Na}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{Na}^{+}, 575.1269, \mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{BrNa}$ requires $M+\mathrm{Na}, 575.1264$).

1-(2-(tert-Butylsulfinyl)phenyl)-1,3-dimethyl-3-(3-(3-(2-formylphenyl)-1,3-dimethyl-ureido)phenyl)urea, 14

1-(2-(1,3-Dioxolan-2-yl)phenyl)-1,3-dimethyl-3-(3-(3-(2-bromophenyl)-1,3-dimethyl-ureido)phenyl)urea $(1.10 \mathrm{~g}, 1.99 \mathrm{mmol})$ was dissolved in THF $\left(100 \mathrm{~cm}^{3}\right)$ and cooled to $-90^{\circ} \mathrm{C} . n$-Butyllithium ($1.19 \mathrm{~cm}^{3}, 2.28$ $\mathrm{mmol}, 1.92 \mathrm{M}$ in hexanes) was added dropwise and stirred for 1 min at $-90^{\circ} \mathrm{C}$. After this time, (S)-tert-Butyl 2-methylpropane-2-sulfinothioate ${ }^{1}\left[0.59 \mathrm{~g}, 2.99 \mathrm{mmol}\right.$ in THF $\left.\left(6.0 \mathrm{~cm}^{3}\right)\right]$ was added in one portion and stirred at -
$90^{\circ} \mathrm{C}$ for 5 min . After warming to room temperature over 18 h , saturated aqueous ammonium chloride ($10 \mathrm{~cm}^{3}$) and water $\left(20 \mathrm{~cm}^{3}\right)$ were added and the aqueous layer extracted with EtOAc $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; 20 \% \mathrm{EtOAc}\right.$ and $2 \% \mathrm{Et}_{3} \mathrm{~N}$ in petrol to $2 \% \mathrm{Et}_{3} \mathrm{~N}$ in EtOAc) to give 1-(2-(1,3-dioxolan-2-yl)phenyl)-1,3-dimethyl-3-(3-(3-(2-(tert-butylsulfinyl)phenyl)-1,3-dimethyl-ureido)phenyl)urea $(0.68 \mathrm{~g}, 61 \%)$, as colourless cubes, m.p. $245-247^{\circ} \mathrm{C}$ (from EtOAc-petrol); $[\alpha]_{\mathrm{D}}{ }^{22}=+47.2\left(\mathrm{c}=0.5 \mathrm{in}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}\right)$; $R_{\mathrm{f}}\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in EtOAc$) 0.32 ; \mathrm{v}_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1724(\mathrm{C}=\mathrm{O}), 1655(\mathrm{C}=\mathrm{O})$ and $1072(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $7.56(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $2.0, \mathrm{CH}-1), 7.27(1 \mathrm{H}$, dd, $J 8.0$ and $2.0, \mathrm{CH}-\mathrm{i}), 7.05-6.78(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{b}, \mathrm{CH}-\mathrm{c}, \mathrm{CH}-\mathrm{j}$ and CH-k), $6.65(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{CH}-\mathrm{d}), 6.39(1 \mathrm{H}, \mathrm{dd}, 8.0$ and $1.0, \mathrm{CH}-\mathrm{a}), 6.35(2 \mathrm{H}, \mathrm{dd}, J 8.0$ and 2.0, CH-e and CHg), $6.03(1 \mathrm{H}, \mathrm{dd}, J 2.0$ and $2.0, \mathrm{CH}-\mathrm{h}), 5.47\left[1 \mathrm{H}, \mathrm{s},\left(\mathrm{CHO}_{2}\right)\right], 4.14-3.82\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right], 3.18[3 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}\right], 3.09\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}\right], 3.01\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}\right], 2.91\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}\right]$ and $1.08\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right) \times 3\right]$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 161.4(\mathrm{C}=\mathrm{O}), 159.8(\mathrm{C}=\mathrm{O}), 145.8(\mathrm{C}), 144.1(\mathrm{C}), 143.9(\mathrm{C}), 137.8(\mathrm{C}), 134.6(\mathrm{C}), 131.6$ $(\mathrm{CH}), 129.8(\mathrm{CH}), 129.1(\mathrm{CH}), 128.3(\mathrm{C}), 127.4(\mathrm{CH}), 127.2(\mathrm{CH}), 126.8(\mathrm{CH}), 126.7(\mathrm{CH}), 125.4(\mathrm{CH}), 123.3$ $(\mathrm{CH}), 123.1(\mathrm{CH}), 123.0(\mathrm{CH}), 122.9(\mathrm{CH}), 99.7(\mathrm{CH}), 65.5\left[\left(\mathrm{CH}_{2}\right) \times 2\right], 56.0(\mathrm{C}), 40.5\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}, 39.7\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}$, $39.6\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}, 39.2\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}$ and $23.0\left[\left(\mathrm{CH}_{3}\right) \times 3\right] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 601\left(100 \%, \mathrm{M}+\mathrm{Na}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{Na}^{+}, 601.2454$, $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{NaS}$ requires $\left.M+\mathrm{Na}, 601.2455\right)$. 1-(2-(1,3-Dioxolan-2-yl)phenyl)-1,3-dimethyl-3-(3-(3-phenyl)-1,3-dimethyl-ureido)phenyl)urea ($0.33 \mathrm{~g}, 36 \%$) was also obtained as colourless cubes, m.p. $230-232{ }^{\circ} \mathrm{C}$ (from EtOAc-petrol); $R_{\mathrm{f}}\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in EtOAc$) 0.50 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1710(\mathrm{C}=\mathrm{O}), 1651(\mathrm{C}=\mathrm{O})$ and $1072(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $7.33(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 2.0, $\mathrm{CH}-\mathrm{a}$), $7.08-6.58(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.89(1 \mathrm{H}, \mathrm{tt}, 7.0$ and $1.0, \mathrm{CH}-\mathrm{k}), 6.75$ $(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $8.0, \mathrm{CH}-\mathrm{f}), 6.72(2 \mathrm{H}, \mathrm{dd}, J 7.0$ and $1.0, \mathrm{CH}-\mathrm{i}), 6.57(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.0, \mathrm{CH}-\mathrm{d}), 6.49(1 \mathrm{H}$, ddd, $J 8.0,2.0$ and 1.0, CH-e), $6.38(1 \mathrm{H}$, ddd, $J 8.0,2.0$ and $1.0, \mathrm{CH}-\mathrm{g}), 6.06(1 \mathrm{H}, \mathrm{dd}, J 2.0$ and $2.0, \mathrm{CH}-\mathrm{h}), 5.53$ [1 H, s, $\left(\mathrm{CHO}_{2}\right)$], 4.17-4.03 [2 H, m, $\left.\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right], 4.02-3.93\left[2 \mathrm{H}, \mathrm{m},\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right], 3.16\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}\right]$, $3.14\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}\right], 3.00\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}\right]$ and $2.94\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}\right]$; No ${ }^{13} \mathrm{C}$ spectrum was recorded; m/z (ES ${ }^{+}$) $497\left(100 \%, \mathrm{M}+\mathrm{Na}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{Na}^{+}, 497.2159, \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}$ requires $M+\mathrm{Na}, 497.2154$).

The 1-(2-(1,3-Dioxolan-2-yl)phenyl)-1,3-dimethyl-3-(3-(3-(2-(tert-butylsulfinyl)phenyl)-1,3-dimethylureido) phenyl)urea ($0.65 \mathrm{~g}, 1.12 \mathrm{mmol}$) was dissolved in THF $\left(20 \mathrm{~cm}^{3}\right), 1 \mathrm{~N}$ aqueous hydrochloric acid ($20 \mathrm{~cm}^{3}$) added and stirred at room temperature for 16 h . The aqueous layer was extracted with EtOAc $\left(3 \times 20 \mathrm{~cm}^{3}\right)$, the combined organic fractions dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; 50 \% \mathrm{EtOAc}\right.$ in petrol) to give 1-(2-(tert-butylsulfinyl)phenyl)-1,3-dimethyl-3-(3-(3-(2-formylphenyl)-1,3-dimethyl-ureido)phenyl)urea 14 ($0.59 \mathrm{~g}, 98 \%$), as colourless cubes, m.p. $215-217{ }^{\circ} \mathrm{C}$ (from EtOAc-pentane); $[\alpha]_{\mathrm{D}}{ }^{23}=+40.0\left(\mathrm{c}=0.4\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}(50 \%$ EtOAc in petrol) 0.50 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1691(\mathrm{HC}=\mathrm{O}), 1654(\mathrm{C}=\mathrm{O})$ and $1032(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.79(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{O})$, $7.62(1$ $\mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{a}), 7.53(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{d}), 7.31(1 \mathrm{H}, \mathrm{ddd}, J 8.0,8.0$ and $1.5, \mathrm{CH}-\mathrm{c}), 7.12$ (1 H, ddd, $J 8.0,8.0$ and $1.5, \mathrm{CH}-\mathrm{j}), 7.03(1 \mathrm{H}$, ddd, $J 8.0,8.0$ and $1.5, \mathrm{CH}-\mathrm{b}), 6.95(1 \mathrm{H}, \mathrm{td}, J 8.0$ and $1.5, \mathrm{CH}-\mathrm{k})$,
$6.85(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{CH}-1), 6.69(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{CH}-\mathrm{f}), 6.47-6.30(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{e}, \mathrm{CH}-\mathrm{g}$ and CH-i), $5.98(1 \mathrm{H}, \mathrm{dd}, J$ 1.5 and $1.5, \mathrm{CH}-\mathrm{h}), 3.23\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}\right], 3.22\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}, 3.00\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}\right], 2.99[3 \mathrm{H}, \mathrm{s}\right.$, $\left.\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}\right]$ and $1.13\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right) \times 3\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 189.4(\mathrm{HC=O}), 161.2(\mathrm{C}=\mathrm{O}), 159.5(\mathrm{C}=\mathrm{O}), 147.9$ (C), $146.0(\mathrm{C}), 145.2(\mathrm{C}), 143.8(\mathrm{C}), 137.8(\mathrm{C}), 134.6(\mathrm{CH}), 131.7(\mathrm{CH}), 131.2(\mathrm{C}), 129.2(\mathrm{CH}), 129.0(\mathrm{CH})$, $128.8(\mathrm{CH}), 128.2(\mathrm{CH}), 127.2(\mathrm{CH}), 126.9(\mathrm{CH}), 126.6(\mathrm{CH}), 125.5(\mathrm{CH}), 123.4(\mathrm{CH}), 123.2(\mathrm{CH}), 56.0(\mathrm{C})$, $41.2\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}, 39.6\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}, 39.5\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}, 39.2\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}$ and $23.0\left[\left(\mathrm{CH}_{3}\right) \times 3\right] ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 535\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{H}^{+}, 535.2379, \mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires $M+H, 535.2374$).

1-(2-(tert-Butylsulfinyl)phenyl)-1,3-dimethyl-3-(3-(3-(2-(hydroxy-(phenyl)methyl)phenyl)-1,3dimethylureido)phenyl)urea, 15

Method 1

1-(2-(tert-Butylsulfinyl)phenyl)-1,3-dimethyl-3-(3-(3-(2-formylphenyl)-1,3-dimethyl-ureido)phenyl)urea
$(0.10 \mathrm{~g}, 0.18 \mathrm{mmol})$ was dissolved in THF $\left(5 \mathrm{~cm}^{3}\right)$, cooled to $-78^{\circ} \mathrm{C}$ and DMPU ($\left.0.24 \mathrm{~cm}^{3}, 1.8 \mathrm{mmol}\right)$ added. $\mathrm{PhMgBr}\left(0.54 \mathrm{~cm}^{3}, 0.54 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in hexanes) was added dropwise and stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 h . MeOH (5 cm^{3}) was added, warmed to room temperature and water $\left(10 \mathrm{~cm}^{3}\right)$ added. The aqueous layer was extracted with $\operatorname{EtOAc}\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and the combined organic fractions dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$; petrol to EtOAc$)$ to give a mixture of inseparable diastereoisomers of 1-(2-(tert-butylsulfinyl)phenyl)-1,3-dimethyl-3-(3-(3-(2-(hydroxy-(phenyl)methyl)phenyl)-1,3-dimethylureido)phenyl)urea 15 ($0.102 \mathrm{~g}, 90 \%$), as colourless cubes, m.p. $254-256^{\circ} \mathrm{C}$ (from EtOAc-petrol); $[\alpha]_{\mathrm{D}}{ }^{23}=-8.1\left(\mathrm{c}=0.3\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}(\mathrm{EtOAc}) 0.27 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3387(\mathrm{OH}), 1654$ $(\mathrm{C}=\mathrm{O}), 1636(\mathrm{C}=\mathrm{O})$ and $1032(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.65-7.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{\text {maj and min }}\right)$, 7.52-7.41 (2 H, m, $\mathrm{Ar}^{\text {maj and min }}$), 7.36-7.16 ($\left.8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{m a j}{ }^{\text {and min }}\right)$, $7.13-6.75\left(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{m a j}\right.$ and min $), 7.65\left(2 \mathrm{H}, \mathrm{dd}, J 8.0\right.$ and $8.0, \mathrm{Ar}^{m a j}$ and $\left.{ }^{m i n}\right)$, 6.58-6.31 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{m a j}$ and $\left.{ }^{m i n}\right), 6.17\left(2 \mathrm{H}, \mathrm{dd}, J 2.0\right.$ and $2.0, \mathrm{Ar}^{m a j}$ and min $), 5.71[1 \mathrm{H}$, s , $\left.(\mathrm{Ar}(\mathrm{CH}) \mathrm{OHAr})^{m a j}\right], 5.66\left[1 \mathrm{H}, \mathrm{s},(\mathrm{Ar}(\mathrm{CH}) \mathrm{OHAr})^{m i n}\right], 3.21\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}{ }^{m a j}\right.$ and min$], 3.06\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}{ }^{m a j}\right.$ and $\left.{ }^{m i n}\right], 2.91\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}{ }^{\text {maj and min }}\right], 2.88\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}{ }^{\text {maj and min }}\right]$ and $1.14-1.02\left[18 \mathrm{H}, \mathrm{s},\left\{\left(\mathrm{CH}_{3}\right) \times 3\right\}^{\text {maj and }}\right.$ $\left.{ }^{m i n}\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 161.4(\mathrm{C}=\mathrm{O})^{m a j}, 160.8(\mathrm{C}=\mathrm{O})^{\text {min }}, 159.8(\mathrm{C}=\mathrm{O})^{m a j}, 159.5(\mathrm{C}=\mathrm{O})^{m i n}, 147.8(\mathrm{C})^{m a j}, 146.5$ $(\mathrm{C})^{\min }, 146.3(\mathrm{C})^{m a j}, 146.1(\mathrm{C})^{m i n}, 145.9(\mathrm{C})^{m a j}, 145.2(\mathrm{C})^{\min }, 143.9(\mathrm{C})^{m a j}, 143.4(\mathrm{C})^{m i n}, 142.8(\mathrm{C})^{m a j}, 142.6(\mathrm{C})^{m i n}$, $141.1(\mathrm{C})^{m a j}, 137.7(\mathrm{C})^{m i n}, 137.4(\mathrm{C})^{m a j}, 134.6(\mathrm{C})^{\min }, 131.8(\mathrm{CH})^{m a j}, 131.7(\mathrm{CH})^{\min }, 131.2(\mathrm{CH})^{m a j}, 129.2(\mathrm{CH})^{\text {min }}$, $129.1(\mathrm{CH})^{m a j}, 129.0(\mathrm{CH})^{\min }, 128.5(\mathrm{CH})^{m a j}, 128.4(\mathrm{CH})^{m a j}, 128.2(\mathrm{CH})^{m i n}, 127.7(\mathrm{CH})^{m a j}, 127.6(\mathrm{CH})^{\min }, 127.4$
$(\mathrm{CH})^{m a j}, 127.3(\mathrm{CH})^{\min }, 127.22(\mathrm{CH})^{m a j}, 127.17(\mathrm{CH})^{m i n}, 126.9(\mathrm{CH})^{m a j}, 126.6(\mathrm{CH})^{m i n}, 125.6(\mathrm{CH})^{m a j}, 125.5$ $(\mathrm{CH})^{m i n}, 123.4(\mathrm{CH})^{m a j}, 123.1(\mathrm{CH})^{\min }, 122.81(\mathrm{CH})^{m a j}, 122.80(\mathrm{CH})^{\min }, 71.2(\mathrm{CH})^{m a j}, 71.0(\mathrm{CH})^{m i n}, 56.0(\mathrm{C})^{m a j}$, $55.8(\mathrm{C})^{m i n}, 40.2\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}{ }^{\text {maj }}, 40.1\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}{ }^{\text {min }}, 39.8\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}{ }^{\text {maj }}, 39.7\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}{ }^{\text {min }}, 39.6\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}{ }^{m a j}, 39.5$ $\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}{ }^{\text {min }}, 39.2\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}{ }^{m a j}, 39.1\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}{ }^{\text {min }}, 23.0\left[\left(\mathrm{CH}_{3}\right) \times 3^{m a j}\right]$ and $22.9\left[\left(\mathrm{CH}_{3}\right) \times 3\right]^{m i n} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 635(100$ $\%, \mathrm{M}+\mathrm{Na}^{+}$); (Found: $\mathrm{M}+\mathrm{Na}^{+}, 635.2660, \mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{NaS}$ requires $M+\mathrm{Na}, 635.2662$).

Method 2

1-(2-(tert-Butylsulfinyl)phenyl)-1,3-dimethyl-3-(3-(3-(2-(benzoyl)phenyl)-1,3-dimethylureido)phenyl)urea $\mathbf{1 6}$ $(0.13 \mathrm{~g}, 0.22 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and cooled to $-78^{\circ} \mathrm{C}$. DibalH $\left(0.44 \mathrm{~cm}^{3}, 0.44 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in hexanes) was added dropwise and stirred at $-78^{\circ} \mathrm{C}$ for 8 h . $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ was added, warmed to room temperature and water $\left(10 \mathrm{~cm}^{3}\right)$ added. The aqueous layer was extracted with EtOAc $\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and the combined organic fractions dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; 20 \% \mathrm{EtOAc}\right.$ in petrol) to give a mixture of inseparable diastereoisomers of 1-(2-(tert-butylsulfinyl)phenyl)-1,3-dimethyl-3-(3-(3-(2-(hydroxy-(phenyl)methyl)phenyl)-1,3-dimethylureido)phenyl)urea 15 ($0.102 \mathrm{~g}, 90 \%$), as colourless cubes, m.p. 254-256 ${ }^{\circ} \mathrm{C}$ (from EtOAc-petrol); $[\alpha]_{\mathrm{D}}{ }^{23}=-9.4\left(\mathrm{c}=0.4\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}\left(50 \%\right.$ EtOAc in petrol) $0.27 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3387(\mathrm{OH}), 1654(\mathrm{C}=\mathrm{O})$, $1636(\mathrm{C}=\mathrm{O})$ and $1032(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.65-7.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{\text {maj and min }}\right)$, 7.52-7.41 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{\text {maj and }}\right.$ $\left.{ }^{\text {min }}\right)$, 7.36-7.16 ($\left.8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{\text {maj and min }}\right)$, 7.13-6.75 ($\left.12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{\text {maj and min }}\right)$, $7.65\left(2 \mathrm{H}, \mathrm{dd}, J 8.0\right.$ and 8.0, $\mathrm{Ar}^{\text {maj and min }}$), 6.58-6.31 ($\left.6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{\text {maj and min }}\right), 6.17\left(2 \mathrm{H}\right.$, dd, $J 2.0$ and $2.0, \mathrm{Ar}^{m a j}$ and min $), 5.71\left[1 \mathrm{H}, \mathrm{s},(\mathrm{Ar}(\mathrm{CH}) \mathrm{OHAr})^{m a j}\right], 5.66$ $\left[1 \mathrm{H}, \mathrm{s},(\mathrm{Ar}(\mathrm{CH}) \mathrm{OHAr})^{m i n}\right], 3.21\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}^{\text {maj and min }}\right], 3.06\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}^{\text {maj and min }}\right], 2.91[3 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}{ }^{\text {maj and min }}\right], 2.88\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}{ }^{\text {maj and min }}\right]$ and 1.14-1.02[18 H, s, $\left.\left\{\left(\mathrm{CH}_{3}\right) \times 3\right\}^{\text {maj and min }}\right] ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 161.4(\mathrm{C}=\mathrm{O})^{m a j}, 160.8(\mathrm{C}=\mathrm{O})^{m i n}, 159.8(\mathrm{C}=\mathrm{O})^{m a j}, 159.5(\mathrm{C}=\mathrm{O})^{m i n}, 147.8(\mathrm{C})^{m a j}, 146.5(\mathrm{C})^{m i n}, 146.3$ $(\mathrm{C})^{m a j}, 146.1(\mathrm{C})^{m i n}, 145.9(\mathrm{C})^{m a j}, 145.2(\mathrm{C})^{\min }, 143.9(\mathrm{C})^{m a j}, 143.4(\mathrm{C})^{m i n}, 142.8(\mathrm{C})^{m a j}, 142.6(\mathrm{C})^{m i n}, 141.1(\mathrm{C})^{m a j}$, $137.7(\mathrm{C})^{\text {min }}, 137.4(\mathrm{C})^{m a j}, 134.6(\mathrm{C})^{\text {min }}, 131.8(\mathrm{CH})^{\text {maj }}, 131.7(\mathrm{CH})^{\min }, 131.2(\mathrm{CH})^{m a j}, 129.2(\mathrm{CH})^{\min }, 129.1$ $(\mathrm{CH})^{\operatorname{maj}}, 129.0(\mathrm{CH})^{\min }, 128.5(\mathrm{CH})^{\operatorname{maj}}, 128.4(\mathrm{CH})^{\operatorname{maj}}, 128.2(\mathrm{CH})^{\min }, 127.7(\mathrm{CH})^{\operatorname{maj}}, 127.6(\mathrm{CH})^{\min }, 127.4$ $(\mathrm{CH})^{m a j}, 127.3(\mathrm{CH})^{\min }, 127.22(\mathrm{CH})^{m a j}, 127.17(\mathrm{CH})^{\min }, 126.9(\mathrm{CH})^{m a j}, 126.6(\mathrm{CH})^{\min }, 125.6(\mathrm{CH})^{m a j}, 125.5$ $(\mathrm{CH})^{\min }, 123.4(\mathrm{CH})^{m a j}, 123.1(\mathrm{CH})^{\min }, 122.81(\mathrm{CH})^{\operatorname{maj}}, 122.80(\mathrm{CH})^{\min }, 71.2(\mathrm{CH})^{m a j}, 71.0(\mathrm{CH})^{\min }, 56.0(\mathrm{C})^{\operatorname{maj}}$, $55.8(\mathrm{C})^{m i n}, 40.2\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}{ }^{\text {maj }}, 40.1\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}{ }^{\text {min }}, 39.8\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}{ }^{m a j}, 39.7\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}{ }^{\text {min }}, 39.6\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}{ }^{m a j}, 39.5$ $\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}{ }^{\text {min }}, 39.2\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}{ }^{\text {maj }}, 39.1\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}{ }^{\text {min }}, 23.0\left[\left(\mathrm{CH}_{3}\right) \times 3^{m a j}\right]$ and $22.9\left[\left(\mathrm{CH}_{3}\right) \times 3\right]^{m i n} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 635(100$ $\%, \mathrm{M}+\mathrm{Na}^{+}$); (Found: $\mathrm{M}+\mathrm{Na}^{+}, 635.2660, \mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{NaS}$ requires $\mathrm{M}+\mathrm{Na}, 635.2662$).

1-(2-(tert-Butylsulfinyl)phenyl)-1,3-dimethyl-3-(3-(3-(2-(benzoyl)phenyl)-1,3-dimethylureido)phenyl)urea, 16

PCC ($0.36 \mathrm{~g}, 1.8 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(18 \mathrm{~cm}^{3}\right)$ at room temperature, 1-(2-(tert-Butylsulfinyl)phenyl)-1,3-dimethyl-3-(3-(3-(2-(hydroxy-(phenyl)methyl)phenyl)-1,3-dimethylureido)phenyl)urea 15 ($1.1 \mathrm{~g}, 1.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(18 \mathrm{~cm}^{3}\right)$ added dropwise and stirred for 12 h . Diethyl ether $\left(60 \mathrm{~cm}^{3}\right)$ was added, the precipitate isolated, washed with ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$ and the combined organics concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{EtOAc}\right.$ to $10 \% \mathrm{MeOH}$ in EtOAc$)$ to give a $1: 1$ ratio of inseparable rotamers of 1-(2-(tert-butylsulfinyl)phenyl)-1,3-dimethyl-3-(3-(3-(2-(benzoyl)phenyl)-1,3dimethylureido)phenyl)urea $16\left(0.70 \mathrm{~g}, 60 \%\right.$), as colourless cubes, m.p. $262-264{ }^{\circ} \mathrm{C}$ (from EtOAc-MeOH); $[\alpha]_{\mathrm{D}}$ ${ }^{23}=+18.4\left(\mathrm{c}=0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}(\mathrm{EtOAc}: \mathrm{MeOH} ; 9: 1) 0.35 ; \mathrm{v}_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1716(\mathrm{C}=\mathrm{O}), 1700(\mathrm{C}=\mathrm{O}), 1651$ $(\mathrm{C}=\mathrm{O})$ and $1086(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.62\left(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}^{m a j}\right), 7.58\left(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}^{m i n}\right), 7.53(2 \mathrm{H}$, dd, $J 7.0$ and $\left.7.0, \mathrm{Ar}^{m a j}{ }^{\text {and min }}\right), 7.41\left(1 \mathrm{H}, \mathrm{dd}, J 7.5\right.$ and $\left.7.5, \mathrm{Ar}^{m a j}\right), 7.38\left(1 \mathrm{H}, \mathrm{dd}, J 7.5\right.$ and $\left.7.5, \mathrm{Ar}^{m i n}\right), 7.29-7.12$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{m a j}{ }^{\text {and min }}\right)$, 7.09-6.98 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{\text {maj and min }}\right), 6.98-6.87\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{m a j}\right.$ and min $), 6.82(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $\left.7.5, \mathrm{Ar}^{m a j}\right), 6.76\left(1 \mathrm{H}, \mathrm{dd}, J 7.5\right.$ and $\left.7.5, \mathrm{Ar}^{m i n}\right), 6.59-6.52\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{m a j}\right), 6.52-6.37\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{m i n}\right), 6.33(2 \mathrm{H}$, dd, $J 7.5$ and $7.5,2 \times \mathrm{Ar}^{m a j}$ and $\left.\mathrm{Ar}^{m i n}\right], 6.25\left(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}^{m i n}\right), 6.14\left(2 \mathrm{H}, \mathrm{br}, \mathrm{Ar}^{m a j}\right), 3.18\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}{ }^{m i n}\right]$, $3.15\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}{ }^{m a j}\right], 3.06\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}{ }^{m a j}\right], 3.02\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}{ }^{m i n}\right], 2.97\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}{ }^{m a j}\right], 2.92-$ $2.85\left[3 \mathrm{H}, \mathrm{m},\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}{ }^{m i n}\right], 2.68\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}{ }^{m a j}\right], 2.66-2.61\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}{ }^{m i n}\right]$ and $1.06\left[18 \mathrm{H}, \mathrm{s},\left\{\left(\mathrm{CH}_{3}\right) \times\right.\right.$ $\left.3\}^{\text {maj and min }}\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 195.3$ (ketone $\mathrm{C}=\mathrm{O}$) ${ }^{\text {maj and min }} 159.6$ (urea $\mathrm{C}=\mathrm{O}$) ${ }^{\text {maj and min }}$, 159.4 (urea $\mathrm{C}=\mathrm{O}$) ${ }^{\text {maj }}$ and min $, 145.3(\mathrm{C})^{\text {maj and min }}, 143.7(\mathrm{C})^{\text {maj and min }}, 143.5(\mathrm{C})^{\text {maj and min }}, 143.3(\mathrm{C})^{\text {maj and min }}, 137.5(\mathrm{C})^{\text {maj and min }}, 137.2$ $(\mathrm{C})^{\text {maj and min }}, 135.3(\mathrm{C})^{\text {maj and min }}, 133.4(\mathrm{CH})^{\text {maj and min }}, 131.4(\mathrm{CH})^{\text {maj and min }}, 131.1(\mathrm{CH})^{\text {maj and min }}, 129.8(\mathrm{CH})^{\text {maj and }}$ ${ }^{\text {min }}, 129.6(\mathrm{CH})^{\text {maj and min }}, 128.7(\mathrm{CH})^{\text {maj and min }}, 128.4(\mathrm{CH})^{\text {maj and min }}, 128.3(\mathrm{CH})^{\text {maj and min }}, 127.1(\mathrm{CH})^{\text {maj and min }}$, $127.0(\mathrm{CH})^{\text {maj and min }}, 126.4(\mathrm{CH})^{\text {maj and min }}, 125.3(\mathrm{CH})^{\text {maj and min }}, 125.2(\mathrm{CH})^{\text {maj and min }}, 121.8(\mathrm{CH})^{\text {maj and min }}, 121.6$ $(\mathrm{CH})^{\text {maj and min }^{2}}, 55.7(\mathrm{C})^{\text {maj and min }}, 39.4\left(\mathrm{NCH}_{3}\right)_{\mathrm{A}}{ }^{\text {maj and min }}, 39.3\left(\mathrm{NCH}_{3}\right)_{\mathrm{B}}{ }^{\text {maj and min }}, 38.9\left(\mathrm{NCH}_{3}\right)_{\mathrm{C}}{ }^{\text {maj and min }}, 38.3$ $\left(\mathrm{NCH}_{3}\right)_{\mathrm{D}}{ }^{\text {maj and min }}$ and $22.8\left(\mathrm{CH}_{3}\right)^{\text {maj and min }} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 633\left(100 \%, \mathrm{M}+\mathrm{Na}^{+}\right)$and $611\left(60 \%, \mathrm{M}+\mathrm{H}^{+}\right)$; (Found: $\mathrm{M}+\mathrm{H}^{+}, 611.2692, \mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires $M+H, 611.2687$).

[^0]
[^0]: 1
 D. J. Weix and J. A. Ellman, Org. Lett., 2003, 5, 1317.

